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BACKGROUND: Neurocognitive dysfunction is observationally associated with the risk of psychiatric disorders. Blood metabolites,
which are readily accessible, may become highly promising biomarkers for brain disorders. However, the causal role of blood
metabolites in neurocognitive function, and the biological pathways underlying their association with psychiatric disorders remain
unclear.
METHODS: To explore their putative causalities, we conducted bidirectional two-sample Mendelian randomization (MR) using
genetic variants associated with 317 human blood metabolites (nmax= 215,551), g-Factor (an integrated index of multiple
neurocognitive tests with nmax= 332,050), and 10 different psychiatric disorders (n= 9,725 to 807,553) from the large-scale
genome-wide association studies of European ancestry. Mediation analysis was used to assess the potential causal pathway among
the candidate metabolite, neurocognitive trait and corresponding psychiatric disorder.
RESULTS: MR evidence indicated that genetically predicted acetylornithine was positively associated with g-Factor (0.035 standard
deviation units increase in g-Factor per one standard deviation increase in acetylornithine level; 95% confidence interval, 0.021 to
0.049; P= 1.15 × 10−6). Genetically predicted butyrylcarnitine was negatively associated with g-Factor (0.028 standard deviation
units decrease in g-Factor per one standard deviation increase in genetically proxied butyrylcarnitine; 95% confidence interval,
−0.041 to −0.015; P= 1.31 × 10−5). There was no evidence of associations between genetically proxied g-Factor and metabolites.
Furthermore, the mediation analysis via two-step MR revealed that the causal pathway from acetylornithine to bipolar disorder was
partly mediated by g-Factor, with a mediated proportion of 37.1%. Besides, g-Factor mediated the causal pathway from
butyrylcarnitine to schizophrenia, with a mediated proportion of 37.5%. Other neurocognitive traits from different sources provided
consistent findings.
CONCLUSION: Our results provide genetic evidence that acetylornithine protects against bipolar disorder through neurocognitive
abilities, while butyrylcarnitine has an adverse effect on schizophrenia through neurocognition. These findings may provide insight
into interventions at the metabolic level for risk of neurocognitive and related disorders.
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INTRODUCTION
Although neurocognitive abilities are considered indispensable in
the assessment of psychiatric disorders [1, 2], the pathogenesis
underlying this relationship has not been well established. Observa-
tional clinical evidence, for example, has suggested that neurocog-
nitive impairment occurs prior to the onset of schizophrenia and
exacerbate following the episode [3, 4]. Neurocognitive deficits may
be inherent to psychiatric disorders, independent of other psychotic
symptom domains [5]. Medical guidelines have recommended
cognitive remediation as a therapeutic strategy for psychiatric
patients [6]. The effectiveness of antipsychotics to improve
neurocognition in patients with psychiatric disorders is controversial.

There are studies showing that taking antipsychotics such as
clozapine, olanzapine, and aripiprazole significantly improves
cognitive performance in psychotic patients [7, 8], but not all
antipsychotics have a uniform positive cognitive profile [9, 10]. This
inconsistency in neurocognition is likely due to the varying degrees
of metabolic discrepancies induced by antipsychotics [11]. For
instance, antipsychotic medications have been associated with
disrupted lipid metabolism [12, 13], with concentrations of these
lipid metabolites shown to correlate with cognitive functions such as
verbal memory and processing speed [14]. The use of anticholinergic
medication may adversely affect cognitive performance in patients
with schizophrenia [15]. Antipsychotic medications can have a
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negative impact on cognitive processes by increasing the occupancy
of dopamine D2 receptors [16]. It implies that the metabolites could
serve as potentially modifiable therapeutic targets whose regulation
may yield better clinical effects.
Metabolites are promising biomarkers reflecting biological and

physiological processes [17]. Several studies have shown that
metabolic abnormalities may worsen cognitive impairments in both
the general population and individuals with psychiatric disorders
[18–24]. For example, in untargeted metabolomics research with
elderly subjects, β-cryptoxanthin plasma levels were associated with
improved cognitive function, while N-acetylisoleucine and tyramine
O-sulfate concentrations were linked to poorer cognitive function
[19]. Metabolic syndrome, characterized by abnormal serum glucose
and dyslipidemia, negatively impacts memory and executive
function [21]. Docosahexaenoic acid plays a vital role in brain
development and cognitive function from pregnancy to childhood
[25]. Elevated kynurenine levels in brain parenchyma caused by
peripheral inflammation are associated with depression and
schizophrenia risk [26]. Sarcosine supplementation to antipsychotics
can improves cognitive symptoms in patients with schizophrenia
[27]. High triglyceride levels in female patients with major depressive
disorder may lead to decreased neurocognitive functions in terms of
memory, language, and attention [28, 29]. Some randomized
controlled trials (RCTs) support the impact of N-acetylcysteine [30],
vitamin D3 [31], folic acid [32, 33], choline and betaine [34] on
cognitive function in individuals with psychiatric disorders. However,
the causal relationships between metabolites and neurocognitive
function remain unclear, and the pathways involved in such effects
during pathology require further investigation.
Mendelian Randomization (MR) is an alternative method that

using genetic variants robustly associated with the exposure as
instrumental variables to uncover the potential causal effect of an
exposure on an outcome [35]. While RCTs are still the gold
standard for causal inference when properly designed, MR
methods can use observational data to provide causal estimates
given certain assumptions are met. Additionally, MR methods offer
advantages in terms of sample size, study duration, and economic
costs. With the accessibility of data from large-scale genome-wide
association studies (GWASs), it provides an opportunity to explore
causal associations between human blood metabolites, neuro-
cognitive traits, and psychiatric disorders using two-sample MR
studies [36].
In this study, we collected human blood metabolites with the

benefits of small-molecule permeability, heritability and detect-
ability. Given the high correlation among diverse neurocognitive
domains, a general cognitive factor score (g-Factor), also known as
a general intelligence, can be obtained statistically by modeling
multiple neurocognitive specific tests [37]. Using bidirectional
two-sample MR analysis, we evaluated which of the 317 human
blood metabolites had a putative causal relationship with
g-Factor. Furthermore, we performed mediation analysis to
investigate the causal pathways mediated by g-Factor from risk
metabolite to 10 different psychiatric disorders, such as schizo-
phrenia, bipolar disorder, anorexia nervosa, attention deficit
hyperactivity disorder (ADHD), major depressive disorder (MDD),
autism spectrum disorder (ASD), posttraumatic stress disorder
(PTSD), anxiety, obsessive–compulsive disorder (OCD) and Tour-
ette syndrome. We also used cognitive traits from other sources to
validate the putative causal pathways. Our findings may provide
new insights into the prediction or improvement of neurocogni-
tive decline in psychiatric disorders through the regulation of
endogenous metabolites.

MATERIALS AND METHODS
GWAS data sources
Blood metabolites. Given that the study was based on summary-level
data, we selected the human blood metabolites from the publicly available

GWAS summary statistics [38–40]. Among these, the GWAS results with the
largest sample size to date, including 174 metabolites and ranging from
8,569 to 86,507 individuals, were published by Lotta et al. [38]. In addition,
Klarin et al. [40] provided data on four lipid cholesterol classes, derived
from more than 200,000 participants in the US Million Veteran Program
(MVP) database. For lipid metabolism, we supplemented the study with
five selected data points from Kettunen et al. [39], with sample sizes
ranging from 13,476 to 24,871. To enrich the dataset, we included 134
metabolites from the smaller-scaled metabolic data published by Shin
et al. [41], with sample sizes ranging from 1,163 to 7,822. In total, 317
metabolites were collected in the study, which can be classified into six
super-pathway-based categories: amino acids (67), lipids (208), carbohy-
drates (14), cofactors and vitamins (11), energy metabolites (6), and
nucleotides (11). Samples for all metabolic data were exclusively of
European ancestry, and detailed information can be found in Supplemen-
tary Table 1.

Neurocognitive traits. The most recent publicly available GWAS summary
statistics for neurocognitive traits and psychiatric disorders were obtained
from individuals of European ancestry (Supplementary Table 2). A total of
six neurocognitive traits were analyzed in this study. The data set included
the following traits: g-Factor (n= 332,050) [42], intelligence (n= 269,867)
[43], cognitive performance (n= 257,828) [44], general cognitive function
(n= 282,014) [45], reaction time (n= 330,069) [45], and verbal numerical
reasoning (n= 168,033) [45]. Among these traits, the g-Factor was the
most discriminating. It represents a unified phenotype resulting from the
integration of multiple neurocognitive tests [37] and is characterized by
the largest sample size. Consequently, we selected g-Factor as the
representative neurocognitive trait for our study, while utilizing the other
neurocognitive traits from different sample sources to validate our
findings. It is crucial to highlight that no instances of overlapping samples
were observed between any metabolite and neurocognitive trait in our
analysis.

Psychiatric disorders. We considered ten of the most prevalent psychiatric
disorders known to impact cognitive function. These disorders include
schizophrenia [46] (n= 130,644), bipolar disorder [47] (n= 413,466),
anorexia nervosa [48] (n= 72,517), ADHD [49] (n= 53,293), MDD [50]
(n= 807,553), ASD [51] (n= 46,350), PTSD [52] (n= 146,660), anxiety [53]
(n= 17,310), OCD [54] (n= 9,725) and Tourette syndrome [55] (n= 14,307).
To ensure that no overlap existed between the neurocognitive traits and
psychiatric disorders within our sample participants, we employed external
GWAS statistics for bipolar disorder [47] (n= 353,899), anorexia nervosa
[48] (n= 68,684), and MDD [56] (n= 142,646) that did not include
individuals from UK Biobank. Detailed information and the specific release
link are provided in Supplementary Table 2.

Overall study design
The overall study workflow is depicted in Fig. 1. Prior to conducting MR
analysis, we first utilized genetic correlation analysis to identify blood
metabolites that are genetically associated with g-Factor. Subsequently, we
performed bidirectional two-sample MR analyses between these blood
metabolites and g-Factor to estimate potential causal relationships.
Concurrently, we conducted genetic correlation and MR analyses between
g-Factor and psychiatric disorders to gather genetic evidence of
neurocognitive associations with these psychiatric disorders. In the final
stage, we employed mediation analysis to explore potential causal
pathways connecting the identified metabolites, g-Factor, and psychiatric
disorders. To validate the putative causal pathways, we also incorporated
other neurocognitive traits, including intelligence, cognitive performance,
general cognitive function, reaction time, and verbal numerical reasoning.
The additional traits were employed to further substantiate the observed
associations and provide further corroboration for the putative causal
relationships.

Genetic correlation
The LD-score regression software (https://github.com/bulik/ldsc) was
employed to calculate the genetic correlation with the default parameters
[57]. The reference variants were used from the HapMap3 dataset,
excluding the major histocompatibility complex regions (https://
ibg.colorado.edu/cdrom2021/Day06-nivard/GenomicSEM_practical/
eur_w_ld_chr/w_hm3.snplist). Precalculated LD scores were used the 1 KG
European reference panel (https://ibg.colorado.edu/cdrom2021/Day06-
nivard/GenomicSEM_practical/eur_w_ld_chr/).
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Two sample MR analysis
Selection of instrument variants (IVs). The MR analysis was performed in
accordance with the previously described procedure [58], and in strict
adherence to the STROBE-MR checklist [59]. In brief, SNPs with MAF > 0.01
and P value < 5 × 10−8 were selected from the GWAS datasets. The
palindromic SNPs were removed according to the default parameters of
the “harmonise_data” function in TwoSampleMR R package (version 0.4.26,
https://mrcieu.github.io/TwoSampleMR/) [60]. SNPs in the long-range
LD regions (https://genome.sph.umich.edu/wiki/Regions_of_high_linkage_
disequilibrium_(LD)#cite_note-3) were removed [61]. We then used
315,147 European UK Biobank data as LD reference genome to clump
conditionally independent SNPs using PLINK software [62] (r2= 0.001,
window size= 1 Mb and p-value= 5 × 10−8). After obtaining SNPs
independently associated with exposure, the selection of IVs is also
subject to the following conditions: (i) no correlation with the outcome
except through the exposure; (ii) if the SNPs are not present in the
outcome, highly correlated proxy SNPs (r2 > 0.8) can be selected to replace;
and (iii) removing SNPs associated with confounders.

Removing confounders. We considered alcohol consumption and smok-
ing as confounders affecting the relationship between blood metabolites
[63, 64], neurocognition [65, 66], and psychiatric disorders [67, 68]. We
removed instrumental SNPs associated with alcohol- and smoking- related

traits (P < 5 × 10−8) by using the NHGRI GWAS catalog database [69]
(v1.0.2-associtions_e104, release in 22 October 2021; https://www.ebi.ac.
uk/gwas/docs/file-downloads).

Heterogeneity, F-statistics and statistical power for IVs. We performed
heterogeneity test for IVs using RadialMR R package (“ivw_radial” and
“egger_radial” functions with default parameters, https://github.com/
WSpiller/RadialMR/) [70], setting P values < 0.05 to filter out the outliers.
We used the F-statistics to assess the strength of the IVs. The specific
formula is F= (R2 × (N-K-1)) / ((1 – R2) × K), R2 denoted the explained
variance of IVs on exposure (R2= β2 / (β2+ SE2 × N)), N denoted the
sample size of exposure, K denoted the number of IVs, β2 and SE2denoted
the genetic effect size and standard error from GWAS data of exposure. A
threshold of F > 10 is usually used to indicate strong IVs. In addition, we
estimated the statistical power of the IVs based on the sample size for each
MR test according to the method proposed by Burgess [71]. We calculated
the estimated effect size for each MR test with the 80% power at a
significance level of 0.05.

Two-sample MR models. The primary method used to estimate causality
was inverse variance weighted regression (IVW) [72]. To complement the
IVW results, we used five additional MR models. These included MR-robust
adjusted profile score (MR-RAPS) [73], weighted median [74], weighted

Fig. 1 Workflow of overall study design.
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mode [75], MR-Egger regression [76], and Wald ratio [77]. The Wald ratio is
particularly applicable when there is only one genetic variant in the
instrumental variable. To implement these methods, all of the above
approaches can be invoked using the corresponding functions available in
the TwoSampleMR R package (“mr_ivw”, “mr_raps”, “mr_weighted_me-
dian”, “mr_weighted_mode”, “mr_egger_regression”, and “mr_wald_ratio”
with default parameters).

Sensitivity analyses
The objective of these analyses was to address potential concerns, such as
outlier IVs, pleiotropy, and to assess the robustness of the causal
hypothesis under different scenarios. Leave-one-out (LOO) analysis was
used to ascertain the potential for an outlying IV. In the event that an
outlier was identified, it was removed, and the subsequent IVs selection
and MR tests were repeated accordingly. MR-PRESSO [78] (Mendelian
randomization pleiotropy residual sum and outlier) global test was used to
identify any horizontal pleiotropy in the MR test. We performed MR-Egger
regression to assess whether the Egger intercept was close to zero, which
would indicate the absence of potential pleiotropy [76].
Since the metabolites we analyzed for MR were genetically correlated

with cognitive function, this could bias the causal results. A latent causal
variable (LCV) model [79, 80] and causal analysis using summary effect
estimates (CAUSE) method [81] were constructed between each signifi-
cantly correlated causal pair to estimate partial genetic causality. The LCV
differs from other MR methods in that it does not offer a direct test for
causal effects. In contrast, LCV assesses the proportion of each trait that is
influenced by a shared factor, quantified as the posterior mean genetic
causality proportion (GCP), with |GCP | > 0.6 considered as strong evidence
of partial genetic causality. LCV model scripts are at https://github.com/
lukejoconnor/LCV. The CAUSE method is employed to calculate the
posterior probabilities of the causal effect, shared effect, and the
proportion of variants that show correlated horizontal pleiotropy, known
as the q value. The causal effect reflects how the variants influence the
outcome through the exposure, whereas the shared effect indicates the
presence of correlated horizontal pleiotropy. In the CAUSE method, we
set all the parameters at their default values (https://jean997.github.io/
cause/ldl_cad.html).
To address pleiotropy among metabolites, which poses a challenge for MR

selection, we examined other metabolites associated with their IVs for the
putative causal metabolites. We annotated the relevant genes of genetic
instruments using annovar software (http://www.openbioinformatics.org/
annovar/annovar_download.html) and expression quantitative trait loci (eQTL)
data from whole blood samples in GTExV8 (http://www.gtexportal.org). This
investigation aimed to identify IVs that are directly and unambiguously linked
to the metabolites through molecules such as transporters or metabolizing
enzyme. The MR effect size of each single SNP in the IVs was estimated using
the function (“mr_singlesnp”) in the TwoSampleMR R package.

Mediation analysis
The principle of mediation analysis is to calculate the product of two-step
MR coefficients [82]. The procedure is as follows:

i. Estimate the causal effect (βS1) of the exposure on the mediator.
ii. Estimate the causal effect (βS2) of the mediator on the outcome.
iii. Multiply these two estimates together to calculate the mediation

effect (βM ¼ βS1 ´ βS2), also known as the indirect effect.

The standard error for the mediation effect is calculated using the
following formula:

SEM ¼ jβS1 ´ βS2j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

SES1
βS1

� �2

þ SES2
βS2

� �2
s

where SES1, SES2, βS1, βS1 represent the standard errors and coefficients,
respectively. The P value is then calculated from the standard normal
distribution for a two-tailed test. The total effect refers to the effect of the
exposure on the outcome directly through the MR analysis. The mediated
proportion indicates the ratio of the indirect effect to the total effect. It is
important to note that both the indirect effect and the total effect should
be in the same direction. The MR Steiger test is employed to ascertain the
absence of an inverse relationship between exposure and outcome,
thereby ensuring the validity of the causal pathway hypothesis [82, 83].
This test employs the “directionality_test” function within the TwoSam-
pleMR R package.

Statistical analysis
In our genetic correlation analysis, we used a threshold of nominal p-
values < 0.05 for metabolic-cognitive and cognitive-psychiatric pairs to
assess potential causality. For specific MR analysis, we conducted
Bonferroni correction to adjust for multiple tests. Consequently, to
establish causal relationships between metabolites and the g-Factor, we
set a significant p-value threshold at 7.89 × 10−5 (0.05/317/2), where 317
represents the number of metabolites and 2 denotes forward and reverse
MR tests. To determine causal relationships between the g-Factor and
psychiatric disorders, the threshold was 2.50 × 10−3 (0.05/10/2), with 10
representing the number of psychiatric disorders and 2 indicating
bidirectional MR tests.
Upon analysis, we found causal relationships between two metabolites

and three diseases and g-Factor. For mediation analysis, we used a
significance threshold of 8.33 × 10−3 (0.05/2/3). In tests for pleiotropy, such
as MR-PRESSO, MR-Egger regression, CAUSE, LCV and additional MR
models, a p-value < 0.05 indicated moderate support. All statistical tests,
except for CAUSE, used two-tailed p-values; CAUSE used a one-tailed p-
value to test whether the sharing model fit the data.

RESULTS
Genetic correlations between g-Factor, blood metabolites and
psychiatric disorders
Before making any causal inferences, we used LD-score regression to
examine whether there was a potential common genetic basis
between g-Factor and 317 blood metabolites. We assessed their
genetic correlations and identified 18 metabolites that showed
nominal and weaker correlations with g-Factor (|rg |≤0.23, P< 0.05)
(Fig. 2A and Supplementary Table 3). Moreover, genetic correlation
analyses between g-Factor and 10 psychiatric disorders revealed that
seven of these disorders have potential genetic associations with
g-Factor (Fig. 2B). These included robust negative correlations with
schizophrenia (rg=−0.35, P= 7.30 × 10−70), PTSD (rg=−0.44,
P= 3.40 × 10−31), and bipolar disorder (rg=−0.22, P= 3.67 × 10−25).
MR analyses were then performed using these18 metabolites and
seven disorders.

Causal inferences between blood metabolites and g-Factor
In a bidirectional two-sample MR analysis, we defined the causal
effect of metabolite on g-Factor as a forward direction and vice
versa. The SNPs associated with confounders such as alcohol
consumption were excluded from the genetic instruments, as
detailed in Supplementary Table 4. For each of the MR tests with
F-statistic values exceeding 10, the minimum effect size with
sufficient statistical power exceeding 80% was calculated (Sup-
plementary Tables 5, 6).
In the forward MR results, two blood metabolites, acetylor-

nithine and butyrylcarnitine, were identified as statistically
significant putative causal factors for g-Factor (Fig. 3 and
Supplementary Table 7). A 1-standard deviation (SD) increase in
acetylornithine was found to be significantly associated with a
0.035 SD increase in g-Factor (β= 0.035, 95% CI 0.021 to 0.049,
P= 1.15 × 10−6), suggesting a protective effect of acetylornithine
on neurocognition. Conversely, a 1-SD increase in butyrylcarnitine
was significantly associated with a 0.028 SD decrease in g-Factor
(β=−0.028, 95% CI −0.041 to −0.015, P= 1.31 × 10−5), indicating
a detrimental effect of butyrylcarnitine on neurocognition. Scatter
plots illustrating the genetic associations between acetylornithine
and g-Factor, and butyrylcarnitine and g-Factor are presented in
Supplementary Fig. 1. In the reverse direction, the analysis did not
provide evidence to suggest that g-Factor has a causal effect on
any of the metabolites (Supplementary Table 8).
The sensitivity analyses demonstrated the reliability of these

two putative causalities. Estimates from MR-RAPS (acetylornithine
β= 0.035, 95% CI 0.020 to 0.049, P= 2.43 × 10−6; butyrylcarnitine
β=−0.028, 95% CI −0.044 to −0.014, P= 2.13 × 10−4), weighted
median (acetylornithine β= 0.031, 95% CI 0.017 to 0.046,
P= 2.88 × 10−5; butyrylcarnitine β=−0.030, 95% CI −0.045 to
−0.016, P= 4.40 × 10−5), and weighted mode (acetylornithine
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β= 0.031, 95% CI 0.013 to 0.049, P= 4.92 × 10−3; butyrylcarnitine
β=−0.030, 95% CI −0.046 to −0.014, P= 1.51 × 10−3) methods
were generally consistent with those of the IVW method in terms
of the effect size and direction (Fig. 3). Confidence intervals
obtained from MR-Egger were wider than those obtained from
IVW, probably due to the lower power of the MR-Egger. Leave-
one-out analyses showed that the estimates from IVW remained
similar after excluding each SNP from the instrumental variables,
suggesting that no single SNP drove the causal estimates
(Supplementary Fig. 2). MR-PRESSO (acetylornithine P= 0.558;
butyrylcarnitine P= 0.338) and MR-Egger intercept analyses
(acetylornithine P= 0.242; butyrylcarnitine P= 0.998) provided
no evidence of pleiotropy (Supplementary Table 9).
Given that the risk causal metabolites were genetically

correlated with g-Factor, this could potentially bias the causal
results. To address this, we conducted an LCV model, which
revealed that acetylornithine → g-Factor (GCP= 0.50) and
butyrylcarnitine → g-Factor (GCP= 0.62) exhibited a tendency
towards strong evidence of partial genetic causality (Supplemen-
tary Table 10). The CAUSE method did not reject the sharing

model for acetylornithine → g-Factor (ELPDSharing vs Causal=−2.2,
P= 0.098), estimating that 5% of acetylornithine variants act
through a shared factor (Supplementary Table 10). Additionally,
we found latent causal evidence supporting butyrylcarnitine →
g-Factor using the CAUSE method (ELPDSharing vs Causal=−4.1,
P= 0.035) (Supplementary Table 10).
In addition, we considered pleiotropy among metabolites,

which poses a challenge for MR selection. For butyrylcarnitine,
three IVs (rs1171617, rs662138, rs77010315) were associated with
17 other metabolites, including various carnitine derivatives, total
cholesterol, and low-density lipoprotein cholesterol (Supplemen-
tary Table 11). However, no associations were found between the
IVs of acetylornithine and any other metabolite. We identified the
relevant genes of genetic instruments through annotation of their
physical locations and eQTL signals in blood tissues (Supplemen-
tary Table 12), some of which genes are involved in functions such
as transporters and metabolizing enzymes. Next, we estimated the
MR effect size of each individual SNP in the IVs (Supplementary
Fig. 3). The results suggest that specific IVs may play crucial roles
in causal relationships. Specifically, rs17349049 is an important IV

Fig. 3 MR estimates between genetically predicted blood metabolites and g-Factor. The forest plot shows significant associations. The
effect estimates (β) indicate change in mean g-Factor per unit change in g-Factor, and the error bars indicate 95% confidence interval. All
statistical tests were two-sided. A P-value < 7.89 × 10−5 after Bonferroni correction was considered significant.

Fig. 2 The results of genetic correlation analyses. A Genetic correlations between g-Factor and metabolites. B Genetic correlations between
g-Factor and psychiatric disorders. Genetic correlation is estimated by LD score regression. The statistical tests were two-sided. P-value < 0.05
was considered significant. The asterisk represents that GWAS summary-level data contains samples from UK Biobank.
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for the acetylornithine → g-Factor relationship, but the MR
estimate remained unchanged after its removal (β= 0.059, 95% CI
0.022 to 0.096, P= 1.93 × 10−3). Additionally, rs71454652 and
rs1151874 appeared to be crucial for the butyrylcarnitine →
g-Factor relationship; their removing resulted in a non-significant
MR estimate (β=−0.018, 95% CI −0.041 to 0.005, P= 0.125).
These SNPs are located within genes involved in biological
functions such as microtubule organization, ribonuclease activity,
and calcium-mediated cellular signal transduction.

Causal inferences between g-Factor and psychiatric disorders
Furthermore, we conducted bidirectional two-sample MR analyses
between the g-Factor and the seven psychiatric disorders
previously identified. We have defined the MR analysis from
g-Factor to disorder in a forward direction and vice versa as a
reverse inference. Detailed information on confounding SNPs,
F-statistic values and statistical power of each MR test, can be
found in Supplementary Tables 4, 13 and 14.
With regard to the forward MR results, three putative causal

relationships were identified between g-Factor and schizophrenia
(IVW OR= 0.38, 95% CI 0.30 to 0.48, P= 1.72 × 10−15), PTSD (IVW
OR= 0.38, 95% CI 0.25 to 0.57, P= 3.38 × 10−6), and bipolar
disorder (IVW OR= 0.51, 95% CI 0.41 to 0.64, P= 3.80 × 10−9)
(Table 1). Specifically, a 1-SD increase in the g-Factor was
associated with a 62% lower risk of schizophrenia, a 62% lower
risk of PTSD, and a 49% lower risk of bipolar disorder. In the
reverse MR analyses, a higher risk of schizophrenia was associated
with a decreased g-Factor (IVW β=−0.062, 95% CI −0.071 to
−0.052, P= 3.78 × 10−38) (Table 1).
A series of sensitivity analyses were conducted, including MR-

RAPS, weighted median, weighted mode, and MR-Egger methods.
These yielded patterns of similar estimates in size, although the
confidence intervals were wider than those of the IVW (Table 1).
The scatter plots (Supplementary Fig. 4) and leave-one-out plots
(Supplementary Fig. 5) provided further evidence of unbiased
estimates. The MR-PRESSO and MR-Egger intercept analyses were
conducted to examine the presence of pleiotropy, but no
evidence of pleiotropy was detected (Supplementary Table 15).

Mediation analysis between metabolites, g-Factor and
psychiatric disorders
Metabolites like acetylornithine and butyrylcarnitine, as well as
psychiatric disorders such as schizophrenia, PTSD and bipolar
disorder, have been found to be genetically related to g-Factor in
the study. The next step involves examining whether the
relationship between these metabolites and disorders is mediated
through g-Factor. Mediation analyses were conducted to investi-
gate potential pathways linking the identified metabolites to the
g-Factor, and psychiatric disorders.
MR analyses provided moderate support for the causal

relationships between acetylornithine and bipolar disorder, as
well as between butyrylcarnitine and schizophrenia using the IVW
method (Supplementary Fig. 6). Specifically, a 1-SD increment in
acetylornithine was associated with a 6% lower odds of bipolar
disorder risk (IVW OR= 0.94, 95% CI 0.90 to 0.98, P= 8.09 × 10−3),
while a 1-SD increase in the butyrylcarnitine was associated with a
9% higher odds of schizophrenia risk (IVW OR= 1.09, 95% CI 1.04
to 1.14, P= 2.05 × 10−4). The effect estimates showed consistent
direction and magnitude across the MR-RAPS, weighted median,
and weighted mode methods. Notably, when the weighted
median method was used instead of the IVW method, the results
indicated a positive association between acetylornithine levels
and schizophrenia risk (OR= 0.94, 95% CI 0.90 to 0.98,
P= 5.09 × 10−3) (Supplementary Fig. 6).
Our results are consistent with those of a previous MR study

[84], which also reported negative associations between N-
acetylornithine and bipolar disorder (IVW OR= 0.72, 95% CI 0.66
to 0.79, P= 1.08 × 10−13) as well as schizophrenia (IVW OR= 0.74,

95% CI 0.64 to 0.84, P= 5.14 × 10−6), and a positive association
between butyrylcarnitine and schizophrenia (IVW OR= 1.22, 95%
CI 1.12 to 1.32, P= 1.10 × 10−6). The confidence intervals of our
MR estimates differed from theirs, which may be due to the use of
different GWAS data and more stringent criteria for IVs selection.
To ensure the reliability of the estimates, sensitivity analyses were
conducted, including scatter plots (Supplementary Fig. 7), leave-
one-out plots (Supplementary Fig. 8), MR-PRESSO (Supplementary
Table 16), and MR-Egger intercept (Supplementary Table 16).
These results revealed that the estimates were free from bias. A
summary of the IVs for acetylornithine and butyrylcarnitine in
relation to schizophrenia, PTSD, and bipolar disorder is presented
in Supplementary Table 17.
Furthermore, mediation analysis was conducted to investigate

the causal pathways from acetylornithine to bipolar disorder and
from butyrylcarnitine to schizophrenia via the g-Factor. Two
potential regulatory networks were identified (Fig. 4): a pathway
from acetylornithine on bipolar disorder, mediated by g-Factor
with a mediated effect of −0.023 (95% CI −0.036 to −0.011,
P= 1.76 × 10−4) and accounting for a mediated proportion of
37.3% (Fig. 4A); and a pathway from butyrylcarnitine to schizo-
phrenia, also mediated by the g-Factor with a mediation effect of
0.027 (95% CI 0.013 to 0.042, P= 1.32 × 10−4), representing
approximately 32.8% of the total effect (Fig. 4B). The Steiger test
[82, 83] was performed to confirm the absence of evidence for
reverse causality from acetylornithine or butyrylcarnitine to
bipolar disorder, schizophrenia, and g-Factor (Supplementary
Table 18).
Additionally, considering the reverse causal direction from

schizophrenia to the g-Factor, we found support for the causal
pathway from butyrylcarnitine to the g-Factor via schizophrenia
(Supplementary Fig. 9). The mediation effect of butyrylcarnitine on
the g-Factor, estimated at −0.005 (95% CI −0.008 to −0.002,
P= 3.60 × 10−4), accounted for approximately 18.4% of the total
effect. This suggests that butyrylcarnitine may serve as a
promising risk factor, either directly or indirectly, influencing both
schizophrenia and g-Factor. Specifically, it implies that during the
early stages of schizophrenia, butyrylcarnitine affects schizophre-
nia through cognitive modulation. However, as schizophrenia
progresses, butyrylcarnitine exacerbates its effects on
neurocognition.

Validating the causal pathways by other relevant
neurocognitive traits
To validate the causal pathways, we examined the findings using
summary statistics from other sources of neurocognitive data
(Supplementary Table 2). The results showed that the causal
pathway from acetylornithine to bipolar disorder was mediated
through three neurocognitive traits (cognitive performance,
general cognitive function, and verbal numerical reasoning) with
varying mediated proportions (5.9%, 7.9% and 21.1%, respectively)
(Supplementary Table 19). Similarly, the causal pathway from
butyrylcarnitine to schizophrenia was found to be mediated
through four neurocognitive traits (intelligence, cognitive func-
tion, general cognitive function, and verbal numerical reasoning)
with varying mediated proportions (7.9%, 6.9%, 13.7% and 11.0%,
respectively) (Supplementary Table 19). The MR Steiger test did
not provide evidence of reverse causality from these two
metabolites on neurocognitive traits (Supplementary Table 20).

DISCUSSION
In this study, we aimed to investigate the relationships between
blood metabolites and neurocognitive traits by using genetic
variants as unconfounded proxies. Given the observed genetic
associations between neurocognitive traits and psychiatric dis-
orders, we conducted mediation analyses to uncover the causal
pathways from blood metabolites to these disorders through
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cognition. Our findings suggested that acetylornithine has a
protective effect on the g-Factor, a measure of general cognitive
ability. We observed that the g-Factor partially mediates the
association between acetylornithine and bipolar disorder. Simi-
larly, we identified a deleterious causal effect of butyrylcarnitine
on the g-Factor, with the g-Factor acting as a partial mediator in
the association between butyrylcarnitine and schizophrenia. These
results were robust across a variety of sensitivity analyses
designed to address potential horizontal pleiotropy. To further
validate the reliability of our findings, we corroborated them with
cognitive phenotypes derived from independent sources, which
consistently supported our conclusions.
Acetylornithine, a member of the class of biogenic amines, is an

intermediate product in the biosynthesis of arginine from
glutamate. The acetylornithine pathway may facilitate the
polyamine-mediated stress response, which regulates intracellular
polyamine homeostasis and metabolic processes in organisms [85,
86]. The cognitive protective effect of acetylornithine is supported
by evidence. Prior study has shown that individuals with
Alzheimer’s disease exhibit higher serum acetylornithine levels
compared to those with mild cognitive impairment [87].
Acetylornithine has also been demonstrated to exhibit high
stability over a 10-year period, as evidenced by a study assessing
metabolite stability in humans [88]. It can be obtained through
dietary sources such as fruits and legumes [89–92], making it a
potential target for healthcare interventions. This allows for the
provision of appropriate dietary advice to patients.
Conversely, butyrylcarnitine, a plasma metabolite belonging to

the acylcarnitine class, has been associated with detrimental
effects on neurocognition. Abnormalities in acylcarnitine metabo-
lism have been linked to impaired fatty acid oxidation and
mitochondrial dysfunction, which can affect the brain’s energy
supply [93, 94]. Elevated plasma concentrations of butyrylcarnitine
have been observed in individuals with developmental and
cognitive impairment [95]. A study has suggested that individuals
with schizophrenia exhibit elevated levels of butyrylcarnitine
when compared to healthy individuals [96]. Elevated butyrylcarni-
tine level have been demonstrated to regulate accelerated
neuronal differentiation in aged subjects [97]. Butyric acid, a
precursor to butyrylcarnitine, is derived primarily from microbial
fermentation of dietary fiber in the intestine [98]. Consequently,
butyrylcarnitine is intimately linked with dietary intake and can
facilitate the transfer of metabolites from food to the brain via the
circulatory system.
It has been shown that there is a significant genetic overlap

between cognitive traits and psychiatric disorders [99–101]. For
instance, while the majority of schizophrenia risk variants are
associated with poorer cognitive performance, bipolar disorder
risk variants are associated with either poorer or better cognitive
performance [102]. Moreover, gene set enrichment analyses
revealed shared loci for biological processes related to neural
development, synaptic integrity, and neurotransmission between
schizophrenia and intelligence [103]. Therefore, the relationship
between psychiatric disorders and neurocognition is complex and
multifaceted. The findings of this study suggest that butyrylcarni-
tine may increase the risk of schizophrenia by impairing
neurocognitive function. This impairment may, in turn, exacerbate
neurocognitive impairment and contribute to the onset of
schizophrenia. Clinical studies have consistently shown that
neurocognitive deficits precede the onset of schizophrenia [3]
and persist even after the onset of the disorder [4]. Recent MR
studies have also supported our findings, indicating bidirectional
genetic associations between schizophrenia and neurocognition
[43, 104], as well as associations of the metabolites acetylornithine
and butyrylcarnitine with schizophrenia and bipolar disorder
[84, 105]. Nevertheless, no study to date has investigated the
interrelationship between metabolites, cognition, and psychiatric
disorders.Ta
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The studies of plasma pharmacometabolomics have revealed
that the concentration of acetylornithine undergoes significant
alterations following the administration of psychiatric or neurode-
generative drugs [106, 107]. To date, no studies have been
conducted to elucidate the functional role of acetylornithine in the
central nervous system. Acetylornithine generates the metabolites
ornithine and citrulline via deacetylase and carbamoyltransferase,
which ultimately participate in the metabolic pathway of arginine
synthesis. Arginine is also known to influence nitric oxide synthesis
in the brain, as well as vasodilatation, neuronal conduction, and
brain cell protection [108–110]. These effects have been suggested
to impact brain cognitive function and psychiatric symptoms. Since
the pathway of acetylornithine to arginine synthesis is not
unidirectional, our findings may imply that acetylornithine may
also play an important role in brain cognition and its associated
psychiatric symptoms. A deficiency of short-chain acyl-CoA
dehydrogenase, resulting from variations in genes encoding ACAD
family members, may be responsible for the elevation of
butyrylcarnitine in the blood [111]. Butyrylcarnitine belongs to
the acylcarnitine family, which is involved in fatty acid metabolism,
particularly mitochondrial fatty acid beta-oxidation [112]. Such

abnormalities may be indicative of mitochondrial dysfunction,
which affects the energy supply to the brain and consequently
triggers disorders in brain function [113]. Impaired fatty acid and
glucose oxidation due to mitochondrial dysfunction is strongly
associated with cognitive dysfunction and the development of
psychiatric disorders [114, 115]. At present, there is a paucity of
mechanistic studies on butyrylcarnitine, whereas there is consider-
able evidence supporting the neuroprotective effects of acetylcar-
nitine on cognitive impairment [116].
Our findings highlight the impact of blood metabolism levels on

cognitive performance, particularly in relation to the risk of mental
illness. However, it is essential to acknowledge several limitations
in the study. Firstly, while we ensured the independence of IVs in
terms of physical location, we cannot exclude the possibility of
bio-functional interactions among genetic instruments. Secondly,
the GWAS data used for the majority of metabolites were
summary-level statistics derived from various meta-analyses,
which may potentially introduce implications pertaining to
population stratification. Thirdly, it should be noted that environ-
mental and social factors, including assortative mating, lifestyle,
and economic status, can introduce biases in MR estimates

Fig. 4 Mediation estimates between metabolites, g-Factor and psychiatric disorders. A Pathway from acetylornithine to bipolar disorder
via the mediator of g-Factor. B Pathway from butyrylcarnitine to schizopherenia via the mediator of g-Factor. The indirect effect was calculated
by mediation analysis via two-step MR framework. Inverse-variance weighted method was used as the MR test. All statistical tests were two-
sided from normal distribution. A P-value < 8.33 × 10−3 was considered significant after correction. Abbreviation: g-Factor, general cognitive
factor score; CI, confidence intervals. 1Total effect S0 indicates the causal effect of the exposure on the outcome. 2 Direct effect S1
indicates the causal effect of the exposure on the mediator. 3 Direct effect S2 indicates the causal effect of the mediator on the outcome.
4Mediation effect indicates the indirect effect of exposure on outcome through the mediator. Indirect effect and total effect should be in the
consistent direction. 5Mediated proportion indicates the ratio of indirect effect to the total effect of the exposure on the outcome. 6Direct
effect S3 indicates the total effect minus the indirect effect of the exposure on the outcome.
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[117, 118]. Fourthly, caution should be exercised in applying MR
estimates to clinical interventions and health care decisions
because MR primarily examines the long-term effects of lifetime
exposures rather than short-term interventions [119]. Lastly, the
use of a binary outcome in the mediation approach is a potential
source of bias [82]. Since both schizophrenia and bipolar disorder
are relatively rate (< 10%) [120], this is likely to be less of an issue,
as the odds ratio will approximate the risk ratio somewhat
sufficiently. If the outcome is common, then the product method
used in the study is invalid for the direct and indirect effects. One
way to address this issue is to estimate the direct and indirect
effects using log-binomial models [82].

CONCLUSIONS
In conclusion, this study used large-scale GWAS data, MR, and
mediation analysis to uncover causal pathways between blood
metabolites, neurocognitive traits, and psychiatric disorders. The
results suggested a protective role of acetylornithine and a
detrimental role of butyrylcarnitine on neurocognition, linking
acetylornithine to bipolar disorder and butyrylcarnitine to schizo-
phrenia. These findings offer insights into the pathophysiology of
these disorders and highlight potential metabolic targets for
prevention and treatment. Further research is needed to explore
these metabolic factors in schizophrenia and bipolar disorder.

DATA AVAILABILITY
All GWAS summary statistics used in our study are publicly available online. Detailed
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Briefly, summary-level data for metabolites GWAS were obtained from the following
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muenchen.de/gwas, https://gwas.mrcieu.ac.uk, and NCBI dbGaP (phs001672.v4.p1). The
g-Factor GWAS summary data were downloaded from https://datashare.ed.ac.uk/handle/
10283/3756, and other cognitive traits were sourced from http://www.thessgac.org,
https://ctg.cncr.nl, and http://www.psy.ed.ac.uk/ccace/downloads/. Data for nine psychia-
tric disorders were downloaded from https://pgc.unc.edu/for-researchers/download-
results/, with PTSD data available from NCBI dbGaP (phs001672.v1.p1).
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