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Abstract
Objectives: Endovascular aortic occlusion as an adjunct to cardiopulmonary resuscitation (CPR) for non-traumatic cardiac arrest is gaining interest.

In a recent clinical trial, return of spontaneous circulation (ROSC) was achieved despite prolonged no-flow times. However, 66% of patients re-

arrested upon balloon deflation. We aimed to determine if automated titration of endovascular balloon volume following ROSC can augment diastolic

blood pressure (DBP) to prevent re-arrest.

Methods: Twenty swine were anesthetized and placed into ventricular fibrillation (VF). Following 7 minutes of no-flow VF and 5 minutes of mechan-

ical CPR, animals were subjected to complete aortic occlusion to adjunct CPR. Upon ROSC, the balloon was either deflated steadily over 5 minutes

(control) or underwent automated, dynamic adjustments to maintain a DBP of 60 mmHg (Endovascular Variable Aortic Control, EVAC).

Results: ROSC was obtained in ten animals (5 EVAC, 5 REBOA). Sixty percent (3/5) of control animals rearrested while none of the EVAC animals

rearrested (p = 0.038). Animals in the EVAC group spent a significantly higher proportion of the post-ROSC period with a DBP > 60 mmHg [median

(IQR)] [control 79.7 (72.5–86.0)%; EVAC 97.7 (90.8–99.7)%, p = 0.047]. The EVAC group had a statistically significant reduction in arterial lactate

concentration [7.98 (7.4–8.16) mmol/L] compared to control [9.93 (8.86–10.45) mmol/L, p = 0.047]. There were no statistical differences between the

two groups in the amount of adrenaline (epinephrine) required.

Conclusion: In our swine model of cardiac arrest, automated aortic endovascular balloon titration improved DBP and prevented re-arrest in the first

20 minutes after ROSC.

Keywords: Arrhythmias, Cardiopulmonary resuscitation, Endovascular procedures, Intra-aortic balloon, Resuscitation, Resuscitative en-

dovascular balloon occlusion of the aorta
Introduction

Each year over half a million people suffer a nontraumatic cardiac

arrest in the United States.1 Cardiopulmonary resuscitation (CPR)

and advanced cardiac life support (ACLS) prioritize maintaining coro-

nary and cerebral perfusion to obtain return of spontaneous circula-

tion (ROSC) with good neurological function.2 Despite intense

research, out-of-hospital cardiac arrest mortality still exceeds

90%.3 There is increasing interest in using endovascular aortic occlu-
sion to augment CPR in nontraumatic cardiac arrest.4 Translational

studies5–9 and recent clinical case series10–13 demonstrated that aor-

tic occlusion increases coronary artery perfusion pressure (CPP) and

rates of ROSC when used as an adjunct to standard-of-care thera-

pies. Aortic occlusion is achieved with an endovascular balloon

device, which is inserted into the femoral artery and advanced into

the aorta during CPR.4 Inflation of the balloon in the descending tho-

racic aorta restricts the limited blood flow generated by CPR to the

thoracic vasculature, maximizing perfusion of the heart and brain.

This raises aortic pressure, CPP, and cerebral perfusion, which
ns.
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increases the likelihood for ROSC and neurologically intact

survival.4,14.

Recent reports of out-of-hospital use of aortic occlusion in non-

traumatic cardiac arrest found high rates of ROSC despite time from

dispatch to balloon occlusion of 45–50 minutes.10,13 However, the

positive results were tempered by the high rate of re-arrest after

ROSC and balloon deflation. Re-arrest is common in the post-

ROSC period without aortic occlusion.15–17 In one study, 50% of

the patients that obtained ROSC re-arrested within 20 minutes of bal-

loon deflation.10 These clinical data suggest aortic occlusion is a

promising resuscitation technique for nontraumatic cardiac arrest

but new techniques must be developed to prevent re-arrest after

ROSC.

The Endovascular Variable Aortic Control (EVAC) system was

designed to maximize the benefits of resuscitative endovascular bal-

loon occlusion of the aorta (REBOA) while limiting complications.18–

20 The EVAC system consists of a REBOA catheter connected to an

automated syringe controller to make second-to-second changes in

balloon volume in response to the diastolic blood pressure (DBP)

measured above the balloon (Fig. 1). Balloon inflation impedes flow

within the aorta thereby augmenting blood pressure at the aortic root.

Mechanical blood pressure augmentation is nearly instantaneous,

unlike pharmacologic adjuncts with variable latency, duration, and

magnitude of haemodynamic effects. EVAC was originally tested

to balance the benefits of aortic occlusion and haemodynamic sup-

port with ischemic risk in an animal model of truncal hemor-

rhage.18,21 EVAC may confer benefits after nontraumatic cardiac

arrest by targeting a set DBP and maintaining CPP during the defla-

tion phase. We sought to study the impact of EVAC on haemody-

namics in the first 20 minutes after ROSC in a model of

nontraumatic cardiac arrest. We hypothesized that EVAC would

result in a lower re-arrest rate after ROSC by providing haemody-

namic support through variable intra-aortic balloon inflation com-

pared to pharmacologic support alone.

Methods

Overview

The Institutional Animal Care and Use Committee at the University of

Utah approved this study (Protocol 19-07012). Animal care was in
Fig. 1 – The Endovascular Variable Aortic Control (EVAC) de

placed into Zone 1 of the aorta with the external syringe

controller will change the endovascular balloon

pressure > 60 mmHg.1.
strict compliance with the Guide for the Care and Use of Laboratory

Animals in a facility accredited by AAALAC, International. Twenty

healthy adult, castrated male, and nonpregnant female Yorkshire-

cross swine (Sus scrofa; Premier BioSource, Ramona, CA) were

acclimated for a minimum of 7 days in temperature- and light-

controlled pens with access to environmental enrichment. Animals

weighed between 65 and 73 kg, were between 4.5 and 6 month

old, and were fasted the night before the experiment. The conduct

of the protocol is illustrated in Fig. 2.

Animal preparation

Twenty pigs were included in the study. Animals were premedicated

with 6.6 mg/kg intramuscular tiletamine/zolazepam (Telazol; Zoetis

US, Parsippany, NJ). Following endotracheal intubation, general

anesthesia was maintained with 1.5–2.5% isoflurane in 30–100%

oxygen. Pigs received 5 mL/kg of balanced isotonic crystalloids intra-

venously. Animals were mechanically ventilated with tidal volumes of

8–10 mL/kg, a positive end-expiratory pressure of 4 cmH2O, and a

respiratory rate of 10–15 breaths per minute, titrated to maintain

end-tidal CO2 at 40 ± 5 mmHg.

All vascular access was obtained via Seldinger technique under

ultrasound guidance. Both external jugular veins were cannulated

to facilitate medication and fluid administration. A transvenous

pacer (TVP) wire was placed through the right external jugular

via a 9-Fr resuscitation catheter (Arrowg + ard Blue� MAC; Tele-

flex, Wayne, PA) to induce ventricular fibrillation (VF). The left

femoral and carotid arteries were cannulated with a 7-Fr sheath

to monitor proximal and distal blood pressure, respectively. The

right femoral artery was cannulated with a 9-Fr sheath for REBOA

catheter placement (laboratory-grade, custom-built catheter). Fluo-

roscopy confirmed the position of the uninflated aortic balloon in

Zone 1 and the TVP within the right ventricle. The animals were

connected to an electrocardiogram monitor and defibrillator (R Ser-

ies, ZOLL, Chelmsford, Massachusetts) with pre-positioned defibril-

lator pads (Stat-padz, ZOLL, Chelmsford, Massachusetts). A

mechanical CPR device (LUCAS 2 Chest Compression System;

Stryker Corp, Kalamazoo, MI) was placed around the chest with

the suction cup positioned against the sternum. Padding was

placed around the animal’s chest to prevent body shifting. Baseline

laboratory and arterial blood gas samples were obtained after

instrumentation.
vice. The illustration showed the endovascular catheter

controller attached to the patient’s leg. The syringe

volume as needed to maintain diastolic blood



Fig. 2 – Experimental design.
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Intervention

The animals were placed into VF by connecting a 9-V battery to the

TVP. Mechanical ventilation and isoflurane were discontinued

(T = 0 min). After 7 minutes of no-flow VF (T = 7 mins), mechanical

CPR was initiated and the ventilator was set at 10 breaths/min with

100% oxygen. After 5 minutes of continuous CPR in a low-flow VF

state (T = 12 mins), the pre-positioned aortic occlusion balloon

was inflated and ACLS algorithms were initiated. Complete aortic

occlusion was confirmed by the loss of distal femoral arterial pres-

sure waveforms during CPR. Defibrillation was performed at two-

minute intervals (200 joules, biphasic) if VF was observed upon elec-

trocardiogram evaluation. Intravenous 0.01 mg/kg adrenaline (epi-

nephrine) was administered in three-minute intervals while the

animal remained in cardiac arrest. Amiodarone was administered

every 5 minutes after 5 min of ACLS (5 mg/kg IV for the first dose

and 2.5 mg/kg thereafter), if required. Animals were assessed for

ROSC at two-minute intervals with brief CPR pauses. If ROSC

was not obtained after 25 minutes of resuscitation, efforts were

ceased, and the animal was excluded.

Following ROSC, animals were randomized to receive EVAC or

standard REBOA deflation according to a random number sequence.

Upon ROSC, ACLS drugs and CPR were discontinued. Mechanical

ventilation and isoflurane administration were resumed per the above

protocol. The aortic occlusion balloon was deflated according to

group assignment. In the control group, the aortic occlusion balloon

was deflated manually over 5 minutes (removal of 1/10th of the vol-

ume used to inflate every 30 seconds). In the EVAC group, the bal-

loon was progressively deflated by 100 lL increment every 6
seconds by the EVAC Controller. The automated algorithm allowed

the balloon to deflate only if the DBP remained above 60 mmHg. If

DBP fell below 60 mmHg, the balloon was immediately re-inflated

to achieve the 60 mmHg target. After initial ROSC, any subsequent

loss of pulses in either group initiated full balloon inflation, and

resumption of CPR/ACLS algorithms. ACLS with a re-inflated balloon

was continued until study completion (T = 37 mins) or until ROSC

was achieved, whichever occurred sooner. If ROSC was achieved

again, the balloon was deflated by the same protocols according to

the randomization assignment.

Blood pressure was managed according to group assignment. In

control animals, blood pressure after ROSC was controlled with

pharmacologic management alone. Adrenaline titration followed

American Heart Association guidelines for MAP > 65 mmHg.22 Fol-

lowing 60 seconds of hypotension (MAP < 65 mmHg), a continuous

intravenous infusion of adrenaline was started at 0.1 mcg/kg/min and

was increased by 0.1 mcg/kg/min every 2 minutes to a maximum of

1.0 mcg/kg/min. Once the MAP goal was reached, the infusion was

adjusted by 0.1 mcg/kg/min to maintain the MAP between 65–

75 mmHg. In the EVAC group, blood pressure was controlled by a

combination of adrenaline and EVAC balloon support. The EVAC

system automatically varied balloon volume based on real-time blood

pressure feedback to achieve a DBP > 60 mmHg. EVAC was pro-

grammed to maintain the aortic DBP goal while maintaining a

<20 mmHg gradient across the balloon (proximal minus distal

DBP), when able, to preserve distal aortic blood flow. This gradient

was set to avoid balloon over inflation at the expense of downstream

perfusion to tissue beds.
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Plasma potassium, glucose, and calcium concentrations were

corrected according to pre-established protocols.23 All animals were

euthanized after thirty-seven minutes.

Data acquisition and analysis

Physiologic parameters (heart rate, blood pressure proximal to the

intra-aortic balloon, etc.) were collected in real-time using a multi-

channel data acquisition system (PowerLab; ADInstruments, Color-

ado Springs, CO). The primary outcome was the rate of re-arrest

after ROSC. The secondary outcome was the cumulative time an

animal’s blood pressure was outside of guideline goals after initial

ROSC. Arterial blood gases were obtained at baseline, the initiation

of ventricular fibrillation, and at completion of the study. Blood gases

were obtained from the proximal port of the endovascular catheter in

the proximal aorta.

An a priori power analysis showed that 6 animals in each group

would be required to detect a significant difference in re-arrest

between the two groups, assuming rates of re-arrest of 90% and

10% in the control and EVAC groups, respectively (power of 80%

and an alpha error of 0.05 with a one-tailed Fisher’s exact test, G*

Power). Enrollment was discontinued due to COVID19-imposed lab-

oratory closure. An interim analysis then showed that significance

was reached after 5 animals per group were used. Data were

assessed for normality and are presented as mean ± standard error

of the mean or median (interquartile range) for parametric and non-

parametric data, respectively. Groups were compared with a t-test or

Mann-Whitney U-test for normal and non-parametric data, respec-

tively. Categorical data were compared with the chi square test. Sta-

tistical analysis was performed using commercial software (STATA

version 14.0; Stata Corp., College Station, TX). Statistical signifi-

cance was set as p < 0.05.

Results

ROSC was obtained in 10 animals (5 EVAC, 5 controls). The other

ten animals that did not achieve ROSC were excluded. There were

no significant baseline differences in animals that underwent ran-

domization (Table 1). After VF initiation, animals had similar median

DBP during both the no-flow VF and low-flow VF periods prior to

randomization.

Data regarding the timing of ROSC, post-ROSC haemodynam-

ics, and re-arrest for each group are shown in Table 2. In the 20 min-

utes after ROSC, EVAC support provided a statistically significant

reduction in the incidence of re-arrest (0/5), compared to 60% (3/5)

of control animals (p = 0.038). The control animal re-arrests events

occurred 13–17 minutes after initial ROSC. These arrests occurred

after a progressive decline in blood pressure despite increasing

vasopressor support. VF was seen in two re-arrest events, while

pulseless electrical activity was noted in the third animal. Subse-

quent ROSC was obtained in 2 of the 3 animals near the experi-

ment’s conclusion. One animal that remained in VF at the end of

study while the other 9 animals were in sinus rhythm. At the conclu-

sion of the study, one control animal that remained in VF had a fully

inflated balloon while the other four control animals had fully deflated

endovascular balloons. By comparison, two EVAC animals had par-

tially inflated balloons and three had fully deflated balloons.

There was no difference in the median DBP between groups after

ROSC. Comparison of DBP after ROSC was calculated both includ-

ing and excluding the periods in which the control animals had re-
arrested. After excluding the periods in which control animals had

re-arrested and were receiving CPR, the median mean DBP after

ROSC was 105.4 (88.5–117.0) mmHg for control and 108.8

(108.0–122.7) mmHg for the EVAC group (p = 0.17). If re-arrest peri-

ods of the control animals are included, the relative DBP of control

animals [97.2 (92.0–105.4) mmHg] was even lower than that of the

EVAC animals (p = 0.06).

However, both including and excluding the re-arrest periods, the

animals in the EVAC group spent a significantly higher proportion of

the post-ROSC period with a DBP > 60 mmHg. There were statisti-

cally significant differences in the percentage of the post-ROSC per-

iod with a DBP > 60 both including [control 79.7 (71.7–88.8)%, EVAC

97.7 (90.8–99.7)%, p = 0.03] and excluding the re-arrest periods

[control 79.7 (72.5–86.0)%; EVAC 97.7 (90.8–99.7)%, p = 0.047].

In the three control animals that re-arrested, the mean DBP in the

30 seconds before re-arrest was 35.1 ± 5.2, 60.2 ± 2.0, 36.3 ± 1.5

mmHg. By contrast, in the 30 seconds before initial EVAC balloon

activation, the 5-animal median mean DBP was 63.5 (63.0–63.6)

mmHg.

There was no statistically significant difference in adrenaline dose

between the two groups throughout the experiment (during CPR and

after ROSC) [control: 31.92 (20.96–51.88) mcg/kg; EVAC: 20.95

(20.56–31.04) mcg/kg, p = 0.11].

Data from final arterial blood samples are shown in Table 3. The

EVAC group [7.98 (7.4–8.16) mmol/L] had a statistically significant

reduction in arterial lactate concentration compared to control [9.93

(8.86–10.45) mmol/L, p = 0.047].

Fig. 3 displays the impact of EVAC on a representative animal’s

DBP profile compared to a control animal that re-arrested and

required reinflation of the aortic occlusion balloon. The graphs for

all ten animals, including DBP and periods of balloon inflation, are

included in Supplemental Materials.

Discussion

Endovascular aortic occlusion is a promising adjunct to CPR in non-

traumatic cardiac arrest and is currently undergoing human trials in

both the United States and Europe.24–27 However, the abrupt

changes in aortic afterload and blood pressure that occur even with

methodical balloon deflation can cause haemodynamic compromise

and re-arrest. In this study, we demonstrated that by providing non-

pharmacologic haemodynamic support with an automated endovas-

cular balloon catheter to maintain DBP > 60 mmHg, re-arrest rates in

the immediate post ROSC period were significantly reduced. This

was associated with a reduction in plasma lactate concentration at

the end of the experiment.

Translational research has demonstrated the physiologic benefits

of full aortic occlusion during CPR.14,28 Early clinical data reinforce

these benefits, but the high rates of re-arrest after ROSC have

obscured any ability to see improvements in survival.10,12–13 Stan-

dard REBOA provides a binary state of occlusion (balloon fully

inflated or deflated) and balloon volume is controlled manually. There

is no clinical or translational data to guide providers in the best meth-

ods to deflate the balloon once ROSC is achieved, much less titrate

to a consistent post-ROSC DBP. Moreover, standard aortic occlu-

sion deflation strategies may result in abrupt drops in blood pressure

at unpredictable moments during manual deflation of the balloon.29–

31 This was evident in the rapid decline of DBP in the control group

during and after manual balloon deflation making manual titration of



Table 1 – Demographic-physiologic-and laboratory parameters of the control (n = 5) and EVAC (n = 5) groups. “Pre-
CPR” diastolic blood pressure and heart rate were defined as 60-seconds of data collected prior to initiation of
ventricular fibrillation. No-flow Diastolic Blood Pressure is defined as 60-seconds of data collected during
ventricular fibrillation-without CPR. Low-Flow Diastolic Blood Pressure is defined as 60-seconds of data collected
during CPR-representing the period immediately before randomization and ROSC. Data is presented as median
(interquartile range).

Parameter Control EVAC p

Weight (kg) 72 (68–73) 71 (69–72) 0.46

Sex (m:f) 2:3 3:2 0.53

White Blood Cells (109 cells/L) 15.2 (13.1–17.5) 18.0 (18.0–18.1) 0.18

Hemoglobin (g/dL) 10.9 (10.4–11.3) 11.7 (10.6–11.9) 0.30

Sodium (mEq/L) 138 (137–139) 139 (139–139) 0.39

Potassium (mEq/L) 4.4 (4–4.4) 4.0 (3.9–4.0) 0.39

Chloride (mEq/L) 101 (99–101) 98 (97–99) 0.25

Calcium ion (ng/DL * 0.25) 1.41 (1.37–1.42) 1.35 (1.33–1.4) 0.25

Creatinine (mg/dL) 2.3 (2.2–2.5) 2.0 (1.7–2.6) 0.46

Glucose (mg/dL) 121 (108–125) 106 (95–107) 0.08

pH 7.45 (7.43–7.46) 7.44 (7.40–7.44) 0.75

pCO2 (mmHg) 44.7 (42.4–46.2) 46.4 (46.2–47.5) 0.14

PO2 (mmHg) 52 (52–59) 51 (48–56) 0.40

HCO3 (mEq/L) 30.3 (29.9–31.8) 32.3 (31.0–33.1) 0.21

Base Excess (mEq/L) 6 (6–7) 8 (7–9) 0.20

Arterial Oxygen Saturation (%) 88 (87–91) 86 (84–88) 0.40

Lactate (mmol/L) 1.48 (1.41–2.21) 1.09 (0.96–1.33) 0.08

Pre-CPR Diastolic Blood Pressure (mmHg) 81.5 (75.5–82.4) 73.2 (73.0–77.8) 0.46

Pre-CPR Heart Rate (beats/min) 75 (62–80) 81 (75–82) 0.22

No-Flow Diastolic Blood Pressure (mmHg) 26.56 (22.7–30.48) 26.42 (24.9–27.4) 0.92

Low-Flow Diastolic Blood Pressure (mmHg) 48.97 (39.7–60.0) 46.4 (43.1–68.6) 0.35

Table 2 – Timing of ROSC, post-ROSC hemodynamics, and re-arrest data of the control (n = 5) and EVAC (n = 5)
groups. Post-ROSC hemodynamic data is represented in two ways: including and excluding the DBP during
periods where the control animal re-arrested. DBP Post-ROSC “In Aggregate” is defined as all DBP values after
initial ROSC, regardless of re-arrest. This includes periods where the control animals had rearrested, CPR was re-
started, and the endovascular balloon was re-inflated. DBP post-ROSC with Re-arrest Excluded represents the
post-ROSC period without periods where the control animals re-arrested. As the EVAC animals had no periods of
re-arrest, there are no differences between the EVAC animals “in aggregate” or “with re-arrest excluded.” Data is
presented as median (interquartile range). DBP: diastolic blood pressure; ROSC: return of spontaneous
circulation.

Parameter Control EVAC p

Initial ROSC Time (min) 14.2 (14.1–16.5) 14.2 (14.0–14.2) 0.45

Rearrest (#) 3 0 0.04

DBP Post-ROSC “In Aggregate”

DBP After ROSC (mmHg) 97.2 (92.0–105.4) 108.8 (108.0–122.7) 0.06

DBP After ROSC > 60 mmHg (%) 79.7 (71.7–88.8) 97.7 (90.8–99.7) 0.03

DBP Post-ROSC with Re-Arrest Excluded

DBP After ROSC (mmHg) 105.4 (88.5–117.0) 108.8 (108.0–122.7) 0.17

DBP After ROSC > 60 mmHg (%) 79.7 (72.5–86.0) 97.7 (90.8–99.7) 0.05

Total Adrenaline Dose (mcg/kg) 31.92 (20.96–51.88) 20.95 (20.56–31.04) 0.11
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an intra-aortic balloon difficult. The risk of cardiovascular collapse is

magnified by haemodynamic instability common in the post-arrest

phase due to global ischemia–reperfusion injury, myocardial stun-

ning, and inflammatory responses.32 New strategies are required

to manage haemodynamics during this perilous post-ROSC period.

Automated critical care solutions, such as EVAC, may provide

improved hemodynamic management while simultaneously freeing

providers to perform other tasks during resuscitation.
Hypotension occurs in greater than 45–65% of patients after non-

traumatic cardiac arrest and is associated with re-arrest and

increased mortality.33,34 Current evidence supports maintaining a

CPP of 55 mmHg to prevent re-arrest.35 Therefore, assuming a cen-

tral venous pressure (CVP) around 5 mmHg, the EVAC control algo-

rithm ensured that the animal’s DBP would remain above 60 mmHg.

DBP was chosen as the experimental variable for this translational

pilot study as it can be directly measured from an intra-aortic device,



Table 3 – Arterial blood gas samples at the conclusion of the study of the control (n = 5) and EVAC (n = 5) groups.
Data is presented as median (interquartile range).

Parameter Control EVAC p

pH 7.23 (7.21–7.25) 7.31 (7.27–7.35) 0.08

pCO2 (mmHg) 50.4 (45.0–53.6) 46.0 (42.6–47.5) 0.46

PO2 (mmHg) 121 (117–133) 184 (89–212) 0.60

HCO3 (mEq/L) 19.1 (18–23.3) 23.3 (21.5–24.1) 0.14

Base Excess (mEq/L) �9 (�9 to �4) �3 (�6 to �2) 0.08

Arterial Oxygen Saturation (%) 98 (98–98) 99 (96–100) 0.91

Lactate (mmol/L) 9.93 (8.86–10.45) 7.98 (7.4–8.16) 0.05

Fig. 3 – The proximal and distal aortic diastolic blood pressures of a representative (A) control and (B) EVAC animal

throughout the entire experiment. Mechanical CPR was started at 7 minutes in each animal. ACLS and aortic

occlusion were initiated at 12 minutes. Both animals obtained ROSC at approximately 16 mins (denoted by the #).

The dotted line marks periods of full or, in the case of EVAC, partial endovascular balloon inflation. Of note, each

animal was hypertensive after ROSC, with a progressive decline in blood pressure. The control animal re-arrested at

34 minutes, and the endovascular balloon was fully re-inflated before obtaining ROSC at 36 minutes. The EVAC

animal had a “sine wave” of blood pressures, as the adaptive algorithms changed the balloon volume to ensure

diastolic blood pressure remained > 60 mmHg.
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allowing practitioners to rapidly deploy adaptive balloon manage-

ment without placement of a second invasive device to measure

CVP. If DBP dropped below this threshold, the EVAC balloon is pro-

grammed to inflate, acting as a “resistor” within the aorta. EVAC

may also limit unnecessary afterload increases arising from
overzealous balloon inflation, the negative impacts of which were

established in prior models.18,36 In several EVAC animals, the ampli-

tude of blood pressure fluctuations steadily decreased, indicating

decreasing amounts of EVAC balloon support as the study pro-

gressed. This activity is a result of the adaptive algorithms tailoring
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magnitude of balloon volume changes based on the haemodynamic

effects from prior balloon movements. EVAC successfully main-

tained DBP above this DBP threshold for 97% of the post-ROSC per-

iod. Sustaining DBP above this threshold, re-arrest was prevented in

the EVAC animals.

Both the EVAC and control animals had high DBP immediately

after ROSC (Fig. 3). This was likely due to residual adrenaline used

during ACLS in conjunction with a surge of endogenous catecholami-

nes associated with ROSC.37 During this period, the balloon in the

control group was deflated manually and the EVAC balloon fully

deflated, as haemodynamic allowed. However, over approximately

15 minutes, all animals saw a progressive decline in DBP. Because

of EVAC’s justin-time DBP support, the EVAC animals did not have

periods of more profound hypotension, whereas such periods led to

re-arrest in the control group. The relative haemodynamic stability

and prevention of re-arrest in the EVAC group resulted in improved

perfusion, as evidenced by the statistically significant reduction in

lactate levels by the end of the experiment. Thus, despite the balloon

remaining partially inflated in three of the EVAC animals at the end of

experiment, EVAC reduced global ischemia in the post-arrest period

simply by reducing re-arrest rates and the attendant ischemia that

comes with no- or low-flow VF periods.

There is increasing evidence that current cardiac arrest therapies

either provide no substantial benefit or may worsen patient-centered

outcomes in exchange for marginal improvements in ROSC rates.

For example, the effectiveness of adrenaline, the mainstay pharma-

cologic intervention in cardiac arrest, has been questioned. Animal

studies have demonstrated that high-dose adrenaline leads to vaso-

constriction in the cerebral microcirculation, causing cerebral ische-

mia in models of cardiac arrest.38–40 Recently, the largest clinical

trial of adrenaline during out of hospital ACLS demonstrated a

0.8% survival benefit. There was however no evidence that it signif-

icantly improved neurological outcomes.41 Our study suggests that

EVAC could lower re-arrest rates without additional vasopressor

usage. Such next generation variable aortic occlusion devices may

decrease adrenaline requirements and improve functional survival.

A larger study is needed to delineate the impacts of EVAC on adre-

naline use as a primary outcome.

These conclusions must be considered in the context of this

study’s limitations. First, the study was terminated early, future stud-

ies should enroll more animals and follow them longer. Second,

investigators were not blinded to the randomization of each animal.

However, animals underwent randomization immediately before

ROSC, which limits potential bias. Third, despite similarities between

species, there are anatomic and physiologic differences between

humans and swine. Furthermore, while the study animals developed

cardiac injury during the no-flow and low-flow VF periods, the ani-

mals do not have the typical underlying cardiac diseases of patients

suffering nontraumatic cardiac arrest. However, this model is com-

monly used in nontraumatic cardiac arrest translational studies.8,28,38

Additionally, due to the experimental nature of animal models, there

was variability in ROSC and re-arrest times between groups. This

makes direct temporal comparisons in the post-ROSC period chal-

lenging, as animals are in different hemodynamic states at the same

experimental time. Finally, we sought to determine the effectiveness

of EVAC within the first 20 minutes after ROSC in light of clinical data

suggesting high rates of re-arrest during this immediate post-ROSC

timeframe. Future research is required to determine EVAC’s ability to

sustain ROSC during longer periods. These limitations notwithstand-

ing, this is the first study demonstrating the potential impact of
adaptive and automated balloon control to decrease rates of re-

arrest after ROSC in a swine model of nontraumatic cardiac arrest.

Conclusions

In this study, adaptive, automated aortic occlusion prevented re-

arrest for 20 minutes by maintaining a DBP above 60 mmHg after

ROSC in a swine model of nontraumatic cardiac arrest. EVAC

improved haemodynamic support without additional pharmacologic

intervention compared to standard aortic occlusion which resulted

in a significant reduction in re-arrest rates and lower final lactate

concentrations.
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