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ABSTRACT Salmonella enterica serovar Typhimurium is a Gram-negative pathogen
and a primary cause of foodborne illnesses worldwide. Here, we present the com-
plete 47,393-bp genome sequence of the siphophage Skate, which was isolated
against S. Typhimurium strain LT2.

Salmonella enterica serovar Typhimurium is a Gram-negative pathogen and a primary
cause of foodborne illnesses worldwide (1). S. Typhimurium causes acute inflam-

matory diarrhea that can progress to invasive systemic disease (2), with at least 400
deaths occurring due to acute salmonellosis every year in the United States alone (3).
As a control measure for S. Typhimurium, bacteriophages have garnered interest in
recent years (4, 5).

The phage Skate was isolated from soil in the cattle holding pen of a cattle
harvesting facility in Michigan in August 2016 using S. Typhimurium strain LT2 (6) as the
host. Host bacteria were cultured on tryptic soy broth or agar (Difco) at 37°C with
aeration. Phages were cultured and propagated by the soft agar overlay method (7).
The phage was identified as a siphophage using negative-stain transmission electron
microscopy performed at the Texas A&M University Microscopy and Imaging Center, as
previously described (8). Phage genomic DNA was prepared using a modified Promega
Wizard DNA cleanup kit protocol, as described previously (9). Pooled indexed DNA libraries
were prepared using the Illumina TruSeq Nano LT kit, and the sequence was obtained from
the Illumina MiSeq platform using the MiSeq V2 500-cycle reagent kit (2 � 250-bp reads),
following the manufacturer’s instructions, producing 374,842 reads for the index containing
the phage genome. FastQC 0.11.5 (https://www.bioinformatics.babraham.ac.uk/projects/
fastqc/) was used for quality control of the reads. The reads were trimmed with
FASTX-Toolkit 0.0.14 (http://hannonlab.cshl.edu/fastx_toolkit/download.html) before
being assembled into a single contig at 160.9-fold coverage using SPAdes 3.5.0 (10).
Contig completion was confirmed by PCR using primers (5=-GTCGAAGCGCTACGTG
AATA-3= and 5=-CTTCCCAGAGAGTCCTTTGATAC-3=) facing off the ends of the assem-
bled contig and Sanger sequencing of the resulting product, with the contig sequence
manually corrected to match the resulting Sanger sequencing reads. GLIMMER 3.0 (11)
and MetaGeneAnnotator 1.0 (12) were used to predict protein-coding genes with
manual correction for appropriate gene starts, and tRNA genes were predicted with
ARAGORN 2.36 (13). Rho-independent termination sites were identified with TransTerm
(http://transterm.cbcb.umd.edu/). Sequence similarity searches by BLASTp 2.2.28 (14)
and conserved domain searches with InterProScan 5.15-54.0 (15) were used to predict
protein function. All analyses were conducted using default settings via the CPT Galaxy
(16) and Web Apollo (17) interfaces (https://cpt.tamu.edu/).

The Skate genome was assembled into a complete contig of 47,393 bp at 160.9-fold
coverage. It has a GC content of 46%. Genes coding for proteins involved in morpho-
genesis, such as the major coat, capsid decoration, tail tube, tail spike, terminase large
subunit, and portal proteins, were identified. A lysis cassette consisting of a class II
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holin, a transglycosylase-type endolysin, and an embedded i-spanin and o-spanin pair
were also identified. Genes linked to DNA replication, such as DNA primase, single-
stranded DNA binding protein, DNA polymerase subunit, and an ATP-dependent
helicase were found. Skate is highly similar to other Salmonella phages, like phage
IME207 (GenBank accession number KX523699) and E1 (GenBank accession number
AM491472) (18, 19), sharing 58% and 55% nucleotide identity, respectively, as deter-
mined by progressiveMauve (version 2.4.0) (20).

Data availability. The genome sequence of phage Skate was submitted to GenBank
as accession number MH321493. The associated BioProject, SRA, and BioSample acces-
sion numbers are PRJNA222858, SRR8787571, and SAMN11259649, respectively.
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