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1 Institute of Experimental Radiation Oncology, Department of Radiation Oncology, University Medical Center Mannheim, Heidelberg University, Mannheim, Germany,

2 Institute for Clinical Radiology and Nuclear Medicine, University Medical Center Mannheim, Heidelberg University, Mannheim, Germany, 3 Institute of Process Control

and Innovative Energy Conversion (PI), Hochschule Mannheim, University of Applied Sciences, Mannheim, Germany

Abstract

Robust detection of prostatic cancer is a challenge due to the multitude of variants and their representation in MR images.
We propose a pattern recognition system with an incremental learning ensemble algorithm using support vector machines
(SVM) tackling this problem employing multimodal MR images and a texture-based information strategy. The proposed
system integrates anatomic, texture, and functional features. The data set was preprocessed using B-Spline interpolation,
bias field correction and intensity standardization. First- and second-order angular independent statistical approaches and
rotation invariant local phase quantization (RI-LPQ) were utilized to quantify texture information. An incremental learning
ensemble SVM was implemented to suit working conditions in medical applications and to improve effectiveness and
robustness of the system. The probability estimation of cancer structures was calculated using SVM and the corresponding
optimization was carried out with a heuristic method together with a 3-fold cross-validation methodology. We achieved an
average sensitivity of 0.84460.068 and a specificity of 0.78060.038, which yielded superior or similar performance to
current state of the art using a total database of only 41 slices from twelve patients with histological confirmed information,
including cancerous, unhealthy non-cancerous and healthy prostate tissue. Our results show the feasibility of an ensemble
SVM being able to learn additional information from new data while preserving previously acquired knowledge and
preventing unlearning. The use of texture descriptors provides more salient discriminative patterns than the functional
information used. Furthermore, the system improves selection of information, efficiency and robustness of the classification.
The generated probability map enables radiologists to have a lower variability in diagnosis, decrease false negative rates
and reduce the time to recognize and delineate structures in the prostate.
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Introduction

The most frequently diagnosed cancer for men in Germany, the

UK and the US is prostatic adenocarcinoma [1–3]. New imaging

techniques in MRI and their integration [4] have been developed

with the aim of providing more information to radiologists, to

improve visual interpretation and to formulate a better staging of

prostate cancer. However, radiologists who perform clinical

routines have to face a variety of MRI modalities, analyze a

considerable amount of data and provide their evaluation. This

routine requires substantial human interaction, and due to the

challenging nature of interpreting and staging prostate cancer,

data may be filtered cognitively or disregarded. Variations and

inconsistencies in reports exist. MR imaging of the prostate has

become so advanced that it presents a ‘‘dizzying array of data’’ for

interpretation [5].

Various MR imaging modalities have been studied to improve

visual inspection and diagnosis of cancer. MRI Diffusion-

Weighted Imaging (DWI), MRI Dynamic-Contrast Enhanced

(DCE) and MR-Spectroscopy [6–11] have been investigated. The

general consensus is that combination of modalities increases the

prediction accuracy of the diagnosis. However, the inter- and

intra-variability in diagnosis and the significant amount of

information to analyze have motivated the development of

automated tools aimed at achieving a higher cancer detection

rate and reducing clinical processing time simultaneously.

To reduce variability and inconsistency, automatic approaches

for detection of prostate cancer using 1.5T multimodal imaging

have been developed for in vivo studies on a per-voxel basis. The

utility of multimodal imaging from coronal plane with 3D features

(e.g. 3D co-occurrence matrix and a discrete cosine transform) and

fisher linear discriminant (FLD) has been demonstrated using

computer vision techniques [12]. The performance and robustness

of second-order and first-order statistical discriminants alongside

feature ensemble and random forest methods have also been

enhanced [13,14]. Statistical features and MR Spectroscopy have

been used together with a multikernel graph embedding method

demonstrating the contribution of multimodality classification

[15]. The implemented second-order statistical approaches in

these studies are based however on angular dependent features.

PLOS ONE | www.plosone.org 1 April 2014 | Volume 9 | Issue 4 | e93600

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0093600&domain=pdf


Haralick [16] suggested a method invariant under rotation but the

disadvantage is the computational cost involved, both in terms of

memory requirement and computational time [17,18]. We

implemented an angular independent approach based on [17],

integrating features with texture proprieties close to the human

perception mechanism, which was also used by other medical

applications [19]. We integrate features by considering the

relationship between an element and all its neighboring elements

at one time instead of one direction at a time, an approach based

on [18]. In Madabhushi [13] a Gabor operator was employed to

extract frequency signatures. However, the contribution of this

method negatively affect the classification results. Other methods

as local phase quantization (LPQ) [20] and local binary pattern

(LBP) [21] have been utilized to quantify textural properties.

Ojansivu [22] introduced a rotation invariant local phase

quantization (RI-LPQ) to extract texture information. RI-LPQ

outperformed Gabor operator as well as local binary patterns

(LBP). Thus, RI-LPQ was implemented to identify frequency

signatures.

Detection feasibility of cancer using support vector machines

(SVM) and MR images (T2-weighted, apparent diffusion coeffi-

cient (ADC) derived from DWI and wash-in-rate (kep) derived

from DCE) has been demonstrated [23–25]. Moreover, the

performance of SVM was enhanced in comparison with other

classification methods for the recognition of prostate cancer using

different MRI modalities (T2-weighted, DWI-ADC and pharma-

cokinetic parameters derived from DCE) [26,27].

SVM performs well when the data set is limited in size and

nonlinearly distributed. However, as is the case for any supervised

classifier, performance and precision rely on the availability of a

considerable data set size of correctly identified observations.

Generally, the studies using SVM to learn from new data involves

discarding the existing classifier, aggregating the new data to the

old set and training a new classifier from scratch. As an effect,

these methods result in unlearning [28], which is the inability of

the system to learn new patterns without forgetting previously

learned ones. Not forgetting old or underrepresented patterns is

important for the recognition of prostate cancer because of the

different possible features of cancer and its overlap with non-

cancerous or normal structures. Such unlearning can be addressed

through an incremental learning algorithm, defined as one that

meets the following criteria [29,30]:

1. be able to learn additional information from new data.

2. not require access to the original data used to train the existing

classifier.

3. preserve previously acquired knowledge.

The main contribution of our framework is the implementation

and evaluation of an incremental learning algorithm based on

[30], which uses an ensemble algorithm inspired from Freund and

Schapire’s adaptive boosting algorithm (Adaboost.M1) [31]. A

random subspace method [32] was also implemented for the

selection of features. Biological studies have shown that ensemble

classifiers with SVM outperform single and balanced SVM [33–

36]. Ensemble methods are one of the most promising solutions to

many biological problems and together with SVM, as base

classifier, further improvement in recognition of prostate cancer

can be achieved. In this study we present a pattern recognition

system to estimate the probability of prostate cancer using a

multimodal data set from a real clinical environment.

Materials and Methods

Patient Data Set
The institutional review board (Institute for Clinical Radiology

and Nuclear Medicine, University Medical Center Mannheim,

Heidelberg University) approved this retrospective study. Patient

information was anonymized and de-identified prior to any

analysis. We used data of 12 patients from a clinical environment

(full spectrum) with ages between 52 and 75 years, Gleason pattern

of 3 and 4 with Gleason scores between 6 and 8. The data set

contained in most cases other glandular non-cancerous prostate

conditions like prostatitis, benign prostatic hyperplasia and

prostatic atrophy.

The patients did not undergo any treatment before the

acquisition of MR images. Treatments such as hormone therapy,

previous biopsy or brachytherapy [12,37,38] tend to alter intensity

values of the images, resulting in a drastically diminished ability to

determine a threshold between cancer and benign intensity values.

Acquisition of the MRI Data Set
The data set included MRI transversal slices with three

modalities: T2-weighted, Dynamic-Contrast Enhanced plasma

flow (DCE-PF) and DCE mean transit time (DCE-MTT). The

three MRI modalities were acquired with a mean time of 45

minutes without interruption. This process aids to minimize tissue

deformation and motion artifacts between the different MR

images. A 3.0T scanner (Magnetom Trio; Siemens Healthcare,

Erlangen, Germany) was used with a body phased array coil

combined with an endorectal coil (Medrad Medical Systems,

Volkach, Germany). The T2-weighted images were acquired with

the following parameters: TR/TE = 4000/101 ms; Size of ma-

trix = 3206320; echo-train length (ETL) = 25; Pixel band-

width = 200 Hz; Field of view (FOV) = 20 cm; Pixel spac-

ing = 0.625/0.625 mm; Slice thickness = 3 mm; Sequence

type = TSE. The acquisition parameters for DCE were: TR/

TE = 193/1.02 ms; Size of matrix = 3846388; Field of view

(FOV) = 39 cm; Pixel spacing = 1.015/1.015 mm; Slice thick-

ness = 6 mm; Sequence type = 2D TurboFlash T1; Flip angle = 9.

The parametric maps, plasma flow and mean transit time were

calculated using the open source perfusion analysis tool UMM-

Perfusion [39]. The DCE examination was performed after bolus

injection of 0.1 mmol/kg body weight of gadolinium chelate

(Dotarem; Guerbet, Roissy CdG Cedex, France) with a bolus

velocity of 2.5 mL/s using a power injector (Medrad Inc,

Pittsburgh, PA), followed by a saline flush of 40 mL.

Histological Data Set
The group of patients had histologically confirmed cancer. The

elapsed time between the acquisition of the MR images and the

prostatectomy was less than 24 hours which minimizes tissue

deformation artifacts, and low correlation between the patholog-

ical reports and the MR images due to anatomical movements

[37,40]. The histological report consists of different prostate cuts

starting from the apex, middle and basis prostate region, separated

in the right and left gland, serially sectioned according to a

modified Stanford protocol [41]. A pathologist marked the

corresponding cancer regions on each of the corresponding cuts.

Description of the System
This subsection outlines the components of the system. In

Figure 1 the workflow of the pattern recognition system is shown.

The two main phases of learning and classification are indicated in

the figure. The pre-processing and feature extraction blocks were

Incremental Learning for Recognition of Cancer
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used in both phases. The datasets and the corresponding code are

freely available upon request.

1. Ground Truth Labels: Labels of ground truth (GT) are

necessary for the training and the evaluation of a supervised

classifier. An experienced radiologist traced cancer regions on

MR images, section by section, with the marked regions by a

pathologist. A total database of 41 slices with about 70

cancerous ROIs from all twelve patients was used as ground

truth.

2. Pre-Processing: Three steps were involved, a B-Spline interpo-

lation for re-sampling of data, in which each pixel in different

modalities corresponds to the same spatial location, a bias field

correction using a variation of the nonparametric nonuniform

intensity normalization algorithm (N3) and a landmark-based

intensity standardization to minimize the intensity variation

between slices.

3. Feature Extraction: Structural and functional information

corresponding to T2-weighted, DCE-MTT and DCE-PF

imaging was used, as well as first-order statistical descriptors

(median, standard deviation, skewness, uniformity and average

entropy), second-order descriptors using a neighboring gray

level dependent matrix (NGLDM) and a neighborhood gray-

tone difference matrix (NGTDM). To extract frequency

signatures a rotation invariant local phase quantization (RI-

LPQ) was implemented.

4. Training: The construction of a model to automate and

formalize the pattern recognition process was implemented

using a pixel-based supervised learning technique employing

an ensemble SVM with the corresponding extension to the

non-separable case [42].

5. Classification and Probability Map: The last step in the

inductive inference process was the prediction/classification

using the optimal model obtained after training. The posterior

probability was also estimated to present the corresponding

probability map.

6. Evaluation: The results were evaluated on accuracy, precision

and efficiency as well as statistical significance. A methodology

was also implemented to assess the results using area under the

receiver operating characteristic curve (AUC-ROC) and to

achieve an optimal generalized answer.

In the following subsections, we describe in detail the individual

steps of our system.

Ground Truth Labels
Ground truth (GT) labels for the learning phase was extracted

using the annotations of an expert radiologist following the

histological reports of a pathologist. The same process has been

used in many investigations for the generation of GT [12,23,43] in

cases where the conditions of clinical data are not suitable to

perform an automatic registration. An expert radiologist can

recognize landmarks such as morphology of central and peripheral

zone (PZ) of the prostate, urethra, seminal vesicle, calcifications,

etc. These landmarks help to recognize and trace benign and

malignant regions in MRI. However, delineation still remains a

difficult task for a human observer. Therefore, considering the

recommendation of [44], a methodology for manual segmentation

to minimize variation in the delineation process was followed (see

Fig. 2):

1. Tracing: Regions of interest (ROI) were traced using Osirix

software [45]. The ROIs were annotated on the T2-weighted

images because of its high resolution and to facilitate anatomy

recognition.

2. Magnification factor: We used a fixed factor (1:800) for all data

sets to annotate the ROIs.

3. Window/level value: The window width and center in the T2-

weighted images were fixed depending on the minimal and

maximal gray value in each volume.

4. Peripheral zone (PZ): Only areas inside the PZ were assessed.

The radiologist performed the corresponding annotation of this

zone on T2-weighted images. We gave special attention to the

PZ not only to reduce high bias produced by non-cancerous

prostate conditions such as benign prostatic hyperplasia located

in the central zone [4,46,47], but also the PZ constitutes over

70% of the glandular prostate [46] and 65%–74% of the

prostate tumor nodules are located in this zone [48].

After the annotations by the radiologist on T2-weighted images,

the corresponding masked images constituting the ground truth

were extracted. One precondition to minimize mislabeled pixels in

the ground truth was the selection of a minimum size of cancer.

Haider [40] pointed out that tumor sizes greater than 0.13 cm2 are

sufficient to detect significant cancer areas. Therefore sizes of

cancer larger than 0.1 cm2 were employed in this study.

Pre-Processing
During image acquisition, an affine transformation matrix was

recorded describing the spatial location (translation, direction and

rotation) of each data set. Based on the transformation, a spatial

re-sampling of the data sets DCE-MTT, DCE-PF was performed

using ITK Toolkit [49] to obtain a new image in the same spatial

space as the T2-weighted data. B-Spline interpolation was

employed in the re-sampling to improve registration.

The PZ of the prostate suffers from a corruption of intensity

values. To correct bias field artifact a variation of the popular

nonparametric nonuniform intensity normalization (N3) algorithm

[50,51] was used. The algorithm, named ‘‘N4ITK’’, connects a

robust B-Spline algorithm with a multiresolution optimization

Figure 1. Framework Workflow. Sequence of the system compo-
nents and overall organization for the estimation of prostate cancer.
doi:10.1371/journal.pone.0093600.g001
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which demonstrated a superior performance [52]. The parameters

were set following the recommendation of [53]. Figure 3 illustrates

an example of an image with the calculated bias field superim-

posed.

Another bias factor in MRI is non-standardness between slices.

To overcome intensity variation a landmark-based method [54,55]

was applied because of its efficiency and accuracy [56]. The basic

premise of a landmark-based method is to find a mapping based

on the median and percentiles that deforms the histogram of an

input image to match a reference. The mapping is performed

linearly and independently per segments using three landmarks.

The landmark-based method consisted of two steps. First, a

training step was executed only once for a given modality. The

histogram Hj was computed for each slice j~1,:::,S in a volume,

where S is the total number of slices. The median intensity (Mj )

and the intensities corresponding to the 0 and 99.8 percentile

(P1
j ,P2

j ) of Hj were computed (see [54] for details). After that, the

median was mapped to the standard scale (R1,R2) (equation 1).

M ’j ~R1z
Mj{(P1

j )

(P2
j ){(P1

j )
(R2{R1) ð1Þ

Finally, the mean value ( �MM) of mapped M ’j medians of each

slice was computed.

The second step was the transformation of the intensity. In the

transformation step, again the median intensity (Mj ) and

intensities corresponding to the 0 and 99.8 percentile (P1
j ,P2

j ) of

Hj were calculated. The intensity values for each pixel x were

mapped to a new value x’:

x’~

q �MMz(x{Mj)
R1{ �MM

P1
j {Mj

r, if xƒMj

q �MMz(x{Mj)
R2{ �MM

P2
j {Mj

r, if Mjƒx

8>>>><
>>>>:

ð2Þ

Finally, the set of images were normalized using z-scores such

that intensity values have a mean of 0 and standard deviation of 1.

Feature Extraction
A total of 32 features corresponding to structure (T2-weighted

images (f1) ), functional (DCE-MTT (f2), DCE-PF (f3) images) and

statistical texture features were used to describe the appearance and

shape of the intensity distributions of prostate structures. Texture

information was extracted from the structural T2-weighted images.

Madabhushi [13] mentioned the importance of first- and

second-order statistical features to improve the classification

results. We consider some additional first-order descriptors of

the intensity histogram based on [57]. We computed five operators

with two windows sizes (k[ 3,5f g) to get information on the

median intensity (f4), dispersion (f5), skewness (f6), smoothness (f7)

and variability (f8) using the following operators respectively:

1. Median (f4)

2. Standard deviation (f5)

Figure 2. Ground Truth marks annotated over MRI modalities. Left a T2-weighted image, in the middle a DCE-MTT image and right a DCE-PF
image are shown. The green line marks the peripheral zone (PZ), the red line marks the histologically confirmed cancer region and a sample of benign
region is marked by a cyan line.
doi:10.1371/journal.pone.0093600.g002

Figure 3. MRI Bias field correction. Left an uncorrected image, in the middle the corrected image and right image with the calculated bias field
superimposed.
doi:10.1371/journal.pone.0093600.g003
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3. Third moment (f6)

m3(x)~
Xk2{1

i~0

(N (i)
x { �NNx)3p(N (i)

x ) ð3Þ

4. Energy (f7)

E(x)~
Xk2{1

i~0

p2(N (i)
x ) ð4Þ

5. Entropy (f8)

e(x)~
Xk2{1

i~0

p(N (i)
x ) log2 (p(N (i)

x )) ð5Þ

The operators were computed for each pixel x in all slices of a

volume. Nx contains the k-neighborhood pixels centered on x

and �
x is the mean of Nx . p(Nx ) refers to the probability

distribution of surrounding pixels.

Second-order statistical features were extracted using two

angular independent approaches, a neighborhood gray-tone

difference matrix (NGTDM) and a neighboring gray level

dependent matrix (NGLDM).

In NGTDM, the matrix NGT is set using the equation 6,

V x(i)[Nx with i~0,:::,k2{1.

NGT(x(i))

~

PR
r~0 Dxr(i){ �MMxr(i)D, for x(i)[Rx(i), if Rx(i)=0

0, otherwise

8>><
>>:

ð6Þ

The array Rx(i) contains all pixels with gray value x(i), R is the

number of pixels in Rx(i). �MMx(i) is the mean value over a

neighborhood centered at, but excluding x(i). Five operators were

computed with the NGT matrix (Coarseness (f9), Contrast (f10),

Busyness (f11), Complexity (f12) and Texture Strength (f13)) [17].

These operators quantify the difference between regions with

different intensity levels, the spatial frequency of intensity changes

from one pixel to its neighbor and the magnitude of the difference

between two intensity values, weighting the difference with their

probabilities of occurrence.

For NGLM, equation 7 describes the implementation of matrix

Q. For a given image of size ½n,m� with pixel x(i,j),i~1,2,:::,n and

j~1,2,:::,m, there is a matrix Q(c,r), where c is the intensity value

x(i,j) and r the number of repetitions of c.

Q(c,r)~ # (i,j)Dx(i,j)~ c andf

# (q,v)Dr((i,j),(q,v))ƒd and Dx(i,j){x(q,v)Dƒa½ �~rg
ð7Þ

The neighborhood was defined by d~tk=2s[Zz, where k is

the windows size (k[ 3,5f g). The points (q,v) are the coordinates to

localize the pixel x[Nx. The symbol # denotes the number of

elements in the set, r((i,j),(q,v)) is the distance between the

elements (i,j) and (q,v), and a[Zz defines the similarity between

two pixels (a = 10). Three operators were computed using the Q

matrix (Number Nonuniformity (f14), Second Moment (f15) and

Entropy (f16)) [18].

To extract frequency signatures, a rotation invariant local phase

quantization (RI-LPQ) implemented by Ojansivu [22] was

integrated into the system (the Matlab implementation is available

at the Outex site http://www.outex.oulu.). It is based on the blur

invariance property of the Fourier phase spectrum. The phase

information was extracted from a local k-neighborhood Nx with

k = 3, centered on a pixel x of a subimage I(x). The local spectra

was computed with a short-term Fourier transform (STFT) defined

by equation 8.

F(u,x)~
X

y

I(y)wG(y{x)e{j2puT y ð8Þ

Where u is the frequency, and wG is a circular Gaussian

function. A 2-D rotation matrix (Rh) with an angle h was used to

rotate the images and the circular local neighborhood (36 different

angles were generated). The local Fourier coefficients were

computed and the phase information was recorded by observing

the sign of the imaginary parts of the coefficients’ vector. The

resulting values were normalized to a range of 0 to 15. A RI-LPQ

histogram of these values with 16 bins was composed and used as

16 additional features (f17 to f32) for each pixel in the classification.

Training
The advantage of an incremental learning algorithm lies in the

ability to incrementally learn additional information from new

data when it becomes available. We implemented an ensemble

algorithm based on [30]. The ensemble classifiers were trained

based on a dynamically updated distribution over the training data

points, in which points that are difficult to classify receive a higher

probability to increase their chance of being selected into the next

training data set. The algorithm uses a database DBk,k~1,:::,K
where K corresponds to the number of patients available (in our

case 12 patients). The data points of all patients were first

randomly permuted and split into K = 12 equal-sized parts.

As base classifier the non-separable case formulation of SVM

was employed, which will be referred to 1C-SVM. The aim of

training using 1C-SVM was to construct an optimal hypotheses h,

separating two classes and maximizing the distance to the closet

point from either class [58], which is robust against model

misspecification and provides a high predictive power. The main

concept is finding an optimal hyperplane f (x)~w(xi)
T wzw0 in

the feature space using the formulation in equation (9).

min
w,w0,j

1

2
wk k2zC

XN

i~1

ji

subject toji§0,

yi(w(xi)
T wzw0)§1{ji Vi

ð9Þ

where w(xi) maps xi into a higher-dimentional space, C is a

regularization hyper-parameter that penalizes misclassification. j
is a slack variable to relax the constraints and is called margin

error or misclassification error.

The equation (9) can be solved with a quadratic programming

solution using the lagrangian dual objective functions [59]. By

using the dual objective function is possible to use the kernel trick

K(xi,xj), which maps data into higher dimensions in order to

handle non-linear relationships between patterns. The mapping to
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a higher dimensionality also permits the capture of similarities

between data points. A Gaussian Radial Basis Function (RBF) was

used as a kernel, given by equation (10).

K(xi,xj)~ exp ({c xi{xj

�� ��2
),c~

1

2s2
ð10Þ

c is a hyper-parameter which changes the smoothness of the

kernel function i.e. a greater or lesser relationship between the

data points is found depending on the value of c.

To estimate the optimal hyper-parameter c and C for 1C-SVM

the heuristic method Nelder-Mead was used [60,61]. The selected

criteria to find the optimal classifier was the area under the

receiver operating characteristic curve (AUC-ROC) which is

commonly used in medical decision making, and is useful for

organizing classifiers and used increasingly in machine learning

and data mining [59,62].

The inputs to the ensemble algorithm are:

1. training data Sk~ (xi,yi)Di~1,:::,Nkf g. It consists of Nk

training data points with xi[Rd being the d-dimensional

features and yi[ {1,1f g indicating the corresponding class.

The Nk data points are randomly selected from the kth

database DBK ;

2. a base classifier to generate a hypotheses h. A requirement on

the base classifier is that it obtains a 50% correct classification

performance on its own training data set.

3. an integer Tk specifying the number of iterations t~1,2,:::,Tk

to be generated for each data set. Tk~3 were employed, which

was enough to reduce the prediction error.

The ensemble algorithm starts by initializing a set of weights at

for the training data Sk, and a distribution Dt obtained from at.

According to Dt the training data Sk is divided into a training

subset TRt and a test subset TEt at the tth iteration of the

algorithm. Without a priori information the distribution of weights

Dt is initially set to be uniform. At each iteration t, the weights

adjusted at iteration t{1 are divided by the sum of all wt{1 to

ensure a legitimate distribution and a new Dt is obtained. Training

and test subsets are drawn randomly according to Dt, and the

SVM is trained using tenfold CV method. A hypothesis ht is

obtained as the tth classifier, whose error et (11) is computed on the

entire data set Sk~TRtzTEt.

et~

P
i:ht(xi )

Dt
:Dyi{hk(xi)DP

i:ht(xi )
Dt

ð11Þ

The error et is required to be less than 0.5 to ensure a

reasonable performance of ht. If the condition is satisfied, ht is

accepted and the error is normalized to obtain the normalization

error (12)

bt~et=(1{et),0vbtv1 ð12Þ

If the condition is not satisfied, then the current ht is discarded,

and a new training subset is selected. All hypotheses generated so

far are then combined using the weighted majority voting to

obtain the composite hypothesis Ht (13), which allows efficient

incremental learning capability when new classes are introduced.

The hypothesis with good performance are awarded a higher

voting weight.

Ht~argmaxy[Y

X
t:ht(x)~y

log
1

bt

� �
ð13Þ

The error of the composite hypothesis Ht is computed with (14),

and must also be less than 0.5 to ensure a reasonable performance

of Ht, otherwise the algorithm discards the composite hypothesis

and returns to select a new training subset.

Et~

P
i:Ht(xi )

Dt
:Dyi{Ht(xi)DP

i:Ht(xi )
Dt

ð14Þ

The normalized composite error is then computed with (15).

Bt~Et=(1{Et), 0vBtv1 ð15Þ

To reduce the weights of those data points that are correctly

classified by the composite hypothesis Ht and lower the probability

of being selected in the next training subset, the rule of equation 16

is used.

atz1(i)~at(i):
Bt, if Ht(xi)~yi

1, otherwise

8><
>: ð16Þ

The hypothesis HF for the training subset and the subset of

features can be obtained by combining all hypotheses that have

been generated so far using the weighted majority voting rule (17).

HF (x)~argmaxy[Y

XK

k~1

X
t:Ht(x)~y

log
1

Bt

� �
ð17Þ

The features for use in the classifier was performed with a

pairwise correlation using the spearman’s coefficients [63]

avoiding multicollinearity. Features with a correlation coefficient

lower than 0.60 were integrated in the pattern recognition system.

Furthermore, a sequential forward methodology, leaving out the

features that did not decrease significantly the prediction error,

was employed.

Another method for the selection of features is a generalization

of the random forest algorithm, known as random subspace

ensemble [32], which perform better when the features have high

correlation. A random subspace of incremental learning SVM for

each training subset Nk was implemented. The method randomly

selected different subsets of features to train each classifier. Given

the training subset Nk, a subspace F was chosen with NF features.

We employed F~30 and NF ~50% of the total number of

features. All subspaces F of incremental learning SVM were

trained and combined using a weighted majority voting rule. To

implement a random subspace the equation 17 was redefined as

follow:
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HF (x)~argmaxy[Y

X
t:Ht(x)~y

log
1

Bt

� �
ð18Þ

The normalized error BF (19) was calculated with the mean

square error (mse) of the hypothesis HF . The final hypothesis

Hfinal is computed with weighted majority voting (20).

BF ~mse(HF )=(1{mse(HF )) ð19Þ

HFinal(x)~argmaxy[Y

XK

k~1

X
F :HF (x)~y

log
1

BF

� �
ð20Þ

Classification and Probability Map
The classification output of the SVM are decision values

indicating the distance of data points to the hyper-plane without

an estimation of how likely a data point belongs to a class, which is

more important in a medical routine. We applied an extension of

LIBSVM [42], which is an improvement of Platt [64], to give a

probability estimation of cancer based on Lin et al. [65] and Wu

et al. [66]. The extension proposes approximating the posterior

probability by a sigmoid function using decision values and labels

of each data point. Finally, the probability map estimation was

saved in DICOM files for posterior analysis and diagnosis by the

physicians.

Evaluation
To achieve an objective evaluation, the following methodology

was implemented. The data set was divided into three subsets:

training, validation and test. The aim of the validation subset was

to make a fair estimation of performance, independent of the test

data, and to pick optimal parameters that maximize the

performance of the validation subset which in turn provides a

more generalized solution.

We implemented a nested cross-validation (CV) method for an

unbiased estimation of prediction error in an independent test

data. As used in [14,15] threefold CV was used for the evaluation

of the classifier, i.e. 8 patient studies were used for training and

validation and 4 patient studies for independent testing. To

estimate the unknown tuning parameters of the classifier tenfold

CV was used with data points from the 8 studies selected for

training and validation. The data points were randomly permuted

and divided in 10 parts, one part for the validation and nine for

training. The AUC of the receiver operating characteristic curve

(ROC) was used as performance measure which provides a

representation of the probability that a randomly chosen disease

subject is correctly ranked with greater suspicion than a randomly

chosen non-disease subject [67].

Since in other approaches other statistical measures of

performance for binary classification were used, we also computed

statistical measures, such as the sensitivity (TPR) and specificity

(SPC) (21,22) as complementary information. To obtain binary

classification a thresholding procedure is used. We selected a

threshold Th such that a data point i is classified as cancerous if the

posterior probability p(yi=xi)§Th, otherwise is classified as non-

cancerous. Several threshold values Th were selected and the

balanced accuracy (BAC), which is defined as the mean of

sensitivity and specificity, was computed for each of the threshold

values. The selected Th is the one which produced the maximum

BAC value. The use of TPR and SPC yielded additional

information about the performance of the classifier and allowed

comparison of our results with other approaches. Additional

measures like the Positive Predictive Value (PPV) (23) and the area

under the PPV-TPR curve (AUC-PPV/TPR), known in machin-

ing learning as Precision-Recall curve, were also computed to give

further information about performance on the positive class

(cancer structure). PPV is also significant because it is also related

with a priori chance of extra-capsular disease [37].

TPR~
TP

TPzFN
ð21Þ

SPC~
TN

TNzFP
ð22Þ

PPV~
TP

TPzFP
ð23Þ

TP and TN denote the number of true positive and true negative

data points, respectively. FP and FN denote the number of false

positive and false negative data points, respectively.

To evaluate the significance of the results between different

models we used the Friedman test [68], which is a non-parametric

statistical test that analyzes the ranked samples of an experiment

and detects differences between the models across multiple test

attempts. The p-value as a measure of statistical significance allows

to reject or to accept the null hypothesis that there is no difference

between experiments [69]. A p-value lower than 0.05 rejects the

null hypothesis and the test is statistically significant, between 0.05

and 0.1 is marginal significant and higher than 0.1 is not

statistically significant.

Results

Feature generation, texture analysis, standardization, normali-

zation, data cleaning, bootstrapping and evaluation methodology

were implemented using Matlab 7.10 software. Training, predic-

tion and the extensions of 1C-SVM were computed with LIBSVM

C++ code [42]. To speed up the CV process and classification

phase we implemented the code using the parallel computing

toolbox of Matlab and the Grid Cluster infrastructure of Baden -

Wuerttemberg bwGRID [70].

The results of accuracy, precision and efficiency are presented

using the mean and standard deviation. We present also the

corresponding box plots to give additional statistical information.

The computational time reported was running the classifications

on a PC with an Intel Core i7 CPU at 3.4 GHz and 16 GB of

RAM.

Performance of a Single 1C-SVM
A single 1C-SVM was run to compare the results with the

proposed method. This classifier was implemented in other

approaches for prostate classification giving good results

[12,23,25,26]. The features were selected according to the

spearman’s coefficients and the sequential forward approach.

The features that significantly improved the AUC-ROC were the

first-order texture descriptors: standard deviation, third moment

and energy. We compared three models using different configu-

rations. The first model contained only values of T2-weighted

images (T2), the second includes T2-weighted, DCE-MTT, DCE-
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PF (T2DCE) and the third model consisted of T2 and its most

significant texture features (T2Tex). Table 1 shows the results of

1C-SVM using the three models.

Mislabeled pixels or extreme intensity variations can be present

in the training dataset. The identification of outliers in high-

dimension for each class, without any assumption on the

distribution, is challenging. To avoid deviant observation we used

One-class SVM [42] in each class independently for each patient

dataset. The parameters n and c, using a radial basis function,

were optimized with Nelder-Mead. The training data set is subject

to imbalance, known as minority class, that can cause class

representation problems. Bootstrap over-sampling was used to

balance the number of data points in each class for each patient.

Bootstraping to enlarge the sampling pool [71] was performed

with a Monte Carlo sampling algorithm [72]. The algorithm chose

uniformly distributed pseudorandom data with replacement. To

obtain a preferred sample size, the non-cancerous regions were

undersampled, while the cancerous regions were oversampled

until both classes were balanced. The algorithm was run for each

patient independently. Another method to overcome the minority

class problem is a cost-sensitive SVM [42] to penalize misclassi-

fication asymmetrically. However, we did not get a significant

improvement compared to stratified sampling. For simplicity and

reducing computing cost, we used the bootstrap sampling to

balance the number of data points. Table 2 illustrates the results

using a single 1C-SVM with a processed training dataset.

Comparing table 1 and 2, the difficulties of a single SVM to

handle outliers and an imbalanced data set can be observed.

Including methods to avoid outliers and balance the data set

contribute to enhance the performance of a single SVM. However,

these procedures and a large number of samples introduced a

significant computational cost during the training phase.

Evaluation of the Incremental Learning Algorithm
The same three models were compared (T2, T2DCE and

T2Tex). Table 3 shows the results using the ensemble framework.

The method based on Platt [42] to estimate the probability of

cancer was implemented. We also used the decision values of SVM

without the extension based on Platt to confirm the results. The

AUC-ROC = 0.87060.103 and AUC-PPV/TPR = 0.46160.247

using the decision values did not present a significant difference.

The model with T2-weighted and first-order texture descriptors

(T2Tex) had the highest accuracy with an AUC-ROC significantly

better than the T2 and T2DCE models (pv0:05), by highlighting

relationship between pixels. Although T2 presented the highest

sensitivity, T2Tex improved the trade-off between sensitivity,

specificity and PPV values, which is more meaningful in clinical

routines. T2DCE did not provide any significant improvement in

performance. Figure 4 illustrates the box plot of these results. In

comparison with table 2, the results of table 3 were not

significantly different, however the ensemble 1C-SVM did not

require a processed training data set, demonstrating that it is more

robust in the presence of outliers and the imbalance in data than a

single SVM. Furthermore, the computational cost in the training

phase was a quarter of the time compared to a single SVM. A

random subset of features was also evaluated, however we did not

obtain a significant improvement (AUC-ROC = 0.84860.083)

and the computing time increased by a factor of 10.

Assessment of the Classifier According to the Area of
Cancer Structures

Recognition of cancer in the PZ is challenging, due to the

presence of other glandular non-cancerous prostate conditions,

different stages and sizes of cancer. Therefore, we evaluated the

performance of the framework using the two best models: T2 and

T2Tex according to the size of cancer. Table 4 summarizes the

results for two different sizes of cancer (0:1 cm2
ƒAƒ0:5 cm2 and

0:5 cm2
vBƒ1:3 cm2). T2Tex performed better in AUC-ROC

and AUC-PPV/TPR, for both small (A) and big areas (B), than

T2, as well as a better trade-off between sensitivity, specificity and

PPV. Texture information contributed also to identify suspect

structures with different stages and sizes. In case of small areas (A)

the false positive rate was higher and demonstrated discrimination

complexity between small cancer areas and normal or other

glandular non-cancerous prostate conditions. In case of big areas

(B) the results were similar for both models.

Evaluation of Ensemble 1C-SVM Against Human Experts
For comparison, two radiologists marked only cancer regions

for five different patients (around 15 slices) in T2 images observing

the usual MRI modalities and following normal evaluation

routines (without any knowledge of the pathology or previous

diagnosis). After the segmentation of cancer structures the results

were evaluated against the ground truth. Similarly, the results of

the automatic classification for the selected test patient were

evaluated against the ground truth. Table 5 shows the comparison

of cancer structures segmented by a radiologist and results

obtained by our system. In terms of PPV, the radiologist can

discern with more accuracy anatomical tissue or other non-

cancerous prostate conditions that overlap with cancer structures.

An expert who is familiarized with structures and shapes and prior

knowledge about the meaning of other structures can further

reduce the false positive rate. The sensitivity in the results by the

Table 1. Classifier’s performance for a single 1C-SVM.

Measures (m+s) T2 T2DCE T2Tex

TPR 0:799+0:186 0:805+0:098 0.811±0.094

SPC 0:694+0:074 0:605+0:132 0.739±0.091

PPV 0.311±0.171 0:221+0:089 0:269+0:089

AUC-ROC 0:742+0:239 0:710+0:134 0.813±0.080

AUC-PPV/TPR 0:299+0:135 0:248+0:108 0.376±0.101

Time(min) 27.31±7.65 37:02+10:76 45:05+13:08

Three different combinations of features T2, T2DCE, T2Tex were assessed using the metrics TPR = Sensitivity, SPC = Specificity, PPV = Positive Predictive Value, AUC-
ROC = Area under the receiver operating characteristic curve and AUC-PPV/TPR = Area under the Precision-Recall curve. The computational time given in minutes was
the time required for the training and validation phase.
doi:10.1371/journal.pone.0093600.t001
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human expert exemplifies the challenging nature of interpreting

and staging prostate cancer. The human expert has to handle a

variety of MRI modalities, MRI intensity variation artifacts and

confined time for analysis. Our system helps to improve the

sensitivity and decrease the time to recognize and delineate cancer

regions.

Qualitative Evaluation
Figure 5 illustrates the results after classification of two test

patients using an ensemble 1C-SVM with T2Tex as features. A

correlation between ground truth and classification results was

observed on slices containing histological information. In neighbor

slices was also observed evidence of cancer. These slices do not

have histological data because of loss of information during the

histology process for the extraction of prostate tissue. Nevertheless,

the possibility of cancer in neighbor slices is evident due to the

irregularities in shape and spread characteristics of cancer. The

major number of T2-weighted slices together with the classifica-

tion model contributes to locating suspicious cancer structures

along the inter-slice direction.

In the presence of other non-cancerous prostate conditions,

ensemble 1C-SVM classified these regions as suspicious tissue with

a probability of cancer between 40% to 80%, but the results

depend on the stage of these prostatic conditions (e.g. first patient

in the fifth slice on right side).

We trained the classifier with pixels inside the PZ. If regions

outside the PZ or other prostate tissue (e.g ejaculatory ducts or

neurovascular bundle) are classified, the results are meaningless.

These regions have an overlap with cancer structures and were not

included in the training.

Images such as the first and the second slice of patient 2 have to

be assessed in detail with the radiologist and the pathologist to

verify if this result was a statistical error of the classifier or a

systematic error because of mislabeled data.

Discussion

In this work we present the feasibility of developing an ensemble

1C-SVM. To the best of our knowledge, this is the first automatic

classifier for recognition of prostate cancer that uses incremental

learning algorithms satisfying the criteria of being able to learn

additional information from new data while preserving previously

acquired knowledge and preventing the unlearning [28] of old or

underrepresented patterns. Moreover, the training phase does not

need to be initiated from scratch when new data becomes

available, actually it does not require access to the data used to

train the existing classifier at all. This framework makes possible

not only the integration of new discriminant features, but also

accommodation of new classes that may be introduced with new

data.

As mentioned in [25,26], a comparison between study results is

difficult because of differences between study population. In

addition, each study has a different amount of data in which

artifacts in the MR images and imbalances between cancer and

benign data points are presented. Other differences involve

annotations that do not follow same standards (e.g. classification

of pixels, voxels, sextant), the discrimination task (e.g. using

cancerous and normal tissue or normal tissue together with other

non-cancerous conditions) and the evaluation methodology. We

can report that with our framework an ensemble 1C-SVM renders

Table 2. Classifier’s performance for a single 1C-SVM with a processed training dataset.

Measures (m+s) T2 T2DCE T2Tex

TPR 0:865+0:125 0:868+0:134 0:859+0:056

SPC 0:715+0:121 0:701+0:124 0:759+0:035

PPV 0:255+0:217 0:252+0:209 0:279+0:093

AUC-ROC 0:838+0:092 0:832+0:093 0:863+0:040

AUC-PPV/TPR 0:341+0:232 0:368+0:238 0:418+0:101

Time(min) 31:47+2:16 51:23+46:46 64:67+42:99

Three different combinations of features T2, T2DCE, T2Tex were assessed using the metrics TPR = Sensitivity, SPC = Specificity, PPV = Positive Predictive Value, AUC-
ROC = Area under the receiver operating characteristic curve and AUC-PPV/TPR = Area under the Precision-Recall curve. The computational time given in minutes was
the time required for the training and validation phase.
doi:10.1371/journal.pone.0093600.t002

Table 3. Classifier’s performance for an ensemble 1C-SVM.

Measures (m+s) T2 T2DCE T2Tex

TPR 0:863+0:059 0:861+0:060 0:844+0:068

SPC 0:713+0:043 0:682+0:049 0:780+0:038

PPV 0:260+0:099 0:244+0:095 0:293+0:096

AUC-ROC 0:838+0:037 0:817+0:041 0:864+0:045

AUC-PPV/TPR 0:342+0:103 0:351+0:101 0:445+0:094

Time(min) 12:74+2:46 16:15+3:58 15:67+3:47

Three different combinations of features T2, T2DCE, T2Tex were assessed using the metrics TPR = Sensitivity, SPC = Specificity, PPV = Positive Predictive Value, AUC-
ROC = Area under the receiver operating characteristic curve and AUC-PPV/TPR = Area under the Precision-Recall curve. The computational time given in minutes was
the time required for the training and validation phase.
doi:10.1371/journal.pone.0093600.t003
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a AUC-ROC of 0.864 (95% confidence interval(CI) = 0.847–

0.880), sensitivity of 0.844 (95% CI = 0.819–0.868) and specificity

of 0.780 (95% CI = 0.767–0.794), which is superior or similar to

results reported in other studies [12,14]. These studies were

evaluated using leave-one-out (LOO), nevertheless it is known that

LOO has a high variance [59]. Table 6 summarizes our results

using both three-fold CV and LOO, as well as the results of

current approaches. The dataset used for other studies is described

as follows: Artan [25] used 21 slices from 21 patients. Niaf [26]

experimented with 30 patients taking 42 cancerous ROIs. Tiwari

[15] employed 29 patients and performed a classification per

metavoxel.

Figure 4. Classification results using an ensemble 1C-SVM. The performance of the three models (A. T2, B. T2DCE, C.T2Tex ) employing
different metrics (TPR = Sensitivity, SPC = Specificity, PPV = Positive Predictive Value, AUC-ROC = Area under the receiver operating characteristic
curve, AUC-PPV/TPR = Area under the Precision-Recall curve) is shown.
doi:10.1371/journal.pone.0093600.g004
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The analysis of cancerous structures is not trivial, they are

characterized by their lack of shape and their overlap with other

tissues (e.g. non-cancerous prostate conditions, and even healthy

tissue). Moreover, the degree of intensity overlap depends also on

the stage and size of malignant regions [9,46] and together with

the anatomy that change from patient to patient, makes the

discrimination between benign and cancer tissue more difficult.

Our results suggest that a more straightforward and efficient

approach using first-order texture features is sufficient to achieve

significant improvement in the recognition of cancer. Indeed, Niaf

[26] demonstrated that using all extracted features would lead to

poor performance. The degraded performance in our results using

second-order features could reflect the differences in stage and size

of malignant regions and the presence of other prostate conditions.

However, other studies [13–15] suggest that second-order features

yield good results. An evaluation of second-order angular

independent features with a larger database containing more

cancer regions (e.g. in different stages or different sizes) could help

to assess the importance of these features in the classification. A

random subspace of features did not improve the results of the

incremental leaning algorithm. In Kuncheva [73] was reported a

modest improvement using random subspaces depending on the

data set. A restrictive choice of features and a higher number of

random subspaces could help to increase the performance, but it

implies higher computational cost, and we did not find evidence

suggesting that a better choice of F and NF could improve the

results significantly.

The data set was pre-processed to increase the performance of

the classifier and robustness of the system. A general drawback of

previous publications is the limited focus on pre-processing the

data to minimize artifacts and deviations, e.g. the corruption of

intensity values in the peripheral zone (PZ) of the prostate near to

the rectum caused by sharp near field endorectal coil artifacts

[12,74] and the intensity variations between slices in MR imaging,

known as non-standardness [54,55,75]. High signal intensity

artifacts can not only limit the detection of cancer in the PZ,

but also decrease the ability to generalize, which in most cases has

not received appropriate attention in medical image applications.

Although, these intensity variations have usually little impact on

visual diagnosis, they significantly affect the performance of many

image processing and analysis techniques based on absolute pixel

intensities [76–78].

The ensemble workflow is similar to the decision process. A

human being tends to seek several opinions before making any

important decision. Individual opinions are weighted and com-

bined to obtain a final decision [79]. This workflow offers higher

accuracy and stability when compared to a single classifier. In

addition, ensemble algorithms can often alleviate the problems of

small sample size and high dimensionality which commonly occur

in many bioinformatics applications [80].

The algorithm using ensemble 1C-SVM is also easy to

implement and converges much faster than a single classifier

because the ensemble algorithm does not use a large database for

the training phase. Managing and analyzing huge databases

implies computing complexity, storage problems and poor

classification accuracy due to difficulties in finding correct

classifiers [81], i.e. the size of the search space increases and

underrepresented patterns that depend on the changing anatomy

from patient to patient, may go undetected.

The incremental learning algorithm also demonstrates a more

generalized performance and a narrow confidence interval, which

indicates improved stability and robustness. Furthermore, this suits

the working conditions in medical applications, in which a

representative data set is difficult and time consuming to obtain.

Data sets often become available in small and separate batches at

different times.

The base classifier 1C-SVM method using the Gaussian Radial

function also renders good results. The optimization process to

Table 4. Classifier’s performance for different sizes of cancer structures.

T2 T2Tex

Measures (m+s) Region A Region B Region A Region B

TPR 0:945+0:039 0:776+0:132 0:916+0:053 0:779+0:087

SPC 0:630+0:034 0:727+0:165 0:741+0:064 0:744+0:132

PPV 0:131+0:092 0:457+0:172 0:181+0:141 0:467+0:147

AUC-ROC 0:803+0:026 0:802+0:117 0:872+0:050 0:824+0:125

AUC-PPV/TPR 0:142+0:089 0:500+0:171 0:291+0:217 0:590+0:227

Two models were compared T2 and T2Tex using the metrics: TPR = Sensitivity, SPC = Specificity, PPV = Positive Predictive Value, AUC-ROC = Area under the receiver
operating characteristic curve and AUC-PPV/TPR = Area under the Precision-Recall curve. Region A corresponds to cancer structures between 0:1 cm2

ƒAƒ0:5 cm2 and

region B corresponds to cancer structures between 0:5 cm2
vBƒ1:3 cm2 . Five patients per region were evaluated.

doi:10.1371/journal.pone.0093600.t004

Table 5. Evaluation of classifier against human experts.

Measures (m+s) Observer 1 Observer 2 CAS

TPR 0:444+0:219 0:490+0:143 0:691+0:051

PPV 0:679+0:151 0:795+0:085 0:420+0:168

Time(sec) 114:3+25:45 183:6+61:49 11:73+1:07

Five patients were evaluated by two radiologists and by the computer-aided system (CAS) using T2Tex. The performance was measured using TPR = Sensitivity and
PPV = Positive Predictive Value. The time required to evaluate, recognize and delineate prostate cancer is given in seconds.
doi:10.1371/journal.pone.0093600.t005
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find the hyper-parameters, together with the use of a radial kernel,

was crucial to obtain higher accuracy. A Gaussian function can

better characterize the similarities between cancer structures and

neighbor pixels, which correspond in fact to the standard deviation

of the intensity values. A default c parameter depending on the

number of features, as used in other studies, is not an optimal

choice to find similarities between structures. A heuristic method,

such as Nelder-Mead, is a better choice for model selection,

however a poor starting point can lead to a local search. We

suggest to first run a loose search to select the starting point, and

then run Nelder-Mead for a precise search.

The results using areas of cancer confirmed the positive

performance of our system for different sizes of cancer structures.

In addition, we observed that in the presence of larger malignant

structures, other regions such as the central zone or tissue outside

the prostate capsule were also affected by cancer. This observation

suggests that the PPV value is related to the chance of extra-

capsular disease, as mentioned also in [37].

Our results demonstrated that inclusion of the functional

features used in this study: DCE parameters, plasma flow (PF)

and mean transit time (MTT) do not improve the classification

results. However, Vos et al. [24] demonstrated the contribution of

different DCE parameters, such as T1Static, Ve in the extravas-

cular and extracellular space, transfer constant (Ktrans) and rate

constant (Kep). These DCE parameters have to be assessed with

our system, which may improve the performance differentiating

cancer and benign tissue. Other functional features such as

Diffusion-Weighted Imaging (DWI) and MR-Spectroscopy have

been evaluated [9–11,15]. However, we do not integrate these

features because of high bias and noise within the available data

which are produced by artifacts in these modalities.

In our study, the ground truth was created manually by visual

correlation of the histological sections with the MRI slices. There

was not enough available information to perform an automatic

registration, this is an important point to improve in the future.

Nevertheless, visual correlation is still an acceptable method that

has been used in other technical and clinical publications

[12,13,15,24,26,27].

Further investigations are necessary such as including more

functional features in the system, increasing the number of patients

and improving the extraction of ground truth. The integration of a

third class corresponding to other non-cancerous prostate condi-

tions is also important, for which the incremental learning

algorithm can be improved e.g. using other combination rules or

Figure 5. Recognition of cancer structures for two clinical patients. Five slices corresponding to the MRI volume of each patient are
illustrated. The probability map was superimposed over the T2-weighted images. The background represents the gray values of the T2-weighted
images for the whole prostate tissue. In the foreground the probability estimation of cancer is shown using a color map only over the PZ for the
corresponding slices. The probability of cancer is ranged on a color scale: red (99%{70% probability), yellow-green (70%{30% probability), without
color (lower than 30% probability of cancer). The white marks highlight the ground truth regions.
doi:10.1371/journal.pone.0093600.g005

Table 6. Summary of current studies and our system results.

Measures(%) Artan Niaf Tiwari
Our
Framework

TPR 64.0 – – 84.40/84.69

SPC 78.0 – – 78.03/78.62

PPV – – – 29.29/29.38

AUC-ROC 79.0 89.0 85.0/89.0 86.38/86.85

AUC-PPV/TPR – – – 44.53/46.69

The computer-aided studies from Artan [25], Niaf [26] used a leave-one-out (LOO) CV methodology, and from Tiwari [15] which, similar to this paper, used three-fold CV/
LOO. Our results are reported for both methods three-fold CV/LOO. The metrics used are: TPR = Sensitivity, SPC = Specificity, PPV = Positive Predictive Value, AUC-
ROC = Area under the receiver operating characteristic curve and AUC-PPV/TPR = Area under the Precision-Recall curve.
doi:10.1371/journal.pone.0093600.t006
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adding prior information in the ensemble to increase the

performance.

Conclusion

A pattern recognition system using an incremental learning

algorithm and texture information for the automatic classification

of prostatic adenocarcinoma, was presented. Our system not only

suits the complex working conditions in medical applications, but

also learns additional information from new data preventing

unlearning. The performance, effectiveness and robustness of the

system, along with its simplicity and speed in training as well in

classification was also presented. Moreover, our system operates

with a low number of features (T2-Weighted and texture

operators) demonstrating the importance in the selection of

information.

The probability estimation map generated by our system

enables radiologist to diagnose with less variability in the diagnosis

and reduce not only the false negative rate but also the time to

recognize and delineate structures in the prostate. The radiologist

could evaluate this estimation map before issuing a final report in

order to suggest a better targeted treatment. As a result the

radiologist can opt for a less aggressive therapy, can reduce the

number of unnecessary biopsies and spare healthy tissue. In

addition, our system can also be a suitable advisory tool for non-

expert radiologists.
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