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Piwi-interacting RNAs (piRNAs) play a pivotal role in maintaining genome integrity by repression of
transposable elements, gene stability, and association with various disease progressions. Cost-efficient
computational methods for the identification of piRNA disease associations promote the efficacy of
disease-specific drug development. In this regard, we developed a simple, robust, and efficient deep
learning method for identifying the piRNA disease associations known as piRDA. The proposed architec-
ture extracts the most significant and abstract information from raw sequences represented in a simpli-
cated piRNA disease pair without any involvement of features engineering. Two-step positive unlabeled
learning and bootstrapping technique are utilized to abstain from the false-negative and biased predic-
tions dealing with positive unlabeled data. The performance of proposed method piRDA is evaluated
using k-fold cross-validation. The piRDA is significantly improved in all the performance evaluation mea-
sures for the identification of piRNA disease associations in comparison to state-of-the-art method.
Moreover, it is thus projected conclusively that the proposed computational method could play a signif-
icant role as a supportive and practical tool for primitive disease mechanisms and pharmaceutical
research such as in academia and drug design. Eventually, the proposed model can be accessed using
publicly available and user-friendly web tool at http://nsclbio.jbnu.ac.kr/tools/piRDA/.
� 2022 Published by Elsevier B.V. on behalf of Research Network of Computational and Structural Bio-
technology. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).
1. Introduction

piRNAs are the largest subclass among three distinct classes of
regulatory small non-coding RNAs (sncRNAs) along with micro-
RNAs (miRNAs) and small interfering RNAs (siRNAs), which are
found in several species including vertebrates and invertebrates,
specifically in syntenic genomic locations of humans [1–3]. The
three main types of ncRNAs despite differences in their mode of
target regulation and biogenesis impart certain common function-
alities including the guidance of Argonaute proteins to target the
nucleic acids in a sequence-dependent manner [4]. Specifically,
there are eight Argonaute proteins in humans, together with four
Argonaute subfamily proteins (Ago) and four PIWI subfamilies
(PIWI) proteins, respectively [5]. The expressed Ago proteins bind
to siRNAs and miRNA, where they are transformed in a dicer-
dependent mechanism from double-stranded precursors into
mature small RNAs of 20–22 nucleotides (nt) [6]; whereas, the
PIWI proteins develop a particular RNA-induced silencing complex
(RISC), which is known as piRISCs with a small RNA population ter-
med as piRNAs [7]. The long single strand of primary piRNAs is
independent of dicer in biogenesis; however, different nucleases
are involved for cutting these strands into each piRNA unit [6,8].
The length of each piRNAs sequence varies from 26 to 32 nt [9].
piRNAs are responsible for the self-renewal of the stem cells as
they abundantly exist in spermatogenic cells and play a significant
role in maintaining germline and genome veracity by concealing
the insertional mutations from transposons [10–13].

The involvement of piRNAs in epigenetic silencing of trans-
posons, regulation of gene transcription, histone modification,
heterochromatin modification, and DNA methylation appeals
researchers to further explore their associations with specific
human diseases [14–16]. Moreover, the aberrant expression of piR-
NAs is associated with the development of various human diseases
such as cardiovascular diseases, neurodegenerative disorders
together with Alzheimer’s disease, Parkinson’s disease, malignant
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Fig. 1. The overall workflow of proposed Architecture piRDA for identifying piRNA
disease associations.
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tumors, and hallmarks of cancer like augmented stemness, cell
proliferation, inhibited apoptosis, and metastasis [17–22], for
example, neurodegenerative disorder considering the differential
expression of piRNAs in the healthy human brain in comparison
to Alzheimer’s disease. The diagnosed brain comprises five more
than ten-fold upregulated piRNAs including piR-hsa-25781, piR-
hsa-28467, piR-hsa-1177, piR-hsa-26593, and piR-hsa-29114
among the 146 upregulated and 3 downregulated piRNAs, which
may act as an effective signature for Alzheimer’s disease [23]. In
reference to cancers, the expression of piR-651 was upregulated
in several gastric, lung, breast, mesothelium, liver, and cervical
cancer cell lines [24]. Furthermore, piR-823 was remarkably upreg-
ulated in colorectal tumorigenesis where it binds with HSF1 while
boosting its transcriptional activity and phosphorylation at Ser326
having an active role as a tumor booster [25]. Therefore, the piR-
NAs are reliable biomarkers associated with the diagnosis and
treatment of diseases, which could be facilitated by identifying
piRNAs associated with diseases.

In this regard, several piRNA databases [9,26–28], together with
efficient and cost-effective web-server based computational pre-
dictors for identifying piRNA and their functions, are available
[29–31]; whereas, research regarding human disease-associated
piRNAs is in its early stages. Recently, the development of piRDi-
sease v1.0 [32], which is a collection of various experimentally ver-
ified piRNA-disease associations, allows researchers to develop
robust and cost-efficient computational methods in order to iden-
tify piRNA-associated diseases [33–37]. Thus, Wei et. al. proposed
computational models for the identification of human disease-
associated piRNAs together with iPiDi-PUL [33] and iPiDA-sHN
[34]. iPiDi-PUL a random forest-based ensemble learning approach
used positive unlabeled learning [38] for predicting piRNA disease
association, wherein the features for associations were extracted
using three dissimilar biological data sources. The negative data
for training of model was randomly selected from unlabeled data
consists of samples which were not experimentally verified; thus,
there was a possibility of positive associations in unlabeled sam-
ples, and those samples employed as a negative data could results
in low recall or inappropriate decision boundary of a classifier as
illustrated in Fig. 2. Although, iPiDi-PUL utilized positive unlabeled
learning to assuage low recall or false-negative problem; however,
the selection of random negative samples from the unlabeled
piRNA disease associations results in compromising the perfor-
mance of the predictor due to presence of outliers in negative sam-
ples. Recently, to mitigate this false-negative obstruction, Wei et al.
[34] proposed iPiDA-sHN. A two-step positive-unlabeled learning
technique [39] for selection of reliable negative samples from unla-
beled piRNA disease associations. Where the three heterogeneous
biological sources were combined to describe the piRNA disease-
associated features. Moreover, convolution neural network (CNN)
was utilized for feature extraction from the multi-source hand-
crafted disease-associated features. Finally, a Support Vector
Machine (SVM) classifier was employed for predicting the piRNA
disease association. The employed biological sources for both of
the available computational methods include experimentally veri-
fied piRNA-disease associations, disease semantic terms, and
piRNA sequence information. The shortfall in the fusion of multiple
biological data sources as a feature descriptor introduces irrelevant
and noisy information. The performance of the computational
method could be compromised due to inadequate description of
features without tackling redundancy, irrelevant and noisy
information.

Consequently, the issues related to manual extraction of fea-
tures that are highly dependent upon field knowledge need to be
addressed. While the deep learning algorithms are extremely effi-
cient and effective in extracting the most significant and abstract
features from raw data utilizing the general purpose learning
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[40]. Moreover, deep learning is also capable of identifying and rec-
ognizing the patterns in unstructured data with low-level involve-
ment of manual configuration [41]. Thus, deep learning has
breakthroughs in the fields of natural language processing [42],
speech recognition [43], image recognition [44], precision agricul-
ture [45–47], potential drug molecules [48], post-translation mod-
ifications [49,50], RNA binding proteins [51,52], post-
transcriptional modifications [53–55], identification of promoters
[56–58], DNA modifications [59–62], and prediction of disease
association [63–65]. In the present study, we proposed deep learn-
ing architecture piRDA consist of CNN and fully connected layers,
CNN is the most commonly used deep learning method consider-
ing its efficacy and efficiency in various applications. The CNN-
based deep learning architecture is a hierarchical model capable
of learning the patterns by utilizing the series of convolutional
operations [40]. Fully connected layers are utilized for extracting
high level features. For construction of reliable negative data from
the unlabeled samples, a two-step positive-unlabeled learning
technique [39] was employed to reduce the false-negative rate
while predicting piRNA disease association. The raw piRNA
sequences are encoded as feature vectors by implementing one-
hot encoding technique as an input to CNN where the concealed
information of raw piRNA sequences is recognized by CNN. Never-
theless, the disease association for each piRNA is represented with
one-dimensional feature vector known as disease association one-
hot vector (DAOHV). This is then concatenated with piRNA features
extracted by CNN and fed into fully connected neural network lay-
ers. These layers extract the piRNA disease association patterns
(utilizing multiple levels of abstraction) which leads to high perfor-



Table 1
Summary of piRDA performance for identifying piRNA disease associations using
independent piRNA IDs.

No. Disease DAOHV

1 Renal cell carcinoma [1]
2 Lung cancer [0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]
3 Breast cancer [0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]
4 Pancreatic carcinoma [0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]
5 Head and neck (squamous cell)

carcinoma
[0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]

6 Lung cancer (lung
adenocarcinoma)

[0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]

7 Alzheimer’s disease [0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0]
8 Cardiovascular diseases (CDC,

CF, CCS) cardiac regeneration
[0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0]

9 Head and neck cancer [0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0]
10 Gastric cancer [0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0]
11 Colon cancer [0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0]
12 Non-small cell lung carcinoma

(NSCLC)
[0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0]

13 Prostate cancer [0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0]
14 Dysplastic liver nodules and

hepatocellular carcinoma
[0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0]

15 Rheumatoid arthritis [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0]
16 Testicular germ cell carcinoma [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0]
17 Endometrial carcinogenesis [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0]
18 Male infertility [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0]
19 Leukemia [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0]
20 Heart stroke [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0]
21 Ovarian cancer [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1]

Fig. 2. Illustration of reliable negative selection. (a) Positive and unlabeled data samples. (b) Training with random negative. (c) Unlabeled samples according to their
prediction scores.
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mance identification of piRNA disease associations without losing
any contextual information among piRNAs and diseases. To exten-
uate the bias of proposed computational method for piRDA toward
the majority class in predictions, we used the bootstrapping
method [66]. Furthermore, the grid search algorithm was utilized
for optimum hyperparameter selection. We utilized the subsam-
pling (k-fold cross-validation) test for comprehensively evaluating
the performance, where the proposed architecture of piRDA signif-
icantly outperformed the state of the art. Additionally, for the con-
venience of drug developers, experimental scientists, and
considering the importance of webservers in medical sciences
research, we developed a publicly available web-server for identi-
fying piRNA associated with disease accessible at http://nsclbio.
jbnu.ac.kr/tools/piRDA/. The overall description of the proposed
architecture piRDA is illustrated in Fig. 1. The major contributions
of the piRDA are enlisted as.

� Novel and simple supervised learning-based representation of
sequences and their disease associations.

� Development of a deep learning model for identification of raw
piRNA sequences and their associated diseases.

� Achieving significantly high performance in the identification of
piRNA disease association.

� Visualization of the feature space learned by piRDA in the pre-
diction of piRNA disease association.

� Development of publicly accessible web-server.

2. Materials and methods

2.1. Dataset construction

piRDisease v1.0 [32] is a manually curated database collection
comprising experimentally verified 7939 piRNA disease associa-
tions. The redundant and non–human piRNAs were filtered; by
extracting the human piRNAs with the piRNA IDs accordingly in
piRBase [28]. Eventually, 4350 piRNAs were associated with 21 dis-
eases, thereby providing 5002 experimentally validated disease
associations. The benchmark data is the same as introduced and
utilized in the literature by Wei et al. [33,34]. Mathematically,
the benchmark dataset is described as:

Dall ¼ DP [ DU ð1Þ
In Eq. (1) Dall is the union of all the 4350 piRNAs associated among
21 diseases with 91,350 total numbers of samples. The DP repre-
sents positive samples comprising 5002 experimentally validated
associations of 4350 piRNAs and 21 diseases, whereas DU represents
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the unlabeled 86348 piRNA disease pairs among 4350 piRNAs and
21 diseases. The diseases are enlisted in Table 1.

2.2. Proposed methodology

The effective and efficient computational method (piRDA) in
terms of computational cost and efficacy is proposed for the iden-
tification of disease-associated piRNAs. The overall flow of the pro-
posed study is illustrated in Fig. 1. The flowchart depicts that the
proposed computational method comprises three main steps. The
first step is simple and effective one-hot feature representation
of respective association between piRNAs and diseases. Second,
to avoid the false negative rate of the classifier in prediction
classes, high-quality reliable negative data samples were selected
from the unlabeled dataset. To maintain consistency, fair compar-
ison and generalization the reliable negative data was same as
used in the previous study by Wei et al. [34]. Eventually, the fea-
tures were processed using CNN-based deep learning architecture
(piRDA) for identifying the piRNAs associated with the diseases.
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The 10-fold cross-validation is used for evaluating the performance
of proposed architecture.

2.3. Feature representation

The one-hot encoding was utilized for the representation of
each piRNA and disease association as an input to proposed model.
One-hot encoding is the most prevalent technique because of its
simplicity and effectiveness [67]. The piRNA sequences acquired
from piRBase v2.0 [28] are inconsistent in lengths. Therefore, the
shorter sequences were padded with dummy variable ”N” for mak-
ing all the sequences to be equal in their lengths for further pro-
cessing in CNN. Hence, the one input of piRDA was disease-
associated raw piRNA sequence, where P ¼ fP1; P2; P3; . . . ; Png,
where j in f1;2;3; . . . ;ng; Pj 2 A;C;G;U,and n ¼ 32. Each raw piRNA
sequence was encoded corresponding to A;U;G,and C as 4 four-
dimensional feature vectors [1], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1].
The second input of piRDA included information of the diseases
associated with piRNAs. Hence, each disease was represented with
one-dimensional feature vectors by assigning a distinct unit vector
to each associated disease known as disease association one-hot
vector (DAOHV). This one-dimensional simple representation of
associated disease directly extracts discriminative information of
the disease. DAOHV is a 21 elements vector representing 21 dis-
eases, where only one element for the specific disease would have
value ‘‘1” and all the other 20 elements would be ‘‘0”. The descrip-
tion of DAOHV for diseases is presented in Table 1.

2.4. Positive unlabeled learning

A reliable negative dataset was prepared following the same
methods as in previous studies [34,51,68,69]. Therefore, a two-
step technique was employed for dealing with positive unlabeled
sample datasets [39], wherein, the first step is the identification
of reliable negative samples and the second step is to create predic-
tors based upon the positive labeled samples and reliable negative
samples [70]. For selecting reliable negative samples and to accom-
plish the first step of the two-step technique, SVM classifier was
employed. The SVM classifier was trained by a random selection
of unlabeled samples with the same size as positive samples
expressed in Eq. (1). Parameters used for training of SVM are
C = 1.0, gamma = 1, and kernel = ’rbf’. The trained SVM was utilized
for obtaining the prediction scores from all the unlabeled piRNA
disease association samples in Eq. (1). The prediction scores corre-
sponding to the unlabeled samples were sorted in descending
order and divided into three clusters of nearly the same size. The
second cluster of unlabeled piRNA disease association samples
was considered as the reliable negative sample having minimum
chance to be the false negative. As the selection of difficult exam-
ples made the training more effective for yielding substantial per-
formance boost [71]. The selection process of reliable negative
samples is illustrated in Fig. 2.

2.5. Bootstrapping technique

Considering training of the proposed architecture piRDA as the
number of disease-associated piRNA or positive samples are less
than that of the reliable negative samples. The predictor would
be biased towards the majority occurring class; to avoid biases in
predictions bootstrapping technique [66] was employed similarly
used in literature [72,73] to tackle class imbalance. In this tech-
nique, we divided the prepared reliable negative samples into
chunks of samples, which are approximately equal to the number
of samples as of positive samples disease-associated piRNAs,
thereby resulting in five sets of data where each dataset comprises
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disease-associated piRNAs and a reliable negative chunk. More-
over, k-fold cross-validation was employed; where the value of k
is equal to 10 as of state of the art for fair comparison, and keeping
consistency among the dataset. The results obtained using k-fold
cross-validation are rigorous and unbiased as they are evaluated
on k numbers of different test sets [74,75]. Furthermore, 10-fold
cross-validation employed divides each dataset into 10 sub data-
sets, where eight folds were used for training, onefold for the val-
idation, and the remaining onefold for testing of the model. This
cognitive operation was repeated 10 times so that each fold was
considered to be a distinctive test set. The average of these distinc-
tive subsets was considered to be the final outcomes of each of
dataset; whereas, the final outcome of the proposed method piRDA
was obtained using the average of all the five sets of data.
2.6. Proposed architecture

The proposed architecture is a two inputs deep learning based
computational model, as illustrated in Fig. 3. The model can extract
more abstract level of features from the raw data. The main com-
ponents of the proposed model piRDA are convolutional and dense
blocks, which reduce noise and acquire high-level features from
raw piRNA sequences and their respective association with the dis-
ease. The first input of the proposed architecture was the raw
piRNA sequence, which was transformed into a single-
dimensional four channel vector as an input to the convolution
block, comprising a one-dimensional convolution layer (Conv1D),
where multiples filters extract features from the input data by pre-
serving the corresponding spatial information. Therefore, each fil-
ter in the Conv1D identifies and extracts the most salient
patterns and motifs in raw piRNA sequences [76]. Conv1D used
in piRDA comprises 24 filters, where the size of each filter was 7.
The Rectified Linear Unit (ReLU) [77] was considered as an activa-
tion function for Conv1D, whereas the ReLU activation function is
responsible for capturing the nonlinearities and interaction among
the feature matrix [78]. Following the ReLU activation, a normal-
ization layer was applied, which acts as a regularizer and is respon-
sible for stabilization of training optimization by substantially
confiscating the covariate shift [79]. Therefore, for normalization
of feature matrix group normalization (GP) was employed, which
is an effective alternative to batch normalization while dealing
with small batch size [80]. Where the normalization is performed
in groups without employing the batch dimension, the group size
of 4 was selected. The one-dimensional max-pooling layer is
employed for the features from GP layer, which enhances the abil-
ity of generalization by eradicating redundancy and dimensional-
ity. The filter size of 2 along with a stride of 2 was utilized for
the one-dimensional max-pooling layer. Flatten layer was utilized
after max-pooling layer, which collapses the spatial dimensionality
of the extracted feature matrix into a one-dimensional vector. The
flattened features are concatenated with the disease associated one
hot vector, which is the second input of piRDA using the concate-
nation layer. Thereafter, final high-level features from the disease-
associated piRNA pair were extracted using two fully connected
layers having 128 and 32 neurons, respectively. The ReLU is uti-
lized as an activation function for both fully connected layers. L2
regularizer on bias and weight is employed for the fully connected
layers, which is the most effective and sophisticated technique to
mitigate the overfitting by penalizing larger weights of the model

[81]. The value assigned to L2 regularization plenty is 1� 10ð�6Þ.
The dropout layer, an effective regularization to avoid overfitting
by randomly switching off the effects of neurons [82] was used
between the two fully connected layers. The dropout probability
for the dropout layer is 0.25. Eventually, these high-level features
are fed into the output layer where the sigmoid activation was



Fig. 3. Illustrating detailed architecture of proposed method piRDA where the convolutional block comprises convolution layer with ReLU as an activation function along
with group normalization and max-pooling layers. The dense block consists of two fully connected layers along with dropout probability ReLU as an activation function and
sigmoid activation function for prediction associated scores.
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employed to assign the prediction scores for the disease-associated
piRNA pairs. The mathematical representation of proposed archi-
tecture is formulated as:

Conv1DðPÞkl ¼ ReLU
XS�1

s¼0

XN�1

n¼0

Wl
snPk þ s;n

 !
ð2Þ

Eq. (2) represents one-dimensional convolution layer where Prepre-
sents the raw piRNA sample as an input, lis the index of the filter,

and kis the index of output position. Wlrepresents each of the con-
volution filters having a weight matrix of S� Ndimensions. Sde-
notes the size of the filter, whereas Nrepresents the number of
input channels.

ReLUðxÞ ¼ maxð0; xÞ ð3Þ
Eq. (3) is the representation of ReLU activation function having x as
an input.

D ¼ ReLU bdþ1

Xd
k¼1

mkwkzk

 !
ð4Þ

Eq. (4) is the representation of a fully connected layer where the
additive bias term is denoted by bdþ1;mk is a representation of the
dropout operator derived from Bernoulli distribution having with
the probability of p; zk represents the 1�d dimensional feature vec-
tor, and wk represents the previous layer weights of zk.

SigmoidðxÞ ¼ 1
1þ e�x

ð5Þ

Eq. (5) denotes the final prediction layer having sigmoid as an acti-
vation function and x as an input.

2.7. Model implementation/training

The proposed architecture piRDA was constructed using the
Keras framework (https://keras.io/). For optimizing the parameters
of the piRDA, the adaptive moment estimation, commonly known
as Adam, was used; this is an efficient stochastic optimization
method where the magnitude in updates of parameters is unaf-
fected by the rescaling of gradient [83]. The learning rate used

for the optimizer was 5� 10ð�4Þ. Moreover, the loss function uti-
lized was binary cross-entropy for computation of the classifica-
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tion loss among the actual labels and the predicted probabilities
during training [84]. Furthermore, the early stopping on validation
loss was employed to diminish the overfitting. The patience uti-
lized in early stopping was 20, which signifies that the model will
stop training if there is no improvement (reduction) in validation
loss for 20 epochs. The maximum number of epochs for training
were 200 and the batch size was 32. The optimum hyper-
parameters of the proposed architecture piRDA are selected using
a grid search algorithm known as keras-hypetune (https://github.
com/cerlymarco/keras-hypetune). The tuning of hyper-
parameters provides a substantial part in selecting an optimal
deep-learning model.

3. Results

3.1. Evaluation measures

To evaluate the prediction performance and efficiency of statis-
tical predictors, the most commonly used k-fold cross-validation
was utilized. The performance evaluation metrics include accuracy
(Acc), sensitivity (Sn), specificity (Sp), Mathew correlation coeffi-
cient (Mcc), and rank index (RI). The accuracy is the ratio of cor-
rectly classified samples to all samples. The sensitivity and
specificity are the proportion of true positive (Tp) and true negative
(Tn) respectively. Mcc is a measure of the classifier quality and sta-
bility. All of the true positive, false positive (Fp), true negatives, and
false negatives (Fn) are considered for evaluating this metric,
which results in an effective evaluation in case of class imbalance.
Tp is the number of correctly identified positive samples, whereas
the number of positive samples predicted as negative samples are
known as Fn. Similarly, Tn is the number of accurately identified
negative samples and Fp is incorrectly identified negative samples
as positive associations. Furthermore, the rank index [33,34,85] is a
measure of the identification capacity of the positive association
with respect to their ranks in all the piRNA-disease pairs of the test
subset. Considering higher values of Acc; Sn; Sp, and Mcc, better the
predictor’s performance. Conversely, the lower value of the RI met-
ric signifies superior the performance. The evaluation measures
can be calculated as follows:

Acc ¼ Tpþ Tn
Tpþ Tnþ Fnþ Fp

ð6Þ
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Sn ¼ Tp
Tpþ Fn

ð7Þ
Sp ¼ Tn
Tnþ Fp

ð8Þ
Mcc ¼ Tp� Tp� Fp� FnffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðTpþ FnÞðTpþ FpÞðTnþ FpÞðTnþ FnÞp ð9Þ
Fig. 4. Illustration of the five folds success rate (ROC), with associated calculation of
prediction quality (AUC) and standard deviation error.
RI ¼ 1

jDsub
þ j

X
as2Dsub

þ

Ras

jDsub
testj

ð10Þ

where jDsub
þ jrepresents the number of positive test subset associa-

tions. Rasdenotes the positive piRNA disease association rank posi-

tion among all the pairs of piRNA-disease in the test subset Dsub
test .

Moreover, the receiver operating characteristic curve (ROC) was
utilized for evaluating the success rate of the classifier. ROC is the
graphical plot between true positive rate and false positive rate
depicting the predictor’s performance at all thresholds of classifica-
tion. Additionally, the precision-recall curve (PRC) is a measure of
evaluating the positive class prediction of a classifier. The PRC is
plotted between precision and recall on all classification thresh-
olds; where both of these measures, ROC and PRC, are the signifi-
cant indicators for positive class evaluation. Herein, area under
the ROC (AUC) and PRC (AUPRC) signifies the prediction quality
of the classifier. Both AUC and AUPRC are the composite metrics
of the classifier’s success that considers all the potential classifica-
tion thresholds.
Fig. 5. Illustration of the five folds PRC together with (AUPRC) and standard
deviation error.
3.2. Model performance

The proposed method piRDA for identifying piRNA-disease
association by using the two-step positive unlabeled learning,
together with the supervised learning labeling method, where
the contextual information of the sequence is contemplated. The
piRDA was evaluated by rigorous k-fold cross-validation tech-
niques. The performance of the piRDA by employing the evaluation
measures is summarized in Table 2. These outcomes are the aver-
age values along with standard deviation error of 50 sub test data-
set from piRNA disease and reliable negative sequence datasets,
where the values for Acc; Sn; Sp;Mcc;RI, AUC, and AUPRC are
91.32%, 90.89%, 91.80%, 0.827, 0.056, 0.951%, and 0.931%, respec-
tively. Also, the AUC and AUPRC together with standard deviation
errors of five folds are illustrated in Fig. 4 and Fig. 5 respectively.
Similarly, Fig. 6 and Fig. 7 illustrates the AUC and AUPRC along
with standard deviation errors by utilizing 10 sub folds cross-
validation.The feature space learned by piRDA was represented
using UMAP and is shown in Fig. 8.
Table 2
Summary of performance comparison of piRDA with existing methods for identifying
piRNA disease associations.

Metric piRDA iPiDA-sHN iPiDi-PUL

Acc 0.913 � 0.007 0.736 �0.020 0.589 �0.012
Sn 0.909 � 0.011 0.779 �0.078 0.281 �0.027
Sp 0.918 �0.014 0.694 �0.080 0.897 �0.007
Mcc 0.827 � 0.016 – –
RI 0.056 � 0.004 0.307 � 0.005 0.322 �0.005
AUC 0.951 �0.001 0.887 �0.009 0.856 �0.009
AUPRC 0.931 �0.003 0.834 �0.023 0.764 �0.014

”-” denotes Not Applicable.
Fig. 6. Illustration of ROC along with AUC and standard deviation error of sub 10-
fold cross-validation.
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Fig. 7. Illustration of PRC along with AUC and standard deviation error of sub 10-
fold cross-validation.

Fig. 8. Clusters of positive and negative piRNA disease associations features of the
proposed method obtained from hidden layer activation using UMAP.
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3.3. Comparative analysis

To analyze the significance and dominance of the proposed
architecture piRDA, we compared the performance with the exist-
ing and state-of-the-art methods including iPiDi-PUL [33] and
iPiDA-sHN [34] respectively.

� iPiDi-PUL: is an ensemble learning-based random forest
method where the extracted features include the amalgamation
of three biological data sources. The model was trained using
positive unlabeled learning, where for the positive set or labeled
piRNA disease associations, the equivalent number of negative
set was randomly selected from unlabeled piRNA disease
associations.

� iPiDA-sHN: is an SVM-based classifier where the CNN was used
to extract features of computed piRNA similarity and disease
similarity from three independent biological sources. Further-
more, SVM-based two-step positive unlabeled learning was
employed to construct reliable negative samples from unla-
beled data and classification of piRNA disease associations.

The proposed computational method piRDA outperforms all the
available relevant computational methods in comparison. The
comparison of outcomes in the identification of piRNA disease
association along with standard deviation errors are summarized
1214
and illustrated in Table 2 and Fig. 9, respectively. The aforemen-
tioned comparative results are obtained from the state-of-the-art
method iPiDA-sHN [34]. Furthermore, piRDA outstrips state of
the art in the performance evaluation measures including
Acc; Sn; Sp;RI, AUC, and AUPRC by 17.7, 13.0, 22.4, 25.1, 6.4, and
10.0 percent, respectively.

4. Discussion

The outperformance of proposed method in all evaluation mea-
sures signifies that the piRDA is most robust and efficient than the
available computational methods in identifying the piRNA disease
associations. The efficacy and robustness of the proposed method
piRDA are attributable to selection of reliable negative using
two-step positive unlabeled learning and DAOHV, a supervised
learning representation of the raw piRNAs and their associated dis-
ease pairs. This enables the deep learning algorithm to directly
extract the most significant and abstract features from the raw
inputs without losing the contextual information of the sequences.
The multiple levels of abstraction in the deep learning model for-
mulate the possibility to identify the piRNA disease associations
more precisely and accurately without being involved in any
hand-crafted feature extraction method, whereas the available
methods constructed their features matrix by fusing the informa-
tion of three different biological sources, thereby introducing some
noisy information, which leads to misclassification of machine
learning based algorithms. Moreover, calculating the similarity
matrix for feature representation results in loss of contextual infor-
mation among the sequences of piRNA and disease pair. Further-
more, biases and false-negative obstruction were diminished by
utilizing bootstrapping method, and two steps positive unlabeled
learning where the selection of reliable negative associations helps
in reducing the false negative problem to the difference of only 1
percent between the Sn and Sp. Which was 8.5 percent in iPiDA-
sHN and 61.6 percent following the case of iPiDi-PUL. This drastic
difference depicts that piRNA disease associations were inaccu-
rately classified as non-piRNA disease associations. The random
selection of negative samples from unlabeled data for training of
iPiDi-PUL is responsible to evoke the bias predictions of the
classifier.

5. Case study

Evaluation of the proposed method piRDA in reference to the
literature regarding piRNAs as potential biomarkers and thera-
peutic targets of various diseases. We test the proposed method
using the experimentally verified piRNAs which were not
involved in training of the model. For instance, piRBase ID or NCBI
accession number piR-hsa-23317 (DQ593039), piR-hsa-1207
(DQ570956), piR-hsa-27730 (DQ597484), piR-hsa-24016 (DQ59-
3768), piR-hsa-26593 (DQ596377), piR-hsa-29114 (DQ599147)
reported in Li et al. [22] showing the highest association for
Cardiovascular diseases. piR-hsa-26686 (DQ596470) [86], piR-
hsa-20266 (DQ590013) [87] for Renal cell carcinoma, and
piR-hsa-25783 (DQ595536), piR-hsa-28467 (DQ598252), piR-
hsa-24016 (DQ593768), piR-hsa-2107 (DQ571813), piR-hsa-820
(DQ570540), piR-hsa-515 (DQ570206) [23] for Alzheimer disease.
The disease associations for the independent piRNAs is summa-
rized in Table 3.

6. Web-server

The urbanization of a user-friendly and freely accessible web-
server accumulating the processes of proposed architecture piRDA
is available at http://nsclbio. jbnu.ac.kr/tools/piRDA/. The web ser-



Fig. 9. Illustration of evaluation measures comparision of piRDA with existing methods for identifying piRNA disease associations.

Table 3
Summary of piRDA performance for identifying piRNA disease associations using
independent piRNA IDs.

piRNA ID Association Reported

piR-hsa-23317 Cardiovascular diseases Li et al.[22]
piR-hsa-1207
piR-hsa-24016
piR-hsa-26593
piR-hsa-29114

piR-hsa-26686 Renal cell carcinoma Wu et al. [86]
piR-hsa-20266 Fu et al. [87]

piR-hsa-25783 Alzheimer disease Roy et al. [23]
piR-hsa-28467
piR-hsa-24016
piR-hsa-2107
piR-hsa-820
piR-hsa-515

piRNA ID refers to the piRBase [28].
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vers are efficient in maintaining the records of computationally
analyzed results. The server is constructed using the python flask
web framework. The input in piRNA sequences can be uploaded
in FASTA format, whereas the output results in disease associated
with the respective piRNA sequence.
7. Conclusion

In this study, we proposed deep learning based computationally
efficient and robust algorithm for identifying piRNA disease associ-
ation. The significantly important features were extracted from
disease-associated piRNA without any intervention of hand-
designed feature engineering. For constructing a reliable negative
dataset and to remove biases of the classifier, two-step positive
unlabeled learning and bootstrapping methods were utilized,
respectively. The experimental outcomes reveal that the proposed
architecture piRDA significantly outperforms the state-of-the-art
computational methods for predicting piRNA disease associations.
Accurate identification of piRNA disease associations would pro-
mote the experimentalists, researchers, and drug developers to fur-
ther enhance the understanding of mechanism regarding diseases
associated with piRNAs. The publicly accessible convenient web
tool would be an effective platform to obtain their desired reliable
information effectively. Presently, as the research regarding piRNA
disease association is in its infancy. Therefore, this model can iden-
tify the piRNA disease association of 21 diseases, which could be
1215
further enhanced and generalized in future with availability of
the verified disease-associated piRNAs.
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