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Objective: We aimed to identify imaging biomarkers to assess predictive capacity of
radiomics nomogram regarding treatment response status (responder/non-responder) in
patients with advanced NSCLC undergoing anti-PD1 immunotherapy.

Methods: 197 eligible patients with histologically confirmed NSCLC were retrospectively
enrolled from nine hospitals. We carried out a radiomics characterization from target
lesions (TL) approach and largest target lesion (LL) approach on baseline and first follow-
up (TP1) CT imaging data. Delta-radiomics feature was calculated as the relative net
change in radiomics feature between baseline and TP1. Minimum Redundancy Maximum
Relevance (mRMR) and Least Absolute Shrinkage and Selection Operator (LASSO)
logistic regression were applied for feature selection and radiomics signature
construction.

Results: Radiomics signature at baseline did not show significant predictive value regarding
response status for LL approach (P = 0.10), nor in terms of TL approach (P = 0.27). A
combined Delta-radiomics nomogram incorporating Delta-radiomics signature with clinical
factor of distant metastasis for target lesions had satisfactory performance in distinguishing
responders from non-responders with AUCs of 0.83 (95% CI: 0.75–0.91) and 0.81 (95% CI:
0.68–0.95) in the training and test sets respectively, which was comparable with that from LL
approach (P = 0.92, P = 0.97). Among a subset of those patients with available pretreatment
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PD-L1 expression status (n = 66), models that incorporating Delta-radiomics features showed
superior predictive accuracy than that of PD-L1 expression status alone (P <0.001).

Conclusion: Early response assessment using combined Delta-radiomics nomograms
have potential advantages to identify patients that were more likely to benefit from
immunotherapy, and help oncologists modify treatments tailored individually to each
patient under therapy.
Keywords: immunotherapy, non-small-cell lung cancer, imaging biomarkers, response prediction, radiomics,
Delta-radiomics
INTRODUCTION

In recent years, immunotherapies have provided durable clinical
responses and demonstrated a survival benefit across a variety of
cancer types, including non-small cell lung cancer (NSCLC) (1–
5). Immune-checkpoint inhibitors (ICIs) targeting programmed
death 1 (PD-1) or its ligand programmed death ligand 1 (PD-L1)
are recommended by the National Comprehensive Cancer
Network (NCCN) (6) and the European Society of Medical
Oncology (ESMO) (7) for locally advanced and metastatic
NSCLC without targetable genetic alterations. Despite their
remarkable success, increased progression-free survival (PFS)
and/or overall survival (OS) remains limited to only a small
proportion (15–30%) of patients according to published evidence
(8–10). There is therefore a need for the development of methods
to identify patients who are most likely to respond
to immunotherapy.

Several biomarkers which are currently used for the selection
of patients eligible for cancer immunotherapy, such as PD-L1
expression and tumor mutation burden (TMB), have achieved
clinical relevance to some extent (11, 12). However, there are
many challenges concerning the effective use of them as
predictive biomarkers, including inadequate sample tissue for
reliable PD-L1 quantification and whole-exome sequencing
(WES), heterogeneous expression due to intra-tumoral
heterogeneity (13), absence of standardization between
different tests (14), and increasement of diagnostic complexity
and cost. Another issue is that several studies revealed that
patients with PD-L1 negative tumors could still derive clinical
benefit from ICIs (15–17). Thus, the insufficiency of current
biomarkers highlights the urgent need to identify novel
predictive biomarkers for a better stratification of patients
receiving ICIs.

Radiomics, an emerging field within medical imaging, is
capable of generating imaging biomarkers as decision support
tools for clinical practice (18). Under the motivation that
biomedical images contain information that reflects underlying
pathophysiology, recent studies have proposed radiomics
approach to predict response to ICIs (19–24). Nevertheless,
further evaluation needs to be carried out in translating such
research into clinical practice because most literature in the field
had a multi-localization/multi-type tumor cohort design. Delta-
radiomics features (Delta-RFs) which capture therapy-induced
changes in radiomics features are now being evaluated as a
2

complement to Response Evaluation Criteria in Solid Tumor
(RECIST) criteria for monitoring therapeutic response in several
tumor types (25–31). Khorrami et al. showed preliminary
evidence for clinical use of Delta-radiomics calculated from
contrast-enhanced CT images as predictive biomarkers of
response to ICIs therapy in NSCLC (31). However, contrast
can obscure radiomics textural features (32), and the
heterogeneity of contrast-enhanced protocols across institutes
magnifies the concern about reproducibility of radiomics. In the
current study, we aim to develop and validate radiomics/Delta-
radiomics nomograms incorporating clinical factors and plain
CT imaging data to predict response to ICIs in patients with
advanced NSCLC. Also, we compared the predictive efficacy of
Delta-radiomics models against pretreatment PD-L1
expression status.
MATERIALS AND METHODS

Study Design
This retrospective multicenter study was conducted in
accordance with the Declaration of Helsinki and was approved
by ethics committee of each participating hospital, with the
requirement for informed consent waived. Between August 1,
2016 and February 28, 2019, radiologic image archives of nine
participating institutions were searched consecutively to identify
patients. The inclusion criteria were as follows: (a) histologically
confirmed NSCLC; (b) immunotherapy with PD-1 ICIs at first or
later line; (c) available baseline demographics and CT images
prior to therapy; (d) follow-up time from initiation of
immunotherapy was at least 6 months with regular clinical
evaluations and CT scans after each two or three cycles of
ICIs. The exclusion criteria were (a) CT images were of poor
quality; (b) the boundary of target lesion was ill defined on plain
CT scan and contrast-enhanced CT images were not available as
reference ; (c) t ime between base l ine imaging and
immunotherapy treatment exceeded four weeks. Finally, 197
patients were enrolled for baseline analysis, then the entire
cohort was randomly divided into a training set (n = 137) and
an independent test set (n = 60) at a ratio of 7:3. The same
procedure was applied to a sub-group of patients (n = 161) who
had available CT scans at baseline (time point 0, TP0) and the
end of the second cycle of immunotherapy (time point 1, TP1),
and this sub-group was used to perform a time-dependent
March 2021 | Volume 11 | Article 657615
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analysis (Figure 1). Clinical characteristics (age at diagnosis,
gender, smoking history, pathological type, and TNM stage) of
all patients were obtained from the medical records.

Imaging Data Acquisition and Harmonizing
The pretreatment and follow-up CT scans were acquired on a
varied set of CT scanners (Supplementary Data). The median
time interval between baseline CT examination and initiation of
immunotherapy was 12 days. For preprocessing, all CT images
were resampled to 1.5 mm resolution on all three directions to
standardize the voxel size across patients. In addition, z-score
normalization was applied to unify CT-value scales
across scanners.

Tumor Delineation and Treatment
Response Assessment
Two radiologists (YL, with 13 years of experience in thoracic
radiology and MW, with 3 years of experience in thoracic
radiology) who were blinded to the outcome label reviewed
baseline CT images and defined the target lesions according to
RECIST 1.1 (33) (maximum of five lesions, two per organ) in
consensus, and then the largest target lesion was chosen for each
case. Totally, 322 target lesions were identified for all patients.
Then the volume of interest (VOI) of all target lesions on plain
CT images (both baseline and follow-up scans) were delineated
manually via ITK-SNAP (www.itksnap.org) by one radiologist
(MW) and then reviewed and modified by another
radiologist (YL).

We classified response patterns on a patient basis. Clinically,
immunotherapy response is frequently measured at 6 months
Frontiers in Oncology | www.frontiersin.org 3
(19, 34). Therefore, the endpoint of our study was a dichotomous
response status (responder/non-responder), as defined by
iRECIST (35) at 6 months of immunotherapy initiated, which
was convinced that had better representative of benefits. Patients
presenting complete response (CR/iCR), partial response (PR/
iPR) or stable disease (SD/iSD) were considered as “responders”,
patients who had confirmed progressive disease (iCPD) after
treatment were classified as “non-responders”. For those patients
who were thought to be unconfirmed progression (iUPD) at 6-
month follow-up, their response status was determined by
additional follow-ups to ensure unconfirmed progression
would not be used as labels in model training.

Detection of PD-L1 Expression Status
PD-L1 expression was measured through IHC testing with
biopsy or resection specimens, and a minimum of 100 tumor
cells (TCs) were required for the assessment. PD-L1 expression
was quantified by the tumor proportion score (TPS), which is
defined as percentage of PD-L1-positive TCs over total TCs, and
it was classified into two levels: negative expression (TPS <1%),
and positive expression (TPS ≥1%) owing to the diversity of
pathological reports in our dataset.

Feature Engineering and
Signature Building
About 402 handcraft radiomics features (RFs)were extracted using
in-house software (Analysis Kit, version 3.2.5, GE Healthcare)
(Table S1). For patients who received baseline and follow-up CT
scan at TP1 (median: 52 days), RFs were extracted from both time
points respectively. The Delta-RFs, which were transmitted into
A

B

FIGURE 1 | (A) Study workflow. The workflow presented a summary of target lesions annotation and response assessment, preprocessing and modeling schemes
of radiomics. (B) Patient flow diagram. For baseline-radiomic dataset, training and test set were randomly divided in a proportion of 7:3 respectively as well.
March 2021 | Volume 11 | Article 657615
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the same analysis workflow as baseline RFs, were defined as the
relative net change of RFs between TP0 and TP1 (Equation (1)):

Relative Net Change = Feature TP1 − Feature TP0ð Þ=Feature TP0
To choose the optimal subset of features, Minimum

Redundancy Maximum Relevance (mRMR) was performed to
eliminate redundant and irrelevant features in advance. Then the
Least Absolute Shrinkage and Selection Operator (LASSO)
logistic regression was conducted to construct the final model.
A radiomics signature (Radscore) was calculated for each patient
via a linear combination of selected features and coefficient
vector. Besides, two approaches of organizing Radscore or
Delta-Radscore were proposed to promote lesion-wise analysis
toward individual-wise on the assumption that lesion-wise
response might not act as a global representative of patient
benefit from immunotherapy due to those complicated
individual response patterns.

Largest target lesion (LL) approach: select RFs or Delta-RFs of
the largest target lesion as individual-wise signature to predict
therapy response.

Target lesions (TL) approach: in single-time-point analysis,
average RF of all target lesions is regarded as a global image
biomarker passed to further analysis, whereas in Delta-radiomics
analysis, relative net change of average RF is used instead.

Statistical Analysis
All statistical analyses were performed using R (version 3.5.1)
and Python (version 3.5.6). Chi square test was used for
categorical variables. Independent t-test or Mann–Whitney test
was used for continuous variables. A multivariate logistic
regression analysis with backward elimination method was
performed to construct the best model combining clinical
factors and RFs. Performance of the models were evaluated
with area under the ROC curve (AUC). Differences between
various AUCs were compared with the DeLong test (36).
Calibration curves were applied to evaluate the predictive
accuracy of the nomogram model generated. To evaluate
clinical utility of the radiomics nomogram, decision curve
analysis (DCA) was performed by quantifying the net benefits
at different threshold probabilities. A two-tailed P-value <0.05
indicated statistical significance.
RESULTS

Clinical Characteristics
A total of 197 eligible patients who met the criteria were
identified from nine participating hospitals. 105 patients
received monotherapy with PD-1 ICIs (Nivolumab,
Pembrolizumab, Tislelizumab, Sintilimab, or Camrelizumab),
and 92 patients were treated with immunotherapy-based
combinations (PD-1 ICIs with chemotherapy and/or
antiangiogenic agents). We observed that 41.62% patients (n =
82) showed PD, and the reaming of them present PR (n = 94) or
SD (n = 21) at the sixth month, with an overall disease control
rate (DCR) of 58.37% (Figures 2A, B). There were no significant
Frontiers in Oncology | www.frontiersin.org 4
differences in DCR and clinical characteristics between the two
cohorts, which justified their use as training and test sets (Table
S2). The differences in clinical characteristics at baseline between
responders and non-responders were not significant, except for
distant metastasis in training set (P = 0.01) (Table 1).

For the sub-cohort analysis of patients who have both
baseline and follow up CT scans at TP1 (n = 161), the two sets
had identical distributions of DCR and clinical characteristics
(Table S2). Among these patients, responders had lower
percentage of distant metastasis compared to non-responders,
with significant difference in training set (P = 0.02). There was no
significant difference in other factors, including age, sex, smoking
history, pathological type, and treatment strategy (Table 2).

Feature Selection and Radiomics
Nomogram Building Using
Baseline Information
From the LL approach, three optimal features with respective
nonzero coefficients in the training set were chosen to construct
the radiomics signature prediction model (Supplementary
Equation 1). The median Radscore of non-responders was
slightly higher than responders in both training and test sets, but
did not reach significant difference (P = 0.10, AUC = 0.59; P = 0.89,
AUC = 0.51). From TL approach, seven features were chosen in the
Radscore calculation formula (Supplementary Equation 2).
Comparison of Radscore demonstrated no significance difference
between the two response groups (P = 0.27, AUC = 0.56; P = 0.54,
AUC = 0.53).

Combined nomograms that incorporated radiomics signature
and clinical factor of distant metastasis were established. The ROC
analysis exhibited fair prediction value of the developedmodel with
an AUC of 0.65 (95%CI, 0.56 to 0.74) for LL approach andAUC of
0.64 (95% CI, 0.54 to 0.73) for TL approach in training set. The
models carried out poorly in test sets (AUC = 0.52, 95% CI, 0.37 to
0.67; AUC = 0.61, 95% CI, 0.47 to 0.75).

Delta-Radiomics Nomogram Building
and Evaluation
Through the LASSO logistic regression analysis, three Delta-RFs
were selected for LL approach (Figure 3A, Supplementary
Equation 3). The Delta-Radscore was significantly higher in non-
responders than in responders in both training (P <0.01) and test
sets (P = 0.03) (Figure S1A). Responders presented lower level of
Radscore at TP1 (P <0.01), and the difference was borderline
significant in test set (P = 0.05) (Figure S2A). The developed
Delta-radiomics signature showed a favorable result in predicting
response status that produced an AUC of 0.81 in training set (95%
CI, 0.73–0.89) and 0.80 in test set (95% CI, 0.68–0.93), respectively
(Figure 3B). Specifically, this Delta-radiomics signature performed
better prediction performance than radiomics signature constructed
with radiomics features at TP1 (Supplementary Equation 4)
(Figure S2B); however, the improvement did not showed
significance in the Delong Test (P = 0.09, P = 0.16, respectively).

The Delta-radiomics signature for TL approach was developed
using nine Delta-RFs (Figure 3D, Supplementary Equation 5).
There was a significant difference in Delta-Radscore between
March 2021 | Volume 11 | Article 657615
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A B

D

C

FIGURE 2 | (A) Individual response map of patients in Delta-radiomics sub-cohort. Bars indicate the changes of total tumor burden between baseline and TP1 CT
scans. Patients are grouped on the basis of therapy response at TP1 following iRECIST criteria (Complete response [CR] in green, partial response [PR] in blue,
stable disease [SD] in gray, and unconfirmed progression [iUPD] in purple). In addition, hyper-progression (n = 1, in red) and pseudo-progression (n = 8, in orange)
are noted as well. (B) Sankey diagram depicts therapy response alternation flow within follow-up interval. For those patients who met the progression threshold (20%
increasement of tumor burden) at any time point within follow-up interval, updated response labels are attached according to their subsequent assessment
(Confirmed progression [iCPD], stable disease [iSD], and partial response [iPR]). It’s noteworthy that for those patients who were thought to be iUPD at 6-month,
their labels were determined by additional follow-ups so that any unconfirmed progression would not be used as labels in model training. (C, D) Nomograms of
largest target lesion model (in blue) and target lesions model (in red) which were developed in training set respectively.
Frontiers in Oncology | www.frontiersin.org March 2021 | Volume 11 | Article 6576155
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responders and non-responders in training set (P <0.01), which
was then confirmed in test set (P <0.01) (Figure S1B). In the ROC
analysis, the Delta-radiomics signature prediction model yielded
an AUC of 0.82 (95% CI, 0.74–0.90) in training set and 0.81 (95%
CI, 0.67–0.94) in test set (Figure 3E).
Frontiers in Oncology | www.frontiersin.org 6
A combined Delta-radiomics nomogram incorporating the
developed delta-radiomics signature with clinical factor of
distant metastasis was chosen as the best response status
classifier (Figures 2C, D). The usefulness of combined Delta-
radiomics nomogram for LL approach was confirmed in the
TABLE 2 | Characteristics of patients in Delta-radiomics analysis.

Characteristics Training set P value Test set P value

Responders Non-responders Responders Non-responders

Age, median (P25–P75) 63 (35–84) 63 (44–78) 0.61 61 (29–75) 62 (36–77) 0.99
Male 64 (35–84) 64 (44–78) 61 (29–75) 62 (36–70)
Female 55 (43–79) 63 (59–74) 54 (48–64) 59 (37–77)

Sex, No. (%)
Male 60 (86.96%) 38 (88.37%) 0.83 24 (80.00%) 12 (63.16%) 0.19
Female 9 (13.04%) 5 (11.63%) 6 (20.00%) 7 (36.84%)

Smoking history, No. (%)
Non-smokers 18 (26.09%) 13 (30.23%) 0.58 8 (26.67%) 6 (66.67%) 0.78
Smokers 51 (73.91%) 30 (69.77%) 22 (73.33%) 13 (44.83%)

Pathological type, No. (%)
Adenocarcinoma 35 (50.72%) 26 (60.47%) 0.31 14 (46.67%) 9 (47.37%) 0.96
Others 34 (49.28%) 17 (39.53%) 16 (53.33%) 10 (52.63%)

Distant metastasis, No. (%)
Absence 17 (24.64%) 3 (6.98%) 0.02* 8 (26.67%) 3 (15.79%) 0.06
Presence 52 (75.36%) 40 (93.02%) 22 (73.33%) 16 (84.21%)

Treatment strategy, No. (%)
Monotherapy 32 (46.38%) 27 (62.79%) 0.09 17 (56.67%) 11 (57.89%) 0.93
Combination therapy 37 (53.62%) 16 (37.21%) 13 (43.33%) 8 (42.11%)

Rad-score of TP1 (P25–P75) −0.47 (−0.75, −0.34) −0.30 (−0.45, −0.18) <0.01* −0.44 (−0.76, −0.32) −0.34 (−0.48, −0.19) 0.05
Rad-score of Delta-RFs (P25–P75)
Target lesions −1.02 (−1.42, −0.57) 0.04 (−0.53, 0.54) <0.01* −0.97 (−1.63, −0.65) −0.13 (−0.65, 0.12) <0.01*
Largest target lesion −0.87 (−1.08, −0.51) −0.20 (−0.62, 0.30) <0.01* −0.86 (−1.17, −0.63) −0.46 (−0.59, −0.22) 0.03*
March 2021 | Volume 11 |
 Article 65761
*P value < 0.05.
TABLE 1 | Characteristics of patients in baseline analysis.

Characteristics Training set P value Test set P value

Responders Non-responders Responders Non-responders

Age, median (range) 63 (35–84) 64 (36–78) 0.52 63 (29–75) 62 (41–77) 0.86
Male 64 (36–84) 64 (36–78) 63 (29–75) 58 (41–74)
Female 55 (43–79) 61 (37–72) 64 (43–72) 74 (62–77)

Sex, No. (%)
Male 68 (83.95%) 44 (78.57%) 0.42 31 (91.18%) 22 (84.62%) 0.71
Female 13 (16.05%) 12 (21.43%) 3 (8.82%) 4 (15.38%)

Smoking history, No. (%)
Non-smokers 22 (27.16%) 17 (30.36%) 0.68 8 (23.53%) 8 (30.77%) 0.53
Smokers 59 (72.84%) 39 (69.64%) 26 (76.47%) 18 (69.23%)

Pathological type, No. (%)
Adenocarcinoma 37 (45.68%) 29 (51.79%) 0.75 18 (52.94%) 13 (50.0%) 0.87
Others 44 (54.32%) 27 (48.21%) 16 (47.06%) 13 (50.0%)

Distant metastasis, No. (%)
Absence 21 (25.93%) 5 (8.93%) 0.01* 8 (23.53%) 2 (7.69%) 0.20
Presence 60 (74.07%) 51 (91.07%) 26 (76.47%) 24 (92.31%)

Treatment strategy, No. (%)
Monotherapy 37 (45.68%) 31 (55.36%) 0.27 18 (52.94%) 19 (73.08%) 0.11
Combination therapy 44 (54.32%) 25 (44.64%) 16 (47.06%) 7 (26.92%)

Rad-score (P25–P75)
Target lesions −0.46 (−0.60, −0.30) −0.41(−0.55, −0.21) 0.27 −0.42 (−0.57, −0.21) −0.39 (−0.57, −0.22) 0.54
Largest target lesion −0.20 (−0.21, −0.18) −0.19 (−0.20, −0.17) 0.10 −0.20 (−0.21, −0.16) −0.19 (−0.20, −0.17) 0.89
*P value < 0.05.
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ROC analysis with an AUC of 0.83 (95% CI, 0.75–0.91) for
training set and an AUC of 0.81 (95% CI, 0.69–0.93) for test set
(Table 3, Figure 3B). Meanwhile, combined Delta-radiomics
nomogram for TL approach yielded an AUC of 0.83 (95% CI,
0.75–0.91) in training set and 0.81 (95% CI, 0.68–0.95) in test set
(Table 3, Figure 3E), which was comparable with that from the
LL approach (P = 0.92, P = 0.97). The prediction accuracy was
0.77 for the former model and 0.78 for the latter one (Table S3)
without any significance (P = 1.00). The calibration curves of the
Frontiers in Oncology | www.frontiersin.org 7
combined Delta-radiomics nomograms showed good
agreements between the nomogram prediction and actual
observation (Figures S1C, D). The DCA (Figures 3C, F)
indicated that when the threshold probability for a patient is
within a range from 0 to 0.84, the combined Delta-radiomics
nomograms add more net benefit than the “treat all” or “treat
none” strategies from either the LL or TL approach.

To control confounding factors, stratified analysis for
treatment strategy was made (Table S4). There was no
A B

D E F

C

FIGURE 3 | Radiomics feature selection using the least absolute shrinkage and selection operator (LASSO) binary logistic regression model, the developed
nomograms with corresponding decision curves. (A, D) Tuning penalty factor (l) in the LASSO model used 10-fold cross-validation via minimum criteria. The
binomial deviance metrics (the y-axis) were plotted against log (l) (the upper x-axis) and the number of selected features (the bottom x-axis). Blue dots indicate the
average AUC for each model at the given l, and vertical bars through the red dots show the upper and lower values of the binomial deviance in the cross-validation
process. Dotted vertical black lines define the optimal l, where the model provides its best fit to the data with optimal subset of variables. Receiver operating
characteristic (ROC) curves comparison among combined radiomics model (red), radiomics model (blue), and clinical model (gray) for training set (solid line) and test
set (dashed line) from the LL approach (B) and TL approach (E). The combined radiomics model incorporating radiomics signature and clinical factor of distant
metastasis showed the highest AUC. Decision curve analysis for the combined radiomics nomogram (red), radiomics signature (blue), and clinical model (gray) from
the LL (C) approach and TL approach (F). The y-axis indicates the net benefit; x-axis indicates threshold probability. The green line represents the assumption that
all patients were responders. The black dotted line represents the hypothesis that no patients were responders.
TABLE 3 | Multivariable logistic regression analyses.

Intercept and variable Model 1 (target lesions) Model 2 (largest target lesion)

Coefficient Odds ratio (95% CI) P value Coefficient Odds ratio (95% CI) P value

Intercept −0.48 0.36 −0.32 0.57
Delta Radiomics signature 1.50 4.47 (2.33, 9.59) <0.01* 2.41 11.11 (4.03, 30.63) <0.01*
Distant metastasis 0.94 2.56 (0.83, 7.89) 0.10* 1.27 3.55 (1.07, 11.75) 0.04*
C-index
Training set 0.83 (0.75, 0.91) 0.83 (0.75, 0.91)
Test set 0.81 (0.68, 0.95) 0.81 (0.69, 0.93)
Ma
rch 2021 | Volume 11 | Article
*P value < 0.05.
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significant difference regarding DCR, pathological type, or
distant metastasis between patients received monotherapy and
those with combination therapy (P = 0.14, P = 0.90, P = 0.13).
The Radscore and combined Delta-radiomics nomogram of
monotherapy group demonstrated comparable performance to
combination therapy group either from LL approach or from TL
approach (all P >0.05 for AUCs comparison).

Stratified Pretreatment PD-L1 Expression
as a Predictor of Response Status
In the sub-cohort of 161 patients with available Delta-RFs, PD-
L1 expression status was known for 66 patients. It was negative in
10 of 66 patients (15.15%), with an accuracy of 39.39% (26 of 66)
in predicting 6-month response status. Significant superiority on
accuracy (P <0.01) of radiomics-based models (up to 94.95%,
Table S5) over pretreatment PD-L1 expression status
was observed.
DISCUSSION

At present, radiological evaluation forms the objective basis of
treatment response assessment criteria for lung cancer patients.
The approach involves manually measuring changes in size of
target lesions between baseline and follow-up CT scans in
conjunction with RECIST guidelines (33, 37). Unfortunately,
pure morphological criteria, even with modifications and
refinements (i.e., iRECIST), are not sufficient because they only
provide a consistent standard for management of data collected
in clinical trials rather than clinical practice or therapy decisions
(35, 38–41). Owing to its distinctive biologic mechanisms of
action, immunotherapy can generate a tumor response pattern
different from those found with cytotoxic chemotherapy or
radiation therapy (42). Unconventional response patterns such
as pseudoprogression and hyperprogression pose a major
challenge to treating physicians, who aim to avoid either
premature discontinuing the therapy too early in the treatment
course or prolonging ineffective treatment that could put patients
at higher risk of immune-related toxicity (43, 44). In this
multicenter study, we did analysis on standard medical images
that routinely used for monitoring therapeutic response to ICIs in
advanced NSCLC patients from a radiomics-based approach. As
demonstrated in this work, delta-radiomics based nomograms
were developed as predictive biomarkers to identify patients who
could derive the greatest therapeutic benefit from ICIs, which were
successfully validated in an independent test set.

Considering of developing a cost-effective decision-support
tool, we first construct a single-time-point radiomics signature
from baseline CT scans to help stratifying patients to receive the
most appropriate therapy strategy. In the context of lung cancer,
radiomics studies typically extract features from the primary
lung tumor, largest lung lesion, or one of the target lesions (19,
22, 23). By contrast, in this work, target lesions (up to five lesions
per patient and up to two lesions per organ) were all included in
the analysis. To the best of our knowledge, no previous studies
have explored the capability of RFs of CT images for all target
Frontiers in Oncology | www.frontiersin.org 8
lesions in immunotherapy response evaluation. We suspect that
this novel approach, which was more consistent with what we
did in clinical practice regarding response evaluation of immune-
based therapeutics, could reflect total tumor burden to some
extent. In addition, we noticed that a few patients present both
responding and progressive lesions (i.e. mix-response) at follow
up examination. Under this circumstance, potential selection
bias could be avoided in use of purposed TL approach comparing
to LL approach.

The results demonstrated that nomograms incorporating
baseline radiomics signature and clinical factor of distant
metastasis did not exhibit high predictive value, which were
inconsistent with prior studies (19, 21). We believe that such a
discrepancy can be explained in part by the fact that RFs were
extracted from plain CT imaging data rather than contrast
enhanced CT images. Another possible cause is that patients
receiving anti-PD 1 monotherapy and immunotherapy-based
combinations were all included in the dataset, leading to the
heterogeneous composition of our cohort. As combination of
immunotherapy and chemotherapy regimen is now
recommended as first-line therapy options for certain NSCLC
patients according to NCCN recommendations (6), this study
design is more in line with actual clinical situation. Moreover, the
result of stratified analysis for treatment strategy confirmed that
there was no significant difference in model efficacy between
different treatment groups.

Although single time medical images especially those
obtained at baseline are conventionally used for prediction,
they do not contain information regarding treatment response.
Delta-radiomics could offer abundant temporal-dependent
information regarding therapy induced changes during the
course of treatment (31, 45), and is relatively free of
interference by factors that affect the reproducibility of
quantitative image analysis. We proposed Delta-radiomics
signature and compared it with single-time-point radiomics
signature at TP1. Interestingly, Delta-radiomics signature of LL
approach showed higher AUC, which agrees with a recent paper
(26). Although we did not find significant difference of AUC
between them, the lower 95% confidence interval of AUC at TP1
is 0.51 in the test set, indicating an insufficient diagnosis
efficiency. Furthermore, Radscore between the two response
groups had borderline significance with P value of 0.05 in the
test set at TP1, suggesting that the radiomics signature might be
slightly over-fitted to training set. Therefore, we can reasonably
infer that Delta-radiomics could provide better predictive
decision support. Meanwhile, we noticed that a decrease in
sum of measures of target lesions did not guarantee benefit
from immunotherapy. In this study, a transient tumor increase
in size was encountered at TP1 in 15 patients, which was
followed by a delayed response or stability and categorized as
responders at 6 months of immunotherapy initiated. Hence,
conventional CT interpretation, which relies on primarily sum of
the target lesions, could not be a sensitive index for response
assessment.Notably, the combined radiomics nomogram of LL
approach achieved favorable predicting capacity. A combination
of non-specific morphological information (i.e. major and least
March 2021 | Volume 11 | Article 657615
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axis length) and contextual metrices of voxel intensity which
depicted the diversity of convergent CT-value clusters probably
reflecting agglomerate tissue areas (cancer cell nests or
inflammation-induced necrosis) were included from both LL
and TL approaches, so that a comprehensive representation of
tumor evolutionary dynamics in the course of immunotherapy
was promised.

This study is unique in that we conducted radiomics analysis
in both lesion and patient level with a comparable performance.
This observation highlights the feasibility and effectiveness of the
utility of Delta-radiomics analysis on all target lesions, which
could provide a consistent framework to iRECIST and overcome
those confusions caused by mixed response pattern of immune-
based therapeutics in NSCLC patients. More interestingly, our
results showed that Delta-radiomics models outperformed
pretreatment PD-L1 expression status in predicting response to
ICIs in a subset of patients, and the combined model of TL
approach had the highest accuracy. So far, the effectiveness of
imaging-driven biomarkers with pretreatment CT images for
prediction of PD-L1 expression in advanced NSCLC has been
tentatively confirmed in several retrospective populations (46,
47), which enables investigators to validate the combination of
PD-L1 expression signature with Delta-radiomics model for a
better patient stratification and management in further
prospective trials.

Our study has some limitations, the first of which is the
heterogeneity of the cohorts, which could affect feature
extraction and the procedure of analysis, even if several efforts
has been made to weaken multicenter effect. Second, the sample
size of the cohort was relatively small. Third, brain metastatic
lesions were not chosen as target lesions in our analysis because
multimodality approach is beyond the scope of this study. Given
that the presence of distant metastasis is incorporated into the
nomogram model as a clinical factor, the exclusion of brain
metastatic lesion would not affect final prediction. Fourth, the
potential biological underpinnings of radiomic features were not
discussed in the current study, since relevant data that capturing
tumor micro-environment was not available for this
retrospective cohort. Finally, we had a limited follow-up period
for some patients, and PFS and OS analyses were not done on
this dataset. However, because of advanced tumor stage, our
follow-up interval was deemed sufficient to provide clinically
relevant information.

The results from our pilot study have shown that CT based
Delta-radiomics biomarkers may facilitate treatment response
Frontiers in Oncology | www.frontiersin.org 9
prediction for NSCLC patients receiving immunotherapy with
PD-1 ICIs. This procedure could be integrated into the normal
clinical workflow without any additional cost.
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