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Abstract
Background  Single-cell transcriptome sequencing (scRNA-seq) has revolutionized the study of immune cells by 
overcoming the limitations of traditional antibody-based identification and isolation methods. This advancement 
allows us to obtain comprehensive gene expression profiles from a diverse array of vertebrate species, facilitating the 
identification of various cell types. Comparative immunology across vertebrates presents a promising approach to 
understanding the evolution of immune cell types. In this study, we conducted a comparative transcriptome analysis 
of peripheral blood mononuclear cells (PBMCs) at the single-cell level across 12 species.

Results  Our findings shed light on the cellular compositional features of PBMCs, spanning from fish to mammals. 
Notably, we identified genes that exhibit vertebrate universality in characterizing immune cells. Moreover, our 
investigation revealed that monocytes have maintained a conserved transcriptional regulatory program throughout 
evolution, emphasizing their pivotal role in orchestrating immune cells to execute immune programs.

Conclusions  This comprehensive analysis provides valuable insights into the evolution of immune cells across 
vertebrates.
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Background
Host’s response to invasive pathogens is a fundamen-
tal physiological reaction observed across all organisms. 
Even prokaryotes employ restriction enzymes and clus-
tered regularly interspaced palindromic repeats (CRIS-
PRs) to defend against invading foreign pathogens [1]. 
Unicellular eukaryotic amebae have evolved the ability 
to phagocytose foreign material as a part of their food 
uptake mechanism, and this basic phagocyte function is 
conserved as an immunological function in invertebrates 
and vertebrates. In invertebrates, various types of phago-
cytes (such as amebocytes, hemocytes, coelomocytes, 
granulocytes, monocytes, and macrophages) distinguish 
between self and non-self and display a wide array of 
innate immune functions. In primitive vertebrates (agna-
thans), such as jawless fish, lymphocytes are character-
ized by the widespread expression of leucine-rich repeat 
(LRR) sequences, which are receptors that integrate 
innate and adaptive immunity. The immune system of 
vertebrates (gnathostomes) is a highly complex structure 
that coordinates various types of both innate and adap-
tive immune cells to recognize and initiate a defensive 
response against potentially lethal pathogens, including 
bacteria, viruses, fungi, and parasites. The innate immune 
system consists of various types of cells, such as granulo-
cytes, NK cells, monocytes/macrophages, dendritic cells, 
and mast cells. Adaptive immune cells are broadly clas-
sified into B and T cells that can directly recognize anti-
gens with great specificity.

The exploration of immune systems in evolutionarily 
diverse vertebrates provides a compelling method to 
decipher the evolutionary pressures that have shaped 
immune mechanisms, molecules, specialized cells, and 
structures over time. The advent of large-scale animal 
genome sequencing has revealed genomic elements that 
are deeply conserved across the immune systems of 
various species. Traditionally, in humans and mice, clus-
ters of differentiation (CD) antigens have been pivotal 
in identifying and isolating distinct immune cell types 
for comprehensive phenotypic and functional analyses 
[2–4]. However, the application of standard antibody-
based cell purification across species is still challenging 
due to epitope and antibody differences. The emergence 
of scRNA-seq offers a promising solution to these obsta-
cles, enabling the analysis of immune cell heterogeneity 
in invertebrates such as shrimp, oysters, mosquitoes, and 
Drosophila [5–8]. This approach has shed light on the 
evolution and development of immune cells [9–11].

To deepen our understanding of the evolution of ver-
tebrate immunity from nonmammalian to mammalian 
at the cellular level, single-cell atlases of peripheral blood 
mononuclear cells (PBMCs) have been developed for 12 
distinct species. This initiative has facilitated the analysis 
of conserved genes within PBMCs across these species, 

allowing for a comparative examination of conserved and 
divergent patterns of marker genes, cellular interactions, 
and genetic regulatory networks across a diverse array of 
species.

Methods
Cell capture, sequencing and alignment
In this study, a peripheral blood mononuclear cell 
(PBMC) atlas of six species, namely, Tachysurus fulvi-
draco (yellow catfish), Sebastes schlegelii (Jacopever), 
Pelodiscus sinensis (Chinese softshell turtle), Gallus gal-
lus (chicken), Rattus norvegicus (rat), and Homo sapiens 
(human), was generated. In the next section, Tachysurus 
fulvidraco, Sebastes schlegelii, Pelodiscus sinensis, Gallus 
gallus, Rattus norvegicus and Homo sapiens are referred 
to as catfish, jacopever, Chinese softshell turtle, chicken, 
rat and human, respectively. Each species contained two 
samples, and all animals were female, with ages were 6 
months (catfish and jacopever), 2 years (Chinese softshell 
turtle), 2.5 years (chicken), 2 months (rat) and 26 years 
(human). PBMCs were collected from peripheral blood 
by density gradient centrifugation. The collected cells 
were stained with 0.4% trypan blue to estimate cell viabil-
ity. Next, cells with > 85% viability were subjected to fur-
ther scRNA-seq.

A total of 12 sample pools were loaded into differ-
ent lanes of BMKMANU chips, which were utilized 
in conjunction with the BMKMANU DG1000 Library 
Construction Kits. The BMKMANU DG1000 system 
(Biomarker) was used to generate cDNA libraries. The 
libraries were then fragmented and sequenced on an Illu-
mina NovaSeq 6000 (Illumina).

The generated raw reads were then processed 
and aligned to the respective reference genomes for 
each species, including GCF_015220745.1 (catfish), 
GCF_022655615.1 (jacopever), GCF_000230535.1 (Chi-
nese softshell turtle), GCF_016699485.2 (chicken), 
GCF_015227675.2 (rat), and GCF_000001405.40 
(human), using BSCMATRIX ​(​​​h​t​​t​p​:​​/​/​w​w​​w​.​​b​m​k​m​a​n​u​.​c​
o​m​/​p​o​r​t​f​o​l​i​o​/​t​o​o​l​s​​​​​) with default parameters. This align-
ment process enabled the filtering of both cell and unique 
molecular identifier (UMI) barcodes, resulting in high-
quality data for gene expression quantification per indi-
vidual cell.

Preprocessing and quality control
The gene expression matrix of all samples was loaded 
in R (version 4.2.2) using Seurat (version 4.3.0), and 
the analysis was performed with a standard workflow 
(SCTransform, RunPCA, RunUMAP, FindNeighbors 
and FindClusters) [12]. After preprocessing, Doublet-
Finder (version 2.0.3) [13] was used to evaluate doublets. 
Cells with fewer than 300 detected genes were defined as 
low-quality cells in 12 species. For mitochondrial gene 
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content thresholds, 20% for chicken based on their dis-
tributions; 20% for pig and cattle as reference [14, 15]; 
10% for mouse and rat based on their distributions; 20% 
for human based on their distributions and reference 
(Figure S1A-E) [16]. For catfish, jacopever and Chinese 
softshell turtle, filtering was not applicable due to the 
absence of annotated mitochondrial chromosomes and 
genes in their genomes. In Egyptian fruit bat, Rhesus 
macaque, and chimpanzee datasets, mitochondrial genes 
were excluded from the matrix data [17]. Hemoglobin-
expressing cells were defined as erythrocytes. Doublets, 
low-quality cells and erythrocytes were removed before 
subsequent analysis and visualization. After preprocess-
ing and quality filtering, samples from the same species 
were merged. We conducted a comprehensive evaluation 
using the scIB framework [18] to assess the performance 
of 12 single-cell data integration tools: MNN [19], scVI 
[20], scANVI [21], Scanorama [22], BBKNN [23], SAU-
CIE [24], Harmony [25], ComBat [26], DESC [27], trVAE 
[28], trVAEP [28] and scGen [29]. This rigorous bench-
marking process revealed that Harmony consistently 
achieved the highest overall integration score across 
multiple metrics (Table S1). Based on these results, we 
proceeded to correct for batch effects across differ-
ent samples using Harmony (version 1.0), employing 
its default parameters. We estimated the cell cycle dis-
tribution with CellCycleScoring (SCTransform) while 
regressing the cell cycle. After RunHarmony or RunPCA, 
dimensions accounting for 95% of the total variance 
were used to generate uniform manifold approximation 
(RunUMAP) and SNN graphs (FindNeighbors). Leiden 
clustering (FindCluster) was then performed on the out-
put graphs with default resolution.

Differentially expressed genes
Differentially expressed genes (DEGs) were identified 
using the Wilcoxon rank sum test with FindAllMarkers 
in Seurat [12]. Genes were considered to be differentially 
expressed between groups if they met the following cri-
teria: an absolute average log fold change (|avg_log2FC|) 
greater than 0.25 and an adjusted p-value (p_val_adj) less 
than 0.05, as calculated by Benjamini-Hochberg correc-
tion for multiple testing. To reduce noise from genes with 
low expression, only genes detected in at least 1% of cells 
in one of the groups being compared were included in 
the differential expression analysis.

Cell type annotation
For humans and mice, singleR (version 2.0.0) [30] and 
scType [31] were employed to automatically annotate 
cell types. After automatic annotation, the cell types were 
manually corrected based on the marker genes from Cell-
Marker 2.0 [32]. For other species, conserved ortholo-
gous marker genes were used to define the cell types 

(Table S2). The annotation was verified by examining the 
Gene Ontology (GO) biological process terms enriched 
by the upregulated DEGs within each cell cluster and the 
expression of reported conserved marker genes.

Orthologous conversion
To facilitate cross-species scRNA analysis, the ortholo-
gous genes were uniformly converted to human gene 
symbols. Orthologous pairs between human and Chinese 
softshell turtle, chicken, Egyptian fruit bat, pig, cattle, 
mice, rat, Rhesus macaque and chimpanzee were down-
loaded from Ensembl 109 by BioMarkt. Other ortholo-
gous pairs were predicted by OrthoFinder (version 2.5.5) 
with protein files as input [33]. The protein files were 
downloaded from the National Center for Biotechnology 
Information (NCBI). Finally, only one-to-one ortholo-
gous pairs were used for further analysis.

Conserved human-mouse PBMC signature
To identify conserved human and mouse PBMC markers, 
we scored DEGs of different cell types (obtained from 
FindAllMarkers) in human and mouse PBMC atlases 
using COSG (version 0.9.0) [34]. We then identified cell 
type-specific markers according to the COSG score and 
expression fraction. For example, we identified mono-
cyte markers for which the COSG scores of monocytes 
were greater than the mean COSG score; these mark-
ers were expressed in more than 50% of monocytes and 
less than 30% of cells of other cell types [35]. Next, we 
selected filtered human markers that were highly variable 
genes in the mouse PBMC atlas and mouse markers that 
were highly variable genes in the human PBMC atlas. We 
finally merged human and mouse markers to construct a 
human-mouse PBMC signature.

We created heatmaps (Figure S4A-B) using the top 10 
cell-type markers of conserved human-mouse signatures 
in human and mouse atlases, respectively. We quantified 
the conserved human-mouse signature expression level 
as CPM (counts per million) in each atlas (Figure S5). 
To minimize the interference of dropout, we used UCell 
(version 2.2.0) [36] to score cell-type markers of con-
served human-mouse signatures in each cell of all atlases 
(apart from humans and mice).

Comparison of cross-species cell atlases
To reduce the impact of data sparsity in low-coverage 
sequencing datasets, we used SuperCell (version 1.0) to 
coarsely grain single-cell atlases into metacells [37]. The 
high variable genes and the PCA accounting for 95% of 
the total variance were used to form metacell. The meta-
cells with purity 100% (all from one cell type) were used 
for next step of analysis. Notably, metacells not only 
decrease the computational cost but also increase the 
expression imputation and clustering consistency (Figure 



Page 4 of 12Zhang et al. BMC Genomics         (2024) 25:1169 

S6). To systematically assess the transcriptional similar-
ity between cell types across species, we performed unsu-
pervised MetaNeighbor analysis [38]. Finally, the mean 
AUROC (area under the receiver operating characteris-
tic curve) was used to quantify the similarity of cell-type 
pairs.

Gene regulatory network inference analysis
We inferred the gene regulatory network (GRN) of a 
given species using SCENIC [39]. To overcome the 
impact of the lack of reference databases for nonmodel 
species and enhance cross-species comparability, we used 
the human cisTarget database as a reference. We used cell 
raw count data to run the coexpression algorithm GRB-
boost2 implemented in pySCENIC (version 0.12.1) [40] 
in Python 3.8.16 and subsequently inferred the GRN with 
pySCENIC using default parameters. The TF regulons 
were defined with “hg38__refseq-r80__10kb_up_and_
down_tss.mc9nr.genes_vs_motifs.rankings.feather” and 
" motifs-v10nr_clust-nr.hgnc-m0.001-o0.0.tbl”. Then the 
AUCell algorithm was used to score the activity of each 
TF regulon in each cell.

To quantify the cell-type specificity of regulons across 
human cells, we calculated the Regulon Specificity Score 
(RSS) and scaled it to facilitate cross-species comparisons 
[41]. For systematic identification of cell type-specific and 
conserved transcription factors (TFs), we employed the 
human TF regulatory network as a reference. Human TF 
modules were identified using the Connection Specificity 
Index (CSI) [41]. In brief, we calculated the CSI for each 
TF pair based on binarized regulon AUCell scores. The 
resulting CSI matrix was then subjected to k-means clus-
tering, with the optimal number of clusters determined 
by minimizing the total within-cluster sum of squares. 
To extend this analysis across vertebrates, we leveraged 
orthologous relationships between human TFs and those 
of other species. For visualization, we constructed San-
key diagrams to illustrate the relationships between TF 
modules and cell types. In these diagrams, a connection 
between a TF module and a cell type was established if 
the binarized Regulon Activity Score (RAS) of the TF in 
that cell type was 1, indicating significant activity.

GO enrichment analysis
GO enrichment analysis was performed using Metascape 
(http://metascape.org) [42]. Terms with a p-value < 0.01, a 
minimum count of 3, and an enrichment factor > 1.5 were 
collected. The most statistically significant term within 
a cluster was chosen to represent the cluster. The top 
10 enriched terms were selected for visualizing (Fig.  5). 
Module terms were clustered by membership similari-
ties, with inter-term relationships visualized in a network 
plot (similarity threshold > 0.3) (Figure S11).

Results
PBMC atlases of twelve species
Six PBMC atlases were obtained from public databases, 
including pig [14], cattle [15], Egyptian fruit bat [17], 
Rhesus macaque [17], chimpanzee [17], and mouse (10× 
Genomics). This study generated six additional PBMC 
cell atlases covering catfish, jacopever, Chinese softshell 
turtles, chickens, rats, and humans. To facilitate cross-
species comparisons across these 12 species, the raw 
unique molecular identifier (UMI) data were reanalyzed 
via a standardized and uniform approach (see Materi-
als and Methods). Following the exclusion of doublets, 
low-quality cells and erythrocytes, a total of 168,716 
cells (catfish: 18431, jacopever: 15,617, Chinese soft-
shell turtle: 9,379, chicken: 16,782, Egyptian fruit bat: 
17,389, pig: 13,984, cattle: 17,144, mouse: 14,726, rat: 
11,647, Rhesus macaque: 13,115, chimpanzee: 4,833, 
human: 15,669) were obtained (Table S3). Various strate-
gies were employed in combination to annotate the cell 
types of PBMCs from different species (see Materials and 
Methods). Marker genes were utilized for cell annota-
tion (Figure S2, Table S2, Table S4). In total, ten distinct 
cell types were identified across these species, including 
B cells, T cells, NK cells, monocytes, myeloid dendritic 
cells (mDCs), plasmacytoid dendritic cells (pDCs), den-
dritic cells (DCs), neutrophils, platelets, and hematopoi-
etic stem cells (HSCs) (Fig. 1 and Figure S3). The PBMCs 
of these 12 species commonly contain B cells, T cells, 
monocytes, and DCs (Table S5). The successful annota-
tion of PBMCs from these 12 species provides us with an 
opportunity for cross-species comparisons and evolu-
tionary studies.

Cross-species conserved genes of immune cells
The marker genes for mouse and human PBMCs have 
undergone extensive validation. To assess the evolution-
ary conservation of these marker genes between humans 
and mice, we identified the marker genes for PBMCs in 
both species within the respective atlases and compiled 
the cumulative genes for the same cell type (see Mate-
rials and Methods). According to the profiles of both 
humans and mice, these genes exhibited great differences 
between different cell types (Figure S4A-B). The PBMCs 
shared conserved orthologs across the 12 species (Fig-
ure S4C, Table S6). To quantify gene set enrichment in 
single-cell data, we employed the UCell score method. 
This approach compares the expression of genes in a 
target set to a randomly selected background set of con-
trol genes. The resulting score is normalized to account 
for variations in gene expression levels and the number 
of detected genes per cell, ensuring comparability across 
diverse cell types and conditions, regardless of differ-
ences in gene detection rates. We subsequently analyzed 
the expression of conserved marker genes and calculated 

http://metascape.org
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UCell scores in non-mouse and non-human species 
(Fig. 2, Figure S5). Our findings demonstrate that human-
mouse conserved marker genes for B cells, T cells, NK 
cells, monocytes, neutrophils, and platelets effectively 
identify corresponding cell populations across all spe-
cies, based on both gene expression levels and UCell 
scores. The human-mouse conserved marker genes for 
pDCs showed limited efficacy in distinguishing cattle and 
chicken pDCs from other PBMCs, with the exception of 
those in rats. Similarly, the conserved marker genes for 
mDCs exhibited variable conservation across species.

Analysis of immune cell similarity across species
MetaNeighbor analysis [38], which utilizes orthologous 
gene expression, is robust for identifying the similarities 
and heterogeneities of different cell types among mam-
malian species [43] and is sensitive for revealing cell-type 
relationships [44]. To determine the cell types in a given 
species, pairwise unsupervised MetaNeighbor analyses 
were performed to quantify the similarity between cell-
type pairs. Prior to MetaNeighbor analysis, the meta-cell 
strategy [37] was employed to increase the gene number, 
improve clustering consistency (Figure S6), and reduce 
computation time. Notably, the AUROC for the same cell 
type was greater than that for different cell types (Figure 
S7A), a trend that was consistently observed in cross-
species cell-type comparisons and was unaffected by 
intraspecies cell interference (Figure S7B-C).

The cell-type heatmap arrangement, based on AUROC 
scores between cell types, underwent hierarchical clus-
tering (Fig. 3). High AUROC values led to the clustering 
of monocytes from various species into a distinct mod-
ule, which also included dendritic cells (DCs) from cattle, 
Rhesus macaques, chimpanzees, and humans (Fig.  3). 
This clustering suggests a similarity in gene expres-
sion patterns between mammalian DCs and monocytes. 
The observed coclustering highlights a potential shared 
transcriptional profile between these immune cell types 
across different species.

Transcription factor regulatory programs underlying cell-
type identity
The transcriptional state of a cell reflects its transient 
condition and is governed by an underlying gene regu-
latory network (GRN) regulated by transcription factors 
(TFs). Our MetaNeighbor analysis revealed that cells of 
the same cell type exhibit similar gene expression pat-
terns across species, suggesting a conserved regulatory 
mechanism. Using SCENIC, a method for construct-
ing regulatory networks and predicting cell-specific TFs 
from single-cell gene expression data, we explored the 
conservation of TF repertoires across species [39, 41, 44]. 
To investigate whether conserved cell types are accompa-
nied by conserved TF repertoires, we used human TFs as 
a reference for other species.

Using SCENIC, we evaluated TF regulons in all 12 
species (Figure S8). By matching with TF regulons in 

Fig. 1  Immune cell composition in the PBMCs across vertebrates. PBMC atlases from catfish (Tachysurus fulvidraco), jacopever (Sebastes schlegelii), Chi-
nese softshell turtle (Pelodiscus sinensis), chicken (Gallus gallus), Egyptian fruit bat (Rousettus aegyptiacus), pig (Sus scrofa), cattle (Bos taurus), mouse (Mus 
musculus), rat (Rattus norvegicus), Rhesus macaque (Macaca mulatta), chimpanzee (Pan troglodytes) and human (Homo sapiens). The numbers at the end 
of the bars indicate the number of cell types identified in each species
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humans, we found that other species shared 44 to 97 of 
the same TF regulons as humans, and these regulons 
account for between 42.98% and 54.04% of those identi-
fied by SCENIC (Figure S8). We identified B-cell-specific 

TF BCL11A, T-cell-specific TF TCF7, NK cell-specific 
TF EOMES, monocyte-specific TF RXRA, mDC-specific 
TF SPI1, and pDC-specific TF IRF7 in human (Figure 
S9) and these TFs are essential for the maintenance of 

Fig. 2  Conservation marker genes of PBMCs. UCell scores of different PBMC cell type human-mouse signature genes in B cells, T cells, NK cells, Mono-
cytes, pDCs, mDCs, Neutrophils and Platelets. Red lines demarcate individual species. Boxes corresponding to the same cell type as the human-mouse 
signature genes are highlighted in color. Abbreviations: tfd: catfish, sslg: jacopever, pss: Chinese softshell turtle, gga: chicken, mmu: mouse, ray: Egyptian 
fruit bat, ssc: pig, bta: cattle, rno: rat, mcc: Rhesus macaque, ptr: chimpanzee, has: human
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cellular identity [41, 45–50]. Moreover, the identifica-
tion of cell type-specific TFs based on regulon specific-
ity scores (RSSs) in Danio rerio, Caenorhabditis elegans, 
Ciona intestinalis, Schmidtea mediterranea, Nema-
tostella vectensis was feasible [44].

However, the TFs with the highest RSS values in human 
PBMCs were not always conserved in the PBMCs of other 
species. For example, TCF7 is a TF with a high RSS value 
only in humans, cattle, and Egyptian fruit bats (Figure 
S10). To identify the most conserved TFs in the PBMCs 
across species, we scaled the RSS values of the PBMCs of 
all 12 species and clustered the TFs based on the RSSZs 
[41]. The orthologous TFs of FOSL2, FOS, TCF7L2, SPI1, 
RXRA, and CEBPD were found to be activated in mono-
cytes conservatively (Fig. 4). Among them, FOSL2, FOS, 
TCF7L2, and SPI1 are activated in all 12 species (Fig. 4, 
Table S7). These four TFs were activated in human 
monocytes (Figure S11A). The regulatory relationships 
of four TFs and their target genes with GENIE3 > 1 were 
visualized in an interaction network (Figure S11B). These 
four TFs shared fewer co-target genes, revealing the rela-
tive independence of the target genes among these four 
TFs (Figure S11B). We performed Gene Ontology (GO) 

analysis to characterize the enriched functions of target 
genes among these four TFs, revealing their regulation 
of ‘hemopoiesis’, ‘response to hormone’, ‘endocytosis’, and 
‘regulation of cell activation’ of monocytes among 12 spe-
cies (Figure S11C).

To systematically characterize the combinational pat-
terns of expressed TFs, we compared the atlas-wide 
(human) similarity of binarized regulon activity scores 
(RAS) of every regulon pair based on the connection 
specificity index (CSI) [51] (see Materials and Methods). 
After hierarchical clustering, 190 regulons were orga-
nized into seven major TF modules (Fig.  5A). For each 
module, we selected several representative TFs and cell 
types through their RAS (Fig. 5A). Modules 1 and 7 are 
associated with all cell types (Fig. 5A, Figure S12). Mod-
ule 2 is mainly associated with monocytes and mDCs 
(Fig.  5A, Figure S12). Module 3 has a low level of cel-
lular activation of regulators that are not representative 
of a particular cell type (Fig. 5A, Figure S12). Module 4 
contains a series of monocyte- and mDC-specific regula-
tors, such as RXRA [52] and IRF7 [53]. The regulators of 
Module 5 are expressed in T cells and NK cells (Figure 
S12). Module 6 contains regulators that are specifically 

Fig. 3  Cross-species similarity comparison of cell types. AUROC scores of cell-type pairs similarity in all PBMC cell types from 12 vertebrates
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expressed in B cells, such as BCL11A [45] and SPIB [54]. 
The TFs in Modules 1, 4 and 7 have high CSI. The TFs 
in Module 1 and 7 are enriched in “embryonic morpho-
genesis” and “tube morphogenesis”, which may be the 
common character of all cell types in PBMC. The TFs 
in Module 4 are enriched in “hemopoiesis” and “Adi-
pogenesis”. Interestingly, monocyte TFs (FOSL2, FOS, 
TCF7L2, and SPI1) conserved across species were found 
in Module 4 (Table S8), reflecting their important roles 
in synergistically regulating the biological co-functions of 
monocytes.

To compare the conservation of these seven modules, 
we mapped the RASs of the regulons to cell types (see 
Materials and Methods). As visualized in the Sankey 
plot (Figure S13), Module 4 shared conserved connec-
tions with monocytes across species. In all the given spe-
cies, an average of 72.29% of the regulons were shared by 
humans in Module 4, which was greater than that of the 
other modules (Figure S14A). Additionally, the most con-
served TFs identified in the monocytes of the PBMCs of 

the given species were the regulons in Module 4 (Figure 
S14B).

Discussion
The advent of full-genome sequencing in various verte-
brate species has greatly facilitated the exploration of 
immune system evolution by leveraging homologous 
relationships with established mammalian immune cell 
markers. However, progress in comparing immune cell 
types at the cellular and molecular levels has been hin-
dered by the lack of suitable antibodies to label distinct 
immune cell populations in lower vertebrates. Advances 
in scRNA-seq technology have played a pivotal role in 
overcoming this limitation by providing unbiased cellu-
lar resolution gene expression atlases. In this study, we 
applied scRNA-seq to sequence PBMCs from a diverse 
range of vertebrate species, including catfish (Tachysurus 
fulvidraco), jacopever (Sebastes schlegelii), Chinese 
softshell turtles (Pelodiscus sinensis), chickens (Gal-
lus gallus), rats (Rattus norvegicus) and humans (Homo 
sapiens). Additionally, we incorporated publicly available 

Fig. 4  Conservation regulons in PBMCs across vertebrates. Clustering analysis of 12 vertebrates PBMC cell type specific TF regulons. The regulons are 
clustered according to regulon specificity score Z-score (RSSZ). The regulons with RSSZ greater than 4 are annotated on the right side of the heatmap
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PBMC scRNA atlases of Egyptian fruit bats (Rousettus 
aegyptiacus), pigs (Sus scrofa), cattle (Bos taurus), Rhe-
sus macaques (Macaca mulatta) and chimpanzees (Pan 
troglodytes). Integrated analyses of PBMC scRNA atlases 
from these 12 vertebrate species offered a novel perspec-
tive for cross-species immune cell comparisons.

The adaptive immune system, a key component of 
immune responses in jawed vertebrates, has recently 
gained attention through scRNA-seq studies focusing on 
zebrafish bone marrow, thymus, spleen and kidney, iden-
tifying B cells, T cells and NK cells [9, 55–57]. Expanding 

on these findings, our study characterized lymphocytes 
in PBMCs from catfish and jacopever, providing insights 
into the main cell types, including B cells, T cells, NK 
cells, monocytes, and dendritic cells (DCs), from fish to 
mammals.

While scRNA-seq has generated large datasets in 
humans and mice, particularly in PBMCs [58–60], stable 
and reliable markers for annotating PBMCs of nonmodel 
animals remain scarce. Existing studies have identified 
markers for different cell types across various tissues of 
humans and mice, with several useful websites offering 

Fig. 5  Transcription factor programs in vertebrate PBMC evolution. (A) Identification of 7 human TF modules (modules 1–7) based on the regulon con-
nection specificity index (CSI) of the human PBMC atlas, along with representative transcription factors, corresponding binding motifs, and associated cell 
types; (B) GO biological processes enrichment analysis of seven module regulons. The terms with -LogP > 6 and top 10 of modules were plotted
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a plethora of valid markers for cell annotation [32, 61]. 
However, these markers are not readily applicable to 
nonmodel animals. The expression of genes with one-to-
one orthologs can be used to annotate cell types [35, 62]. 
Leveraging the broad validation of human and mouse 
markers, we screened for conserved markers across 
species for peripheral blood mononuclear cell (PBMC) 
annotation. The identified conserved human-mouse 
markers demonstrated excellent performance in identi-
fying B cells, T cells, monocytes, neutrophils, and plate-
lets. The NK cell markers effectively identified NK cells in 
species such as chickens, Egyptian fruit bats, pigs, cows, 
mice, rats, Rhesus macaques, chimpanzees, and humans. 
However, they were significantly less effective for identi-
fying NK cells in jacopever. Similarly, while the pDC and 
mDC markers performed well in identifying these cells in 
mice, rats, Rhesus macaques, chimpanzees, and humans, 
they posed challenges in species like catfish, jacopever, 
chickens, Egyptian fruit bats, pigs, and cattle. Despite 
these limitations, the markers provide a valuable refer-
ence for annotating cell subpopulations using scRNA-seq 
in non-model animals.

The scRNA-seq data typically exhibit high sparsity, 
meaning that for each individual cell, only a subset of 
genes has detectable expression, while the majority of 
genes have expression values of zero. To address this 
limitation and improve the robustness of our Meta-
Neighbor analysis, we employed the Metacells approach 
to reduce data sparsity. This strategy aggregates similar 
cells into metacells, effectively increasing gene detection 
and improving clustering consistency. While the use of 
orthologous genes is crucial for cross-species scRNA-
seq analysis, it also has some limitations [63–66]. we 
acknowledge that this approach may overlook species-
specific genes or those that have undergone duplication 
or divergence. Nevertheless, previous studies have dem-
onstrated that cell type similarity in orthologous gene 
expression often overrides species differences when 
applying MetaNeighbor analysis [43, 44].

The application of MetaNeighbor analysis in our study 
demonstrated its reliability in assessing the similarity and 
heterogeneity of different cell types across diverse spe-
cies. The same cell type is more similar between species 
than different cell types within the same species (Figure 
S7A). This revealed that the key features of different cell 
types have appeared during early evolution. Monocytes 
from all species formed a well-clustered cluster, show-
ing their remarkable conservation. Interestingly, within 
the monocyte clusters, DCs were also present, suggest-
ing a close similarity between DCs and monocytes, likely 
attributed to shared functions such as phagocytosis and 
antigen presentation.

Considering that cell-type similarities in gene expres-
sion may stem from convergent or concerted evolution 

[67], we employed TF regulatory programs to validate 
the proposed homologies. However, the lack of compre-
hensive cis-regulatory databases for non-model species 
is a challenge. Nevertheless, the application of SCE-
NIC to a range of vertebrates, including pig [68], cow 
[69], and zebrafish [70], as well as to invertebrates such 
as schmidtea and nematostella [44], provides valuable 
insights into these regulatory networks. We utilized 
SCENIC to identify cell type-specific TFs by assuming 
a degree of conservation in TF binding sequences. Con-
served TFs, including FOSL2, FOS, TCF7L2 and SPI1, 
were identified in monocytes across species. These TFs 
exhibited target genes involved in essential processes 
such as ‘hemopoiesis’, ‘response to hormone’, ‘endocyto-
sis’ and ‘regulation of cell activation’. Furthermore, these 
TF regulons act cooperatively to play regulatory roles in 
human monocytes. It is important to note that using the 
human cisTarget database to identify activated TFs in 
PBMCs of different species may overlook TFs active in 
non-human species, particularly non-mammals. Instead, 
we focus on conserved transcription factors based on 
one-to-one homologous genes, which enhances the feasi-
bility and accuracy of our analysis.

Conclusions
In summary, our work extends the analysis of immune 
cell types and their evolution to lower vertebrates, pro-
viding insights into adaptive immune cells across fish 
and mammalian species. Through scRNA-seq analy-
ses and cross-species comparisons, we identified con-
served markers, characterized functional similarities, and 
explored the regulatory programs of immune cells. The 
observed conservation in gene expression patterns and 
regulatory programs in monocytes highlights the conser-
vatism of monocytes during evolution.
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