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Abstract

Vasopressin neurons, responding to input generated by osmotic pressure, use an intrinsic mechanism to shift from slow
irregular firing to a distinct phasic pattern, consisting of long bursts and silences lasting tens of seconds. With increased
input, bursts lengthen, eventually shifting to continuous firing. The phasic activity remains asynchronous across the cells
and is not reflected in the population output signal. Here we have used a computational vasopressin neuron model to
investigate the functional significance of the phasic firing pattern. We generated a concise model of the synaptic input
driven spike firing mechanism that gives a close quantitative match to vasopressin neuron spike activity recorded in vivo,
tested against endogenous activity and experimental interventions. The integrate-and-fire based model provides a simple
physiological explanation of the phasic firing mechanism involving an activity-dependent slow depolarising afterpotential
(DAP) generated by a calcium-inactivated potassium leak current. This is modulated by the slower, opposing, action of
activity-dependent dendritic dynorphin release, which inactivates the DAP, the opposing effects generating successive
periods of bursting and silence. Model cells are not spontaneously active, but fire when perturbed by random perturbations
mimicking synaptic input. We constructed one population of such phasic neurons, and another population of similar cells
but which lacked the ability to fire phasically. We then studied how these two populations differed in the way that they
encoded changes in afferent inputs. By comparison with the non-phasic population, the phasic population responds linearly
to increases in tonic synaptic input. Non-phasic cells respond to transient elevations in synaptic input in a way that strongly
depends on background activity levels, phasic cells in a way that is independent of background levels, and show a similar
strong linearization of the response. These findings show large differences in information coding between the populations,
and apparent functional advantages of asynchronous phasic firing.
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Introduction

Magnocellular vasopressin neurons produce and secrete the

antidiuretic hormone vasopressin in response to increases in the

osmotic pressure of extracellular fluid [1]. They form a key part of

the highly robust homeostatic system which maintains osmotic

pressure within narrow bounds. Each of the neurons indepen-

dently encodes and responds to an input signal, but they must also

coordinate as a population, making the vasopressin neurons a

prime example of a distributed control system [2].

The vasopressin cell bodies, located in the supraoptic and

paraventricular nuclei of the hypothalamus, project axons to the

posterior pituitary gland, and receive synaptic input from

osmosensitive neurons located near the third ventricle, as well as

responding through depolarising currents generated by the

vasopressin neurons’ own osmosensitive ion channels [2–4]. The

generated action potentials (spikes) propagate down the axons to

trigger hormone secretion from the axonal terminals into the

blood. When osmotic pressure rises, the secreted vasopressin acts

at the kidneys to reduce the amount of water lost in urine.

After chronic water deprivation, many vasopressin neurons

respond to the increased osmotic input by shifting from slow

irregular firing into a distinctive phasic pattern, consisting of long

bursts and silences lasting tens of seconds. As input increases the

bursts lengthen, eventually shifting to fast continuous firing [3,4].

Unlike the rhythmic activity observed in many other neural

systems, phasic firing is generated by an intrinsic mechanism,

rather than by network activity [5]. The vasopressin neurons have

no synaptic interconnections, and they fire asynchronously;

accordingly, the hormone output reflects a smooth population

signal rather than the fluctuating activity at individual cells.

Activity-dependent secretion is characterised by a combination of

frequency facilitation, whereby disproportionately more vasopressin is

secreted at higher frequencies of stimulation, and fatigue, whereby

peak secretion rates can only be sustained transiently. As a result,

phasic firing patterns are optimally efficient [6,7], in the sense of

maintaining a given level of secretion with the fewest spikes.

However, phasic firing is efficient only because the properties of

the neurosecretory terminals make it so, and those properties are

not universal – in particular the properties of oxytocin terminals in

the posterior pituitary gland are different from those of vasopressin

terminals, and seem to be adapted to the different firing properties

of oxytocin neurons. Both cells’ secretion mechanisms are subject

to facilitation, and oxytocin cells can also show an enhanced

response to phasic firing compared to a continuous pattern [8].

However, the phasic pattern is not optimal as it is for vasopressin
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cells. The oxytocin cells have a much greater facilitation frequency

range, and are not subject to short timescale (10s of seconds)

fatigue [9].

It seems that the secretion mechanism is as much adapted to the

spike patterning as vice versa, thus while phasic firing is efficient

for secreting vasopressin, we must look deeper to fully understand

why these neurons fire phasically. To address this, we need a

model that can accurately reproduce the range of firing response

observed in vivo, which we can then systematically interrogate to

understand how phasic firing affects the signal processing

properties of the neurons. This requires a model which includes

the essential elements of the neuronal firing mechanism, but which

is still simple enough to manipulate and be well understood.

The core of the phasic firing mechanism is a slow depolarising

after potential (DAP), acting on a timescale of several seconds.

This activity-dependent current increases neuronal excitability,

generating a positive feedback effect. When a vasopressin cell is in

a silent phase, a few random close spikes will generate the

beginnings of a depolarised ‘plateau potential’ that can self-sustain,

resulting in a prolonged burst of spikes. However, during this

burst, firing also triggers the dendritic release of the opioid peptide

dynorphin [10], which acts back on the cell of origin in an

autocrine manner to progressively attenuate the DAP [11]. The

cumulative effect of activity-dependent dynorphin secretion

eventually causes the plateau to fail, and the cell begins a new

silent phase [5].

There are two current theories for the slow DAP. Li and Hatton

[12] suggest that it is caused by the removal of a hyperpolarising

K+ leak current, whereas Bourque et al [13,14] suggest that a

depolarising non-specific cation current is responsible. Using a

Hodgkin-Huxley based model fitted to in vitro data, Roper et al

[15,16] argue that the generation of both a plateau, and a silent

period, is more easily explained by the K+ leak based mechanism.

The Roper model uses only one compartment, but includes a

dynorphin mechanism, and was the first published model to

demonstrate bursting. However, the Roper model is based on data

recorded in vitro. Vasopressin cells recorded in vitro are largely

denuded of afferent input, and accordingly have a high input

resistance; this directly impacts upon membrane time constants,

and all activity-dependent potentials are amplified [17]. In

particular, the DAP following single spikes in vitro is so large that

it can produce regenerative spiking, while perturbations produced

by synaptic input are relatively sparse. For vasopressin cells in vitro,

bursts comprise spikes that occur at a relatively constant inter-

spike interval, giving a symmetrical distribution of intervals with a

modal value that is the inverse of the mean intraburst firing rate.

This distribution implies regenerative spiking. By contrast, in vivo,

bursts in vasopressin cells comprise inter-spike intervals that have a

very skewed distribution, with a mode that is disproportionately

short for the mean firing rate – and which is largely independent of

the mean firing rate. At the same time, the distributions have a

very long tail, and this tail can be fit by a single negative

exponential. From these features it can be deduced that, in vivo,

neuronal excitability after a spike follows a sequence of hypoexcit-

ability – consistent with an HAP, followed by hyperexcitability,

consistent with a subthreshold DAP peaking at ,40 ms. However,

most spikes occur at longer intervals, and the negative exponential

distribution suggests that their arrival is the result of a Poisson

process – and is random in being independent of prior activity.

Thus in vivo, spiking is not regenerative, and spike patterning is

dominated by the stochastic effects of synaptic input [18]; these

effects not only increase variation and noise in the output but can

also change the qualitative behaviour [19]. In phasic cells in

particular, small variations in firing activity can trigger the starting

and stopping of bursts [20,21].

Nadeau et al. [22] extended the Roper model by adding synaptic

input and a simulation of direct osmosensitivity. In this model,

synaptic noise produces some variability in spike timing, but the

burst mechanism remains essentially regenerative: bursts, once

triggered, can be sustained in the absence of synaptic input, and

firing within bursts has the extreme regularity typical of in vitro data

but very different to in vivo data. Thus intraburst frequency is

largely unaffected by EPSP or IPSP rates, except at high

frequencies of synaptic input, which give reasonable matches to

ISI distributions observed in vivo but produce continuous, rather

than phasic, firing.

Clayton et al. [23] took a different approach; they use an

integrate-and-fire model and ask what is the simplest model that

can fit in vivo spike data to a point whereby data from a model cell

cannot be distinguished statistically from data from a target

vasopressin cell? In this model, the combination of a slow DAP

and the opposing action of dynorphin is represented by an explicit

bistable mechanism which drives phasic firing. Using automated

parameter fitting, this model produces extremely close fits to in vivo

spike patterns, and can be fitted well to cells firing phasically, or

firing continuously. However, we observed that, when a model cell

with parameters that fit a phasically firing cell is challenged with

increasing input, it fails to shift to continuous firing. Thus the

Clayton model’s explicit bistable mechanism captures the neuron’s

behaviour concisely, but within only a limited range. This suggests

that some of the fitted parameters, particularly those accounting

for bistability, are activity-or input dependent, and rather than

being parameters, need to be incorporated into the model’s

dynamics.

Here we simulate vasopressin neurons in a model that displays

emergent bistable behaviour, combining the best elements of

previous models. The model gives a more complete match to

vasopressin neuronal firing activity, while being simpler and more

directly related to the physiology. We then use this model to

explore how vasopressin cell activity encodes afferent signals, by

comparing a population of phasically firing model neurons with an

otherwise identical non-phasic population. We show that bist-

ability and phasic firing gives neurons acting as a population

several important signal processing properties that non-phasic

neurons lack. They can produce a strongly linear response to both

Author Summary

Vasopressin is a hormone secreted from specialised brain
cells into the bloodstream, acting at the kidneys to control
water excretion, and thereby help regulate osmotic
pressure. This is a cell membrane property determined
by the ratio between body salt and water, and its
maintenance is essential to the function of all our cells
and organs, which depend on a stable fluid volume and
extracellular salt concentration. Specialised cells in the
brain sense osmotic pressure and generate electrical
signals, which the thousands of vasopressin neurons
process and respond to by producing and secreting
vasopressin. The individual vasopressin cells generate an
interesting phasic pattern of electrical activity in response
to rises in osmotic pressure – they fire in long bursts,
separated by long silences. In our project we’re using
modelling to simulate this phasic pattern of electrical
activity and how it relates to the input signals, trying to
understand exactly why vasopressin cells generate this
kind of pattern and exactly what advantages it offers to
signal processing and the control of vasopressin secretion.

Vasopressin Phasic Firing: Model and Function
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a constant and transient input signal, and they produce a

consistent response to transient signals, independent of back-

ground activity. These are important properties that have been

identified in the vasopressin response in vivo [1], and may also

apply more generally to neural signal processing.

Methods

The model
The model takes as its base the oxytocin cell model of [19,24].

This is a leaky integrate-and-fire (IGF) model driven by Poisson

random decaying input perturbations simulating synaptic input. A

fast large hyperpolarising afterpotential (HAP) and a slow small

after-hyperpolarising potential (AHP), are simulated as exponen-

tially decaying variables, incremented (using a negative value for

hyperpolarisation) when a spike is fired. These are summed with a

fixed resting potential and the synaptic input to give the

membrane voltage. When this crosses the spike threshold a spike

is recorded, followed by an absolute refractory period of 3 ms.

This gives a close match to the in vivo spike patterning in oxytocin

neurons, and by adding a simple fast DAP, using the same

decaying exponential form, a similar model can closely match the

intraburst activity of vasopressin neurons.

These representations of post-spike potentials were developed to

match the spike-dependent changes in excitability deduced from the

interspike interval (ISI) distributions and hazard functions of

oxytocin and vasopressin cells recorded in vivo, based on the

decaying post-spike depolarisation and hyperpolarisations observed

in in vitro intracellular recordings. They are comparable to the forms

used in Roper’s Hodgkin-Huxley based model [15,16], which

represents the HAP, AHP, and DAP as separate compartments of

intracellular [Ca2+], ([Ca2+]i) driving Ca2+ sensitive currents. The

varied decay time courses used in the IGF model are similar to the

corresponding compartmental [Ca2+] half-lives.

We explored whether adding a second, slower, simple DAP could

generate quantitatively realistic burst firing in the IGF model. A

sustained plateau could be achieved if the DAP half life was .2 s, and

combined with saturation to limit the DAP magnitude. Given the

ability to sustain a plateau, an activity-dependent mechanism is

required to terminate the bursts. Physiologically, this involves spike-

dependent release of dynorphin which inhibits the DAP. Using a slow

spike-dependent exponentially decaying variable to inhibit the DAP,

combined with a hyperpolarised resting potential (275 mV), we

could produce bursts, but could not achieve sharp bistable switches in

activity, and could not produce in vivo comparable silent periods, only

periods of slower activity. The Roper model [15,16] uses a different

DAP mechanism to solve these problems; the burst plateau is

generated by fully suppressing a hyperpolarising K+ leak current that

is partially active at resting potential, and silences are periods where

the K+ leak current is fully active, suppressing firing. This single

mechanism can generate both activity dependent depolarisation and

hyperpolarisation. Its model form, fitted to in vitro data, includes

saturation and a simple relation between competing spike-triggered

increases in [Ca2+]i and dynorphin, allowing dynorphin accumula-

tion to eventually switch off a burst and generate a prolonged silence.

This mechanism was simplified and integrated into the IGF model to

produce the design illustrated in Figure 1.

Model equations
Twin Poisson random processes generate excitatory and

inhibitory post-synaptic potential (EPSP and IPSP) counts en and

in at each 1-ms time step, using mean rates Ire and Iri; the IPSP

frequency Iri is defined as a proportion of Ire given by Iratio. All of

the results here use Iratio = 1 so that input rate is controlled by

Figure 1. The vasopressin spike firing model. Schematic illustrating the structure of the integrate-and-fire based single neuron spiking model.
Input is a Poisson random timed mix of excitatory and inhibitory pulses, simulating PSPs. These are summed to generate a membrane potential
which is also modulated by a set of spike triggered Ca2+ based potentials. The HAP, fast DAP and AHP are based on simple decaying exponentials,
similar to a previous oxytocin cell model [19,24]. The K+ leak current based slow DAP which generates bursting is based on the mechanism of the
Hodgkin-Huxley type model of [16]. Spikes are generated when the membrane potential crosses a threshold value.
doi:10.1371/journal.pcbi.1002740.g001

Vasopressin Phasic Firing: Model and Function
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using just Ire. The input potentials have fixed amplitudes

eh = 2 mV and ih = 22 mV and are summed to give the input:

I~ehenzihin ð1Þ

This is summed with the synaptic component of the membrane

potential, Vsyn, decaying exponentially with half life lsyn:

dVsyn

dt
~{

Vsyn

tsyn

zI ð2Þ

Time constants are calculated from half-life parameters by:

tx~
lx

ln (2)

where x is the variable concerned.

Variables for the HAP, AHP and the fast DAP decay

exponentially, controlled by half-life parameters, lHAP, lAHP,

and lDAP, and are incremented by kHAP, kAHP, and kDAP when a

spike is fired. The AHP also depends on [Ca2+]i, so that only fast

spiking substantially activates the AHP.

dHAP

dt
~{

HAP

tHAP

zkHAPs ð3Þ

dAHP

dt
~{

AHP

tAHP

zkAHPs C{CAHPð Þ 0 if CvCAHPð Þ ð4Þ

dDAP

dt
~{

DAP

tDAP

zkDAPs ð5Þ

where s = 1 if a spike is fired at time t, and s = 0 otherwise.

Variables for [Ca2+]i, C and dynorphin, D, use similar forms:

dC

dt
~{

C{Crest

tC

zkCs ð6Þ

dD

dt
~{

D

tD

zkDs ð7Þ

The slow DAP (L) uses a simplified version of the DAP

conductance equations in the Roper model [14,15], defined as

two components:

Lact~ tanh
C{Crest{D

kL

� �
ð8Þ

where kL is a scaling parameter. The function tanh, previously

used in the fit to in vitro data [15], ensures that the activation of L is

sigmoidal, with half maximal activation at 0. This is used to inhibit

the K+ leak potential, VL, scaled by conductance parameter gL:

VL~gL 1{Lactð Þ ð9Þ

Finally, these components are summed with the resting potential,

Vrest, to give the membrane potential V:

V~VrestzVsyn{HAP{AHPzDAP{VL ð10Þ

When V exceeds the spike threshold, Vthresh, a spike is fired, though

its form is not modelled.

The parameter values for the figures in this paper are given in

tables 1 and 2.

We also tested a more complex model of dynorphin dynamics

where release depends on the availability of dynorphin for activity-

dependent release, which in turn depends on a slow activity-

dependent mechanism, T, possibly representing vesicle transloca-

tion from some reserve pool to the releasable pool close to the

membrane, similar to the mechanism suggested for vesicles at the

terminal release sites [25]:

dT

dt
~{

T

tT

zkT s ð11Þ

The releasable store (Dstore) accumulates at a rate determined by

T, and is capped at parameter Dstorecap (Dstore increases only if

Dstore,Dstorecap). Dynorphin release (and store depletion) per spike

is independent of the store, unless Dstore is too low for one unit of

release, defined by parameter Dspike:

dDstore

dt
~{

Dstore

tDstore

zkDstore T{Dspiker ð12Þ

dD

dt
~{

D

tD

zkDr ð13Þ

where r = 1 if s = 1 and Dstore.Dspike, and r = 0 otherwise. This is

incorporated into the model by replacing eqn.7 with eqn.13.

Table 1. Single neuron model parameters fitted to cell v1
(a.u., arbitrary units).

Name Description Value Units

Ire excitatory input rate 600 Hz

Iratio inhibitory input ratio 1 -

eh EPSP amplitude 2 mV

ih IPSP amplitude 22 mV

lsyn PSP half life 7.5 ms

kHAP HAP amplitude per spike 60 mV

lHAP HAP half life 8 ms

kDAP fast DAP amplitude per spike 0 mV

lDAP fast DAP half life 150 ms

kAHP AHP activation factor 0.00012 mV/nM

lAHP AHP half life 10000 ms

CAHP minimum [Ca]i to activate AHP 200 nM

Crest rest [Ca]i 113 nM

kC [Ca]i increase per spike 10 nM

lC [Ca]i half life 2500 ms

kD dynorphin activation per spike 1.68 a.u.

lD dynorphin half life 10000 ms

kL K+ leak calcium sensitivity 36 nM

gL K+ leak maximum voltage 8.5 mV

Vrest resting potential 256 mV

Vthresh spike threshold potential 250 mV

doi:10.1371/journal.pcbi.1002740.t001
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Simulating osmotic input
To simulate the effect of an acute systemic intraperitoneal

injection of hypertonic saline, which has a delayed effect on

osmotic pressure as the hypertonic saline enters the blood [26], we

added an osmotic pressure variable O which shifts towards

parameter Oinject with time constant tO:

dO

dt
~

Oinject{O

tO

ð14Þ

where initially Oinject = O. Injection is simulated by changing Oinject

at a specified time. Synaptic input is then generated assuming a

simple linear relation:

Ire~20(O{280) Ow280ð Þ ð15Þ

which with Iratio = 1, gives a parallel increase in excitatory and

inhibitory synaptic input with increased osmotic pressure. The

values 20 and 280 scale Ire so that the physiological 1–8spikes/s

range corresponds to osmotic pressures of ,290–320 mOsmol/l.

Spike pattern analysis
The data from the model and from experimental recordings

consist of series of ISIs. These are used to calculate mean firing

rates and to generate ISI histograms and hazard plots, as described

in [18]. A burst detection algorithm is used to detect and measure

bursts, with a burst defined as a train of .25 spikes with no

interval .1500 ms. Burst measures include spike count, burst

duration, silence duration, and intra-burst firing rate. The in vivo

spike data for model fitting are from extracellular recordings of

magnocellular vasopressin neurons, recorded from the supraoptic

nucleus in urethane-anaesthetised rats. The method is detailed in

Sabatier et al. [18].

Pulse response
To test the model neuron response to transient changes in input

we used a fixed synaptic input rate (Ire) as a background and added

four identical 1-s duration changes to this rate at intervals of 100 s.

We measured the response as the mean firing rate over the four 1-s

pulses.

Simulating cell heterogeneity
To simulate in vivo data gathered from multiple cells with varied

spiking patterns, we took a set of parameters based on an existing

fit of the model, and added random variation to the parameter

subset which we vary to fit recorded cells (see Results below). Each

varied parameter was defined by a fixed mean and standard

deviation, using these to generate normally distributed random

values.

Results

Analysis of in vivo phasic firing activity
To match the firing activity of a cell with a model in a

quantitatively robust way, we need to define the features of that

activity in a way that we can statistically compare recorded and

model generated data. Spike activity comprises the overall firing

pattern, shown by spike rate as measured in bins of varying width;

the bursting characteristics, using burst detection to quantify bursts

and silences and plot the mean burst profile; and short term spike

patterning and excitability, contained in the ISI distribution and

related hazard function (Figure 2). Together, these measures

capture the important features of phasic firing, and describe the

variation between individual cells. They also relate closely to many

of the underlying mechanisms, such as the post-spike potentials.

These burst measures differ considerably between cells, and in

any one cell, as synaptic input increases, bursts lengthen, silences

shorten and the intra-burst firing rate increases [3,4]. The burst

profile of a cell typically shows a distinctive peak in firing rate at

the start of the burst which rapidly rises and then declines to a

plateau (Figure 2B). In vitro experiments have shown that this

decline requires an AHP [27].

The ISI histogram and hazard plots (Figure 2C), used to

examine spike patterning within bursts, show a relative refractory

period of 30–50 ms followed by a period of increased firing

excitability, which slowly decays, consistent with the superposition

of an HAP and a slower DAP. The long exponentially decaying

tail of the histogram suggests that after about 150 ms has elapsed

since a spike, spikes arise randomly, indicating that there is no

patterning in the synaptic input activity.

Fitting the model to in vivo burst firing activity
Our previous in vivo modelling work [23] used automated

parameter fitting based on a genetic algorithm. The present model

can be fitted with the same technique (not shown), but is also

simple enough to fit manually. Using manual fitting helps to

understand how each parameter effects spiking behaviour, and

also how parameters interact and how independent they are.

To fit the model to data, we began with the ISI distribution and

hazard function, and then moved to the burst features. The basic

membrane parameters, for Vrest, Vthresh, PSP magnitude, and PSP

half life, are derived from the earlier oxytocin cell model [19];

oxytocin cells are closely related to vasopressin cells but lack a

DAP and a bistable burst mechanism. The fitting for each in vivo

recording began with gL = 0, to switch off bursting and get an

initial approximate fit for the synaptic input rate, HAP, AHP and

fast DAP parameters; the cell’s intra-burst ISI distribution, hazard

function and firing rate can be closely fit without producing

bursting. The burst mechanism was then turned on by setting gL,

and the full model fitted to the mean firing rate, mean burst

duration, mean silence duration, and mean burst profile.

Table 2. Model parameters fitted to in vivo cells.

Cell Model Ire lHAP kDAP kAHP kC kD lD gL

v1 m1 600 8.0 0.00 0.00012 10.0 1.68 10000 8.5

v2 m2 1050 10.5 1.15 0.00017 11.8 2.79 7500 8.0

v3 m3 920 9.5 1.20 0.00005 12.0 3.10 7500 8.0

v4 m4 630 10.5 1.00 0.00013 12.0 1.95 10000 10.5

v5 m5 530 8.5 0.90 0.00004 12.0 2.15 10000 8.5

doi:10.1371/journal.pcbi.1002740.t002
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To understand which parameters are most important to

variation between cells, we attempted to fit different cells by

varying as few parameters as possible. This process identified the

dynorphin parameters kD, lD, calcium parameter kC, and gL as

those required to fit the burst measures. Parameter kD dominates

the burst duration, while lD and gL can be adjusted to match

varied silence durations. The HAP, AHP and DAP parameters

were further adjusted to compensate for the K+ leak current’s

additional effect on short term spike patterning. The AHP

parameter kAHP dominates the size of the peak in firing rate at

the start of each burst, consistent with experimental evidence that

this current is responsible [27]. Five representative fits to recorded

phasic cells are shown in Figure 3, using the parameters given in

Tables 1 and 2; all give a close match to the firing rate, hazard,

and burst measures (Table 3).

Examining the model’s burst firing mechanism
The bistable burst firing mechanism is based on opposing effects

of [Ca2+]i and dynorphin, acting on different timescales. These do

not act deterministically, but shift the probability of a burst starting

or stopping, subject to the stochastic synaptic input. When rapid

successive spikes arise during a silent period, they cause an

increase in [Ca2+]i which begins to suppress the hyperpolarising

K+ leak current. This triggers activity-dependent positive feed-

back, increasing firing rate and hence [Ca2+]i. This feedback

becomes self-sustaining, maintaining the suppression of the leak

Figure 2. Analysis of in vivo phasic firing activity. (A) The 1-s bin spike rate counts for a phasic firing vasopressin neuron recorded in rat
supraoptic nucleus. The cell fires in long bursts of varying duration (here mean 154s) which begin with a distinct peak before falling to a more stable
intraburst firing rate (mean 8.91Hz). Bursts are separated by silent periods of almost no firing, and more regular duration (here mean 16s). (B) The
burst profile of a cell is characterised by examining the mean firing rate over the first 50s and last 50s across all bursts, defining a mean shape for the
head and tail. At the start of a burst, the firing rate rises rapidly, over ,3s before falling back to a relatively stable plateau. The burst tail shows a
slightly less rapid shift, declining over ,7s. (C) The ISI histogram and hazard function show the short term spike patterning and post-spike
excitability. The lack of short intervals is due to the HAP dominated refractory period. The following peak in excitability indicates a DAP. Beyond
,150ms, the tail of the histogram can be fitted by a decaying exponential (y = 5000e20.0114x, r2 = 0.982), indicating that firing is otherwise random.
The single spike effect of the AHP is too small to distinguish here [24].
doi:10.1371/journal.pcbi.1002740.g002

Vasopressin Phasic Firing: Model and Function
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current and hence allowing spike activity to be sustained at a

relatively stable level (Figure 4).

As a burst begins, the AHP begins to accumulate, but this rises

more slowly than the burst initiates, allowing a peak in firing rate

at the head of the burst, before the AHP slows the intra-burst

firing. Bursts reach a stable state when activity-dependent

inhibition reaches an approximate equilibrium with activity-

dependent disinhibition of the leak current. As bursts continue,

Figure 3. The model fitted to five typical phasic cells recorded in vivo. On the left we show pairs of matched in vivo and model generated
spike rate data, and on the right, the fitted hazard and burst profiles. The model closely matches burst profile, mean burst length, mean silence
length, intraburst firing rate, and the intraburst hazard, showing post-spike excitability and patterning. A subset of eight of the model’s 21 parameters
were varied to match the cells. The fit parameters vary synaptic input rate, HAP half life, AHP magnitude, fast DAP magnitude, dynorphin magnitude,
calcium magnitude and K+ leak conductance. The parameter values are given in tables 1 and 2.
doi:10.1371/journal.pcbi.1002740.g003
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the effects of dynorphin accumulate, with a small increase per

spike but a long half life (,10 s), while [Ca2+]i remains stable.

Dynorphin weakens the ability of [Ca2+]i to suppress the leak

current, and, as a result, the burst becomes sensitive to small

fluctuations in firing rate. A small drop in firing rate, within the

range of random variation, can be sufficient to cause the plateau to

collapse, causing the leak current to switch back on, silencing

firing.

The silent period depends on the reverse order of effect between

[Ca2+]i and dynorphin. [Ca2+]i decays more rapidly, so that the

more prolonged effect of dynorphin is left unopposed; this causes a

large leak current that hyperpolarises the cell and prevents burst

initiation and most spike firing until dynorphin has sufficiently

decayed. The cycle then repeats when enough spikes occur to

initiate a new burst.

The key to the model parameters is to balance dynorphin’s

increase per spike and half life such that it does not quite reach

equilibrium at the plateau firing rate. This leaves a gradual

increase which eventually terminates the burst. More dynorphin

release per spike or a slower decay will cause faster accumulation

and terminate the burst more quickly. Too little per spike or too

fast a decay and the effects of dynorphin will not continue to

increase, so that the burst never terminates. Equally, [Ca2+]i

parameters must be such that [Ca2+]i is sufficient to initiate and

sustain a burst, but not so strong that it cannot be eventually

overcome by dynorphin.

Testing the model with antidromic spikes
In vivo experiments have shown that bursting can be both

initiated and terminated by triggering increased spike firing, either

by evoking spikes antidromically by electrical stimulation of the

axons [4], or by stimulating increased synaptic input [20]. It is an

important test of the model to be able to reproduce this, as these

effects have clear implications for information coding. Figure 5

shows simulated antidromic spikes in a typical model cell. The

model has the advantage that its noisy input activity can be

repeated precisely, so that the effects of interventions can be tested

against known times of burst initiation and termination. In the

model cell illustrated, stimulating at 10 Hz for 0.5 s has no effect

early in the silent period, but more intense stimulation (10 Hz for

2 s) or stimulation later in the silent period, causes early burst

initiation. Triggering early burst termination requires stronger

stimulation than burst initiation, but shows a similar pattern,

requiring either a more intense stimulation (20 Hz for 2 s) or

stimulation at a later point in the burst. There is still a delay before

the burst stops, due to the opposing effects of [Ca2+]i and

dynorphin: the activity-induced increase in [Ca2+]i sustains the

burst before the longer lasting activity-dependent dynorphin

increase causes termination. Such delayed terminations are an

experimentally-observed feature of bursts that are truncated by

modest stimulation (see Figure 3A of [20]). Applying a very intense

stimulation (50 Hz for 2 s) causes a more rapid termination by

increasing the AHP sufficiently to block spike firing.

Model response to increased input
In vivo, when osmotic input is increased, an increased proportion

of vasopressin neurons fire phasically, shifting from slow irregular

firing. Phasic neurons also show longer bursts, shorter silences, and

higher intra-burst firing rates [3], eventually shifting to continuous

firing. We tested this in the model by increasing the synaptic input

rate. Similarly, model cells progress from slow sparse firing to short

irregular bursts and then full phasic firing with bursts increasing in

Table 3. Fitted model (m) and in vivo (v) burst measures.

Data Intra(Hz) Burst Mean(s) Burst SD Silence Mean(s) Silence SD

v1 7.89 85 31 41 23

m1 7.90 85 51 38 5

v2 8.91 154 68 16 4

m2 8.88 149 93 19 3

v3 12.85 88 37 29 5

m3 12.87 83 51 26 3

v4 8.05 112 39 50 10

m4 8.03 107 54 47 8

v5 11.00 100 38 51 22

m5 11.06 92 55 49 6

doi:10.1371/journal.pcbi.1002740.t003

Figure 4. The model’s burst firing mechanism. The data here
shows two typical bursts from the model fitted to cell v4. The burst
mechanism is driven by the spike triggered accumulation of [Ca2+]i and
dynorphin. The [Ca2+]i signal inhibits the hyperpolarising K+ leak
current, increasing firing and creating a positive feedback that sustains
a burst. The more slowly accumulating dynorphin signal opposes the
effect of [Ca2+]i, eventually causing burst termination and driving a
silent period of sustained hyperpolarisation. The positive feedback
combined with the two opposing effects acting on different timescales
creates an emergent bistability, shown in the rapid shifts of the K+ leak
(L) activation and the resulting effect on membrane potential (VL).
doi:10.1371/journal.pcbi.1002740.g004
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duration and firing rate and shortening silent periods, until they

eventually shift to continuous firing (Figure 6). The increase in

intraburst firing rate is more linear than the increase in burst

duration due to the additional opposing effect of the AHP on firing

rate.

Simulating the effect of hypertonic injection
The experimental study of Brimble and Dyball [26] reports the

responses of vasopressin cells to a systemic injection of hypertonic

saline, which triggers a rapid and prolonged increase in osmotic

pressure. In that study, relatively slow phasic neurons shifted to

longer, faster bursts, and faster firing phasic neurons shifted to

continuous firing, similar to our results above. However, non-

phasic slow, irregular neurons when challenged go through a

transitional period of ,10 min of continuous firing before shifting

to stable phasic firing (see Figure 5 in [26]). The firing rate of the

neurons rises much more quickly than the shift to bursting,

suggesting that the change in firing pattern is determined by the

state of the burst mechanism rather than the input per se.

We simulated the delayed effect of hypertonic saline injection

on the rise in osmotic pressure, but could not reproduce these

experimental results with our basic model. However, the pool of

readily-releasable vesicles in the dendrites of magnocellular

neurones is labile, and regulated in an activity-dependent manner.

We therefore hypothesised that, in the absence of activity-

dependent replenishment of the readily releasable pool, the initial

lack of burst termination might be due to insufficient readily

releasable stores of dynorphin. Out first attempt at modelling this

used a simple mechanism where spike-triggered dynorphin release

was directly dependent on a dynorphin store charged by spike

activity. However this resulted in shorter, not longer, bursts as

input activity increased, and so we developed a more complex

mechanism where spike triggered dynorphin release is partially

decoupled from the dynamics of the releasable dynorphin store,

and using this mechanism we were able to reproduce the initial

period of continuous firing before onset of phasic firing (Figure 7).

In this mechanism, a slowly accumulating measure of spike activity

(T, hypothesised to represent slow activity-driven vesicle translo-

Figure 5. Using simulated antidromic spikes to trigger and terminate bursts. The data here uses the model fitted to cell v4, repeated using
the same random synaptic input. Antidromic stimulation (as in [21]) is simulated by adding spikes to the model, at a specified frequency and time. In
the left column, spikes are added during the silent period, attempting to trigger a burst. In the right column, spikes are added during the second
burst, attempting to terminate the burst. Burst triggering is more likely when stimulated later into the silent period, or using a more intense
stimulation. Generally, burst termination requires a more intense stimulation than burst triggering. Successful termination is more likely later into the
burst, when there is more dynorphin accumulation, or with a more intense stimulation. The competing effects of spike-triggered increases in [Ca2+]i

and dynorphin cause a delay before termination occurs, unless the stimulation is sufficiently intense to trigger a large AHP, which immediately
terminates spike firing.
doi:10.1371/journal.pcbi.1002740.g005
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cation) determines the rate at which the readily releasable pool of

dynorphin is replenished. While T is too low, the release

decoupling element (r in eqn. 12 and 13) makes some spikes fail

to trigger dynorphin release, slowing the increase in dynorphin

while store replenishment is too slow to keep up with the spike

rate. This results in a gradual increase in the amount of dynorphin

available for activity-dependent release until it reaches an

equilibrium with activity-dependent depletion, at which point it

is sufficient to sustain phasic firing.

Simulating the effect of the dynorphin antagonist nor-
BNI

In the model, one of the main elements which generates the

inter-burst silence is a dynorphin driven hyperpolarisation. In

addition to dynorphin, silence duration is also determined by the

AHP and the synaptic input rate. However, Brown et al [28]

studied the effect of the competitive dynorphin antagonist nor-

BNI, combining analysis of in vitro and in vivo results to suggest that

dynorphin does not affect inter-burst activity. We used the model

to test this by simulating their in vivo results. As a competitive

antagonist, nor-BNI reduces rather than blocks dynorphin’s effect

and we simulated this in the model by reducing parameter kD (eqn.

7) sufficiently to produce a similar increase in burst duration as

they observe. Their in vivo data is taken from multiple cells, and to

simulate cell variation we generated 100 model cells based on the

fit to cell v1, with small random variations in the parameter subset

we varied to fit different in vivo cells (Table 4). We ran each cell for

3000 s with and without reduced kD, generating a total of 3032

bursts under simulated control, and 1239 bursts under simulated

nor-BNI. We then generated the same collected data burst and

silence duration histograms and hazards as shown in Figure 5 of

Brown et al 2006 [28] (Figure 8).

Figure 6. Model cell behaviour with increasing synaptic input. When osmotic pressure is increased in vivo we see a shift to phasic firing
followed by increases in intraburst firing rate and burst duration, eventually shifting to continuous firing [3]. Here, we reproduce this in the model
(using parameters fitted to cell v2) by increasing synaptic input. Intraburst firing rate increases fairly linearly, whereas the increase in burst duration is
much more non-linear. Silence duration shows a fairly linear decline after phasic firing is established.
doi:10.1371/journal.pcbi.1002740.g006
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Our results show a similar strong effect of reduced dynorphin

action increasing burst duration, but despite our dynorphin-based

mechanism, we also show very little effect on silence duration,

similar to the result of Brown et al [28]. Further reductions in

dynorphin effect (not shown) do show a reduction in the mean

silence duration, but it is much smaller than the effect on increased

burst duration, and in a varied population results in many cells

shifting to continuous firing.

Phasic firing and population signal encoding
We want to understand what use asynchronous phasic firing is,

in particular what advantage it gives to information processing in a

neuronal population. We can use the model to study this, running

duplicates of the single neuron model in parallel, and taking the

summed spike activity as the population output.

To study population response, we compare the summed activity

of 100 model cells in two conditions: one where all cells were made

phasic by setting gL = 8.5, and one where the cells were made non-

phasic by setting gL = 0, but with no other change (Figure 9). To

maintain an asynchronous population, we use independently

generated input PSPs for each model cell, using a common input

rate, parameter Ire.

We first measured the mean spike rate in the population in

response to constant input rates over the range 100–1000 Hz

(beyond this range the phasic cells begin to fire continuously and

behave as non-phasic cells), running the model cells for 2000 s of

activity (Figure 9A). The non-phasic cells show a very non-linear

relationship between input and output rates, with an initially steep

relationship at low input rates that flattens at higher input rates. By

contrast, the phasic cells show very little response until the input is

sufficient to trigger bursting, but then show a much more linear

average increase in response. In the overall output range of ,1–8

spikes/s (including mean intraburst rates as high as 15spikes/s),

which corresponds to the normal physiological dynamic range of

firing activity of vasopressin cells in vivo, the relationship is

particularly linear for phasic cells compared to non-phasic cells. At

high input rates, the phasic population shifts to continuous firing,

at which point they give a non-linear response that is similar to

that of the non-phasic cells. Thus overall, the phasic cells show a

strong linearization of the response to increasing input, compared

to the non-phasic cells, which show a typical non-linear neuronal

response.

To study how the population responds to transient pulses, we

challenged the two populations with four 1-s duration periods of

increased input by setting parameter Ire to 1000 Hz at 100-s

intervals, testing over the same range of background input as

Figure 9A. The phasic population shows more variability in its

average output activity, but the response to the input pulses is

similar to that of the non-phasic population (Figure 9B). However,

unlike the non-phasic population, the phasic population responds

to pulses in a way that is relatively independent of the background

input, producing a consistent response that is largely independent

of background rate (Figure 9C). By contrast, for the non-phasic

population, the mean response to pulses reduces as the

background input increases, as the constant firing increases the

amount of time that cells are refractory due to activity-dependent

hyperpolarisation.

Finally, we tested the response of the two populations to

transient input of varying amplitude. For this, we fixed the

background input (255 Hz for non-phasic, 560 Hz for phasic) so

that the two populations were firing at the same mean rate (5 Hz)

and tested the effects of input pulses in the range 100–1000 Hz.

The phasic population (Figure 9D) responds to increasing pulse

amplitudes with a linear average increase in firing rate (measured

during the pulses). By contrast, the non-phasic population again

shows a non-linear response. The response of the phasic

population to transient pulses is also smaller than that of non-

phasic cells, supporting the previous suggestion [20] that the

asynchronous phasic cells function as a low-pass filter.

Discussion

We have described an integrate-and-fire based model of

magnocellular vasopressin neurons, which is capable of explaining

and reproducing a large range of the firing behaviours observed in

vivo. The model implements a phasic firing mechanism based on a

hyperpolarising K+ leak current, modulated by intracellular

calcium and dynorphin.

The most important advance with this model is that it can

realistically reproduce the dynamic behaviour of vasopressin cells

as synaptic input changes, giving the ability to go forward and test

how the neurons’ properties relate to their function. Here, we have

begun to use the model to test the general information processing

properties of phasic firing neurons. In particular, we asked what

Figure 7. Using the model to simulate the effect of hypertonic
saline injection. An injection of hypertonic saline causes a rapid
increase in osmotic pressure. The rapid increase in input causes some
initially slow firing vasopressin cells to shift immediately to fast
continuous firing before settling in a phasic pattern after a long delay
(,10 min) [26]. We hypothesise that this is due to insufficient
availability of dendritic dynorphin, which takes time to upregulate.
We tested this using an extension to the basic model and were able to
reproduce the effect observed in vivo. Osmotic pressure was initially set
at 295 and increased to 315 by injection at 5 min. We suggest that
releasable dynorphin store upregulation is dependent on a slow
activity-dependent vesicle transport mechanism, T. The extended
dynorphin mechanism uses parameters kT = 0.00001, lT = 500000,
kDstore = 0.02, lDstore = 1000000, Dspike = 0.1, Dstorecap = 10, and
tO = 200000.
doi:10.1371/journal.pcbi.1002740.g007
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are the specific consequences of phasic firing for information

coding, given that phasic vasopressin cells fire asynchronously. We

approached this question by constructing two populations of

neurons that matched the properties of vasopressin cells closely,

and which differed only in their ability to fire phasically. We

showed that, compared with non-phasic cells, phasic cells respond

(as a population) to sustained increases in synaptic input with a

relatively linear increase in mean firing rate in the range 0–10

spikes/s. This is the physiological dynamic range of vasopressin

cells: 10 spikes/s is about as fast as these cells can sustain firing

under extremes of physiological dehydration [2–4].

Previously we suggested that a population of asynchronous

phasic neurons might function as a low-pass filter [20], as short

pulses of increased input will sometimes start and sometimes stop

bursts. Testing with the model shows that non-phasic neurons are

indeed much less sensitive to transient increases in synaptic input

(Figure 9D), although with sufficiently large transients there is still

some increase in activity, as the increase in spikes from starting a

burst is greater than the reduction in spikes from stopping one.

The net effect also includes cells where the input pulse generates

extra spikes without stopping a burst. Moreover, whereas the

response of non-phasic cells to brief transients strongly depends on

the background level of synaptic input, phasic cells respond to

transient increases in a way that is largely independent of

background synaptic input. Finally, the response of phasic cells

to transient perturbations is again much more linear with the

Figure 8. Simulating in vivo study of the effect of reduced dynorphin on burst and silence duration. Our data simulates in vivo analysis
using data from multiple cells by generating 100 model cells with random variation in the seven non-synaptic parameters used to fit the varied cells
in Figure 3 (Table 4). The dynorphin antagonist was simulated by reducing kD by 15% in each generated cell. This is sufficient to have a large effect on
spike rate (A) and the burst duration histogram and hazard (B), comparable to the in vivo results in Brown et al 2006 [28] (c.f. their figure 5) but also
shows very little effect on the silence (inter-burst interval) duration (C), similar to what they observe, suggesting that their results do not, as they
interpret, exclude a role for dynorphin in generating inter-burst silence.
doi:10.1371/journal.pcbi.1002740.g008

Table 4. Parameters varied to simulate in vivo cell heterogeneity.

Parameter Ire lHAP kDAP kAHP kC kD lD gL

mean 600 9 0.50 0.00012 11 2.7 7500 8.5

S.D. 0 1 0.25 0.00004 1 0.3 0 1.0

doi:10.1371/journal.pcbi.1002740.t004
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Figure 9. Comparing the population spike response of phasic and non-phasic model cells. Data here is from a population of 100 identical
model cells (using the fit to cell v1) run in parallel, taking as output the summed spike rate. Synaptic input uses a common rate parameter, Ire, but was
generated independently for each neuron, maintaining an asynchronous population. Non-phasic cells use gL = 0. To test pulse response, Ire, was set to
a defined pulse input for 1s at four time points spaced 100s apart. The pulse response was measured as the mean population spike rate response
over the four pulses. (A) Mean population rate with a varied base input rate (range 100–1000). The population response in the phasic cells, shows a
much more linear relation to the input, once input is sufficient to trigger phasic firing, particularly in the physiological spiking range of 1–8Hz. (B)
Population spike activity in non-phasic and phasic cells with matched 500Hz base input rate and 1000Hz pulse input. The summed asynchronous
bursting activity in the phasic cells does not show the bursting, but does show more variable activity and a lower mean spike rate. Each input pulse
produces a distinct increase in firing rate. (C) Testing response with a varied base input rate (range 100–1000) and fixed 1000Hz pulse input. As
background input increases, the mean pulse response in the non-phasic cells gradually falls, whereas in the non-phasic cells it is much more
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magnitude of those perturbations, than that of non-phasic cells.

This idea, that competing excitatory and inhibitory effects lead to

overall linearization of the response is comparable to our previous

result [19] showing that mixed excitatory and inhibitory synaptic

input gives a more linear firing response in neurons.

Individually, phasic cells are extremely non-linear and incon-

sistent in their responses to changes in afferent input [2], however,

here we have shown that a population of asynchronous phasic cells

is much more linear and more consistent in its overall response

than a matched population of cells that do not display phasic

firing. The natural inference is that these consequences of phasic

firing are adaptive, and constitute an explanation of why

vasopressin cells fire phasically.

The model
The present model is relatively simple; it has 21 parameters, but

five of these define the synaptic input, and only one of these, Ire, is

varied here, to control the input rate. Parameter Crest is only

included to scale [Ca2+]i to in vivo units, and can be removed by

setting to 0. Several others can be fixed, and only eight varied

parameters are required to fit the model to a wide range of

recorded cells.

The one element of the model which was predicted, rather than

directly based on experimental data, is the fast DAP, which is

required to fit the short term spike patterning detected in the ISI

histogram and hazard function. It turns out that such a current has

already been found in recent in vitro work of Armstrong et al [29].

Our predicted 150 ms half life is a close match to their measured

value of 200 ms.

Both a medium-duration (,500 ms half life) and a slow AHP

have been found in vasopressin cells [27,30]. We represent the

AHP in the model using only a single slow AHP. We tested

whether adding a second AHP would alter the model behaviour

(not shown) but found no clear effects of this. The very long half

life (10s.) is necessary to fit the duration of the peak at the head of

each burst. The Roper model uses a single medium-duration AHP

but also shows burst peaks which are much shorter than in vivo.

One of the distinctions of the model from previous published

attempts is that it works with very simple dynorphin dynamics.

The Nadeau spiking model was unable to reproduce the increase

in burst duration with increased input activity, and they corrected

this by adding frequency-dependent fatigue to the dynorphin

signal. The Roper model itself added spike rate based facilitation

to dynorphin accumulation, attempting to make burst duration

less regular. Our model is able to produce the increased burst

duration with a simple fixed rate of dynorphin accumulation per

spike, suggesting that the more complex dynamics are not

required. It will require further work, attempting to map between

the models, to understand what the important difference is.

We did use more complex dynorphin dynamics when attempt-

ing to simulate the effect of sudden changes in osmotic input,

showing that the observed switch to continuous firing from slow

irregular firing, before settling into phasic firing, can be explained

by activity-dependent upregulation of releasable dendritic dynor-

phin stores. In vasopressin neurons, dynorphin is co-packaged with

vasopressin in large dense-cored vesicles, and these vesicles can be

released from the dendrites by calcium-dependent exocytosis.

Electrical activity can induce dendritic release through voltage-

gated calcium entry through mainly N-type calcium channels [31],

but the amount of release in response to electrical activity depends

on other factors. In particular, dendrites possess a readily-

releasable pool of vesicles close to the plasma membrane [32],

and recruitment of vesicles into this pool from deeper reserve

stores is regulated by the cytosolic actin cytoskeleton in a calcium-

dependent way [33], allowing for a slow activity-dependent

augmentation of dendritic release. Adding this mechanism only

affects model behaviour in response to sudden and prolonged

changes to input activity. We don’t require the more complex

mechanism to simulate other behaviour and so consider this an

optional extension for the purposes of further work. It is an

advantage to maintain a model which is as simple as possible in

order to understand its behaviour.

The obvious simplification in our model, compared to the

Hodgkin-Huxley based models, is that we don’t have voltage

dependency. During the model’s development, voltage dependen-

cy was tested with the K+ leak current, but was unable to produce

proper burst activity. Experience suggests that an incomplete

implementation of voltage dependence does not work well in

neural models. The HAP for example, modelled as a decaying

exponential, requires a very large initial magnitude (60 mV) when

the spike is just a point event. In an integrate-and-fire model this

doesn’t matter – the HAP is unrealistically large initially, but only

at a time when cells are refractory, and so has no effect on spike

patterning. However, if other voltage-dependent elements are

added then the large voltage perturbation can cause unrealistic

behaviour. We would argue that it is more important for an in vivo

model to match spike patterning, rather than the detailed

dynamics of individual spikes – as generally the experimental

data in vivo essentially capture only spike events. Obviously spike

events and membrane voltage changes are related, but the detailed

parameters are more difficult to measure in vivo, and voltage

dependence in vivo is much weaker than in vitro [17]. The

deafferentation of neurons that is inevitable in the preparation of

hypothalamic slices for in vitro recordings leaves the cells relatively

denuded of synaptic input; accordingly the cell input resistance is

inevitably higher due to the lack of activation of neurotransmitter-

gated ion channels, and the higher input resistance amplifies the

effects of conductance changes on membrane potential. Compar-

ing in vivo and in vitro recordings of vasopressin cells shows a large

difference in post-spike excitability [18], that cannot be accounted

for by the membrane voltage effects of a different level of

background synaptic input, indicating that channel dynamics are

very different in vivo. The combination of losing the stochastic

element of the synaptic input and the larger post-spike potentials

makes in vitro spiking slower and more regular, as observed in the

ISI histograms [18]. In addition, the slower, larger DAP makes

bursting regenerative. Bursts become self-sustaining, and not

subject to external input. In vivo, bursts are generated by the same

intrinsic mechanism, but the smaller DAP is not sufficient on its

own, requiring synapse driven depolarisation to maintain a burst.

Thus in vivo bursting characteristics depend on both synaptic input

and the intrinsic bursting mechanism.

Cell heterogeneity and fitting the model
Vasopressin neurons display diverse patterns of spontaneous

spike activity; some cells are relatively silent or irregular, some are

continuous, and the rest show variations of the phasic pattern, with

varying intraburst rates, burst durations and silence durations. We

have shown (Figure 6) that these different modes of spiking can be

produced in a single model neuron by varying the synaptic input

consistent. (D) Testing response with varied pulse input rate (range 100–1000Hz) and base rate set to give matched mean firing rate = 5 spikes/s
(non-phasic base Ire = 255, phasic base Ire = 560). The phasic population response shows a much more linear relation to the input pulse rate.
doi:10.1371/journal.pcbi.1002740.g009
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rate. However, other parameter changes were required to

reproduce the different phasic firing characteristics observed

between cells. To determine the subset of parameters essential

for capturing the full heterogeneity seen in vivo, we attempted to fit

different cells changing as few parameters as possible (Table 2). In

addition to the synaptic input rate (Ire), the HAP and fast DAP

parameters were required to fit the short-term spike patterning

reflected in the ISI histogram and hazard function. The most

important parameters however were kAHP, and the K+ leak

parameters, in particular kD, which determines dynorphin’s effect

on the slow DAP. The AHP is essential to determining the

intraburst spike rate, balancing against the depolarising effects of

the DAPs. Dynorphin’s most sensitive effect is on limiting burst

duration, which in turn defines how much input is required to shift

a cell to continuous firing, but in the model it is also essential to

determining mean silence duration, as further discussed below. To

fit the cells with longer mean silence, we had to use a longer

dynorphin half-life value, lD.

Comparison with other work
Nadeau et al [34] have recently extended their spiking model to

include the vasopressin secretion response, and have used their

model to explore what properties of the spiking mechanism might

underlie the heterogeneity observed in the cell population. The

core of their secretion model is based on an interpolation of in vitro

data which demonstrated the frequency facilitation effect [9],

assuming that this is sufficient to also represent the fatigue effect on

secretion. The important test of a secretion model should be

whether it can reproduce the enhanced secretion response to

phasic firing compared to continuous firing at the same mean

spike rate [6]. This is thought to depend on both the facilitation

and the fatigue elements of the secretion mechanism.

Their spiking model, like our present model, includes a

dynorphin mechanism that plays a role in cell heterogeneity,

and which is a key element in determining whether cells fire

irregularly, phasically or continuously. They suggest however that

synaptic input in the normal frequency range is not a factor in

determining firing mode, and their model shows very little

response to increases in synaptic activity while in the phasic firing

mode. The differences between the Nadeau model and the present

model mirror the differences between vasopressin cell activity in

vitro and in vivo: the Nadeau model is a regenerative spiking model,

in which a relatively very low level of synaptic activity provides a

limited variability in spike timing, while the present model displays

spike activity that is wholly dependent on a relatively high level of

synaptic input. In response to increased osmotic pressure, their

individual cells produce a step-like increase in spike rate and

secretion. They suggest that the linear population response is

based on inter-cell variation in the dynorphin parameters and

resting potential, so that the proportion of active cells gradually

increases with increased osmotic input. Such a non-linear increase

is not observed in our model, nor in the responses of individual

vasopressin cells to progressive osmotic pressure changes in vivo.

We further tested our model by using it to simulate various in

vivo experiments which have studied the spiking activity and the

underlying mechanisms. We predict that some slow activity driven

dendritic vesicle translocation is responsible for the delayed shift to

phasic firing in response to a sudden rise in osmotic input. We do

not require this mechanism for other results, and so retain it as an

optional extension to the model, but it may play an important role

when further considering the effects of dendritic release in future

work, and has parallels to the mechanisms postulated for the

axonal secretion, the idea of a releasable and a reserve store [25].

It is now widely accepted that dynorphin is an essential element

of the phasic mechanism, and determines burst duration, but there

is debate on what role it plays in determining inter-burst silence.

Combining in vitro and in vivo analysis of the response to a

dynorphin antagonist, Brown et al [28] suggested that dynorphin

does not play a role. However, our model, in which dynorphin is a

part of the silence generating mechanism, is able to replicate the

results of their in vivo analysis. We show that reducing the effect of

dynorphin has a much larger effect on burst duration than silence

duration. It does reduce silence duration, but to show this

significantly requires a dose of the antagonist which will turn most

cells continuous. The cells selected for their analysis were by

nature those which retained bursting, and likely to show less effect

on silence duration. Their in vitro data shows no change in time

course of the inter-burst hyperpolarisation with reduced dynor-

phin. We would suggest that this is due to the slow AHP acting on

a similar time course. More recent in vivo results [35] do show a

reduction in silence duration in response to the same dynorphin

antagonist, supporting the hypothesis that dynorphin drives a post-

burst hyperpolarisation.
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