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Abstract High-dimensional cytometry is an innovative tool for immune monitoring in health and

disease, and it has provided novel insight into the underlying biology as well as biomarkers for a

variety of diseases. However, the analysis of large multiparametric datasets usually requires

specialist computational knowledge. Here, we describe ImmunoCluster (https://github.com/

kordastilab/ImmunoCluster), an R package for immune profiling cellular heterogeneity in high-

dimensional liquid and imaging mass cytometry, and flow cytometry data, designed to facilitate

computational analysis by a nonspecialist. The analysis framework implemented within

ImmunoCluster is readily scalable to millions of cells and provides a variety of visualization and

analytical approaches, as well as a rich array of plotting tools that can be tailored to users’ needs.

The protocol consists of three core computational stages: (1) data import and quality control; (2)

dimensionality reduction and unsupervised clustering; and (3) annotation and differential testing, all

contained within an R-based open-source framework.

Introduction
Systems immunology approaches aim to explore and understand the complexity of the immune sys-

tem. However, with 350 cluster of differentiation (CD) antigens, over 100 cytokines and chemokines,

and many different cell subsets, this is a challenging task (Davis et al., 2017). Liquid mass cytometry

(LMC), imaging mass cytometry (IMC), and flow cytometry (FC) are powerful techniques applied to

exploratory immunophenotyping and biomarker discovery. With the ability to profile over 40

markers on an individual cell, these techniques have rapidly expanded our understanding of the

immune system and its perturbations throughout disease pathogenesis (Bertolo et al., 2020;

Wang et al., 2020). However, such comprehensive analyses produce large amounts of data and

increased dimensionality, resulting in a demanding computational task to analyze (Newell and
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Cheng, 2016). Often, a limiting factor to these analyses is the requirement of an in-depth knowl-

edge of computational biology. There is an unmet need for an easy-to-use flexible open-source

computational framework to explore a variety of high-dimensional single-cell cytometry datasets

such as LMC, IMC, and FC within a single framework for nonspecialists. A number of previous

computational cytometry workflows have been proposed, including CyTOF workflow (Now-

icka, 2019), (Diggins et al., 2015) and CapX (Ashhurst, 2019). Subsequently, some of these work-

flows have been incorporated into graphical user interfaces (GUI) or code-based workflow packages

such as CATALYST (Crowell et al., 2020), Cytofkit (Chen et al., 2016), diffcyt (Weber et al., 2019),

and Spectre (Ashhurst, 2020). However, these approaches can be challenging to implement without

significant computational knowledge. We have therefore developed ImmunoCluster, building on

and extending the framework proposed in the CyTOF workflow (Nowicka, 2019), to create modular,

flexible, and easy-to-use implementations of cytometry analysis pipelines. The ImmunoCluster pack-

age is a framework that provides appropriate data structures and methods to increase the utility of

these high-dimensional methods and make data analysis and interpretation accessible to all

researchers to facilitate immune phenotyping projects, such as those associated with preclinical and

clinical studies.

Here, we present ImmunoCluster, an open-source computational framework for the analysis of

high-dimensional LMC, IMC, and FC datasets. ImmunoCluster is an R package and framework that

focuses on the organization and visualization of data to help define biological identity of cells, con-

struct a hierarchy of biologically meaningful cell populations, and detect significant changes between

conditions, timepoints, and groups, including serial samples from a clinical trial setting. The frame-

work uses state-of-the-art computational techniques in an easily amendable and flexible format.

Users can manipulate figures and outputs to suit their specific needs. The computational approaches

used to analyze high-dimensional data are rapidly evolving, and ImmunoCluster has the flexibility to

incorporate these novel computational methods in dimensionality reduction, clustering, and trajec-

tory analysis within its framework. The computational framework is designed for ease of use and

broad applicability so that it is simple enough to be implemented by users with only a basic knowl-

edge of R, as well as possessing the flexibility for more advanced users to incorporate additional

new methodology and build on the framework. The framework relies on the SingleCellExperiment

class (Lun, 2017), which means that the flow cytometry standard (FCS) data is contained within a

purpose-built object that stores all stages of analysis to permit multiple analysis paths to be per-

formed in parallel. The framework incorporates methods for applying popular R packages (i.e.,

RPhenograph [Chen and Chen, 2015], Rtsne [Krijthe, 2018], and FlowSOM [Van Gassen, 2015a])

along with convenient ‘wrapper functions’ allowing for the use these popular dimensionality reduc-

tion and clustering algorithms in an easy format for nonspecialists to rapidly produce interpretable

data that are extendable to advanced experimental designs. ImmunoCluster also contains functional-

ity for adaptive downsampling at the import and dimensionality reduction stages of the pipeline to

overcome significant increases in runtime associated with large datasets in dimensionality reduction

algorithms like UMAP and tSNE. The outputs from ImmunoCluster are created using the ggplot

package, which generates ggplot graphical objects that are flexible, can be further modified and uti-

lized directly into figures for reports and publications. The core of the visualization tool was devel-

oped using scDataviz, a Bioconductor package (Blighe, 2020a) for visualizing single-cell data and

influenced by the visual framework outlined in CyTOF workflow (Nowicka, 2019). ImmunoCluster

offers an alternative to the currently used frameworks such as CATALYST (Crowell et al., 2020) and

Cytofkit (Chen et al., 2016), with a focus on ease of use for biologists, as well as offering additional

novel aspects for its users compared with other published frameworks. Importantly, and unique to

ImmunoCluster, the scope of functionality in this package also enables the analysis of IMC data.

Users are able to run IMC data in line with FC and LMC data analyses. Due to the lower resolution

of IMC data (compared with FC and LMC), we specifically designed the ‘ranked expression heatmap’

function to work with IMC data, which allows users to rank markers measured to help identify cell

populations. IMC provides a means to analyze the spatial dimension of the cells in situ within tissues,

which can provide important insight when ascribing functionality to cell populations. Methods for

analyzing large cytometry datasets, particularly IMC datasets, in an open-source computational envi-

ronment are currently limited. ImmunoCluster has been designed for use by a nonspecialist; how-

ever, it would be useful to a range of users from wet-lab nonspecialist experimentalists to

experienced computational biologists with potential utility in day-to-day research through to large-
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scale studies involving multiple longitudinal serial biopsies where samples need to be analyzed and

compared.

Clinical immune monitoring is an area of increasing utilization (Hernandez et al., 2020). In the

current work, we will present examples of ImmunoCluster’s ability to detect clinically relevant pertur-

bations in immune cellular heterogeneity in LMC, IMC, and FC datasets in human patient and/or

healthy samples. ImmunoCluster is easily extensible to several arbitrary experimental designs and

can be utilized to aid both discovery of novel subpopulations of cells within heterogeneous samples

or as a foundation for monitoring longitudinal changes or responses to treatment. As such, Immu-

noCluster provides a resource that will permit unsupervised high-dimensional data analysis to be

more widely adopted in immunobiology and many other disciplines.

Results
This section aims to convey the scope of ImmunoCluster, its versatility, and applicability to complex

datasets across a range of high-dimensional approaches. We implemented the ImmunoCluster

framework for three different types of high-dimensional single-cell data (LMC, IMC, and FC). Immu-

noCluster also offers user-friendly flexibility throughout the framework, and researchers can easily

adapt all figures and outputs to suit their specific needs, resulting in an abundance of tailored out-

puts for the user to assess and use in publications, reports, and presentations. An example detailing

a variety of tailor-made figures produced by ImmunoCluster can be found in Figure 1—figure sup-

plement 1.

We first used previously published and publicly available LMC data (Hartmann et al., 2019). This

dataset was chosen as it is representative of an intricate immunophenotyping project and would test

the ability of ImmunoCluster to reproduce published results. Secondly, we investigated two novel

IMC datasets, from HNSCC and diffuse large B-cell lymphoma (DLBCL) patients with the aim of dem-

onstrating the applicability of the ImmunoCluster tool for IMC data analysis and cell cluster identifi-

cation and visualization. Finally, FC data from the BM of seven healthy donors (HDs) during hip

surgery were used to show the ability of the framework to analyze conventional FC data and identify

rare immune cell populations.

Liquid mass cytometry
The chosen dataset (Hartmann et al., 2019) includes mass cytometry data from 15 patients with leu-

kemia who all received bone marrow transplant (BMT), three of whom developed acute graft versus

host disease (GvHD). Samples were taken at 30 and 90 days post-BMT. Thirty-three cell markers,

both lineage and functional, were analyzed using mass cytometry (Helios CyTOF system). Prior to

uploading into the ImmunoCluster framework, the FCS files were normalized and gated as described

in the Materials and methods section. We observed that a typical pipeline run on the full 2.3 million

cell LMC GvHD dataset (with UMAP downsampling to 500k cells) would take ~110 min on a 2.9 GHz

Intel Core i7 MacBook pro with 16 GB RAM (Figure 1—figure supplement 2).

An initial visualization of the data was first carried out using multidimensional scaling (MDS) plots,

which were overlaid with metadata to identify the similarity of patients by condition and day of mea-

surement (Figure 1A, B). A heatmap was also created to give an overview of marker expression for

each patient and annotated with the metadata provided (Figure 1C). The UMAP algorithm was used

for dimensionality reduction of data. There was a difference in the distribution of cells from GvHD

and ‘none’ across the cell islands between both timepoints, 30 and 90 days after BMT (Figure 2A).

The mass cytometry panel used in this experiment was specifically designed to identify all major

human immune cell lineages (Hartmann et al., 2019); the marker expression across cell islands was

visualized and indicated cell types present within the cell islands (Figure 2B) (expression of all

markers measured; Figure 2—figure supplement 1). To further distinguish the cell types that were

present in the cell islands and visible from the dimensionality reduced UMAP plots (Figure 2B), the

FlowSOM clustering algorithm with consensus clustering metaclustering was applied, which has

been demonstrated to scale well to large cytometry datasets (Weber and Robinson, 2016). The

number of clusters input into the FlowSOM algorithm was slightly higher than the number of

expected cell clusters (n = 56) (Figure 2—figure supplement 2). The SingleCellExperiment object

stored the data for each K meta-clustering (K1-K56); therefore, further downstream data exploration

was carried out looking at different numbers of K clusters. A heatmap showing the expression of the
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33 markers measured was used to identify cluster cell types (Figure 2—figure supplement 2),

and ImmunoCluster was successfully able to replicate the findings from Hartmann et al., 2019, with

24 of the cell populations being identified (Figure 2C, D). Selecting the correct number of clusters

to input into the clustering algorithm can be a challenging aspect of these analyses, but the frame-

work provides the user with multiple parameters to aid this decision. We recommend that users

should always overestimate the number of cell populations as data for each K number of clusters will

be stored in the SingleCellExperiment object and can therefore be explored and refined later using

the different visualization techniques available within the framework. Additionally, the elbow plot

generated by the ConsensusClusterPlus package can be examined alongside the clustering algo-

rithm output to guide the decision on the best number of clusters for downstream analysis (Fig-

ure 8—figure supplement 6). Over-clustering can allow for the identification of rare cell types

within a dataset at the expense of often generating several clusters of highly prevalent cell types

that likely represent the same biological cell type. ImmunoCluster provides the tools to manually

and reproducibly merge clusters of the same biological cell identity into one group after over-clus-

tering. These clusters can additionally be merged into each other to use a less granular, higher-level

population annotation (see Figure 2—figure supplement 3 for an example of higher-level

clustering).

The abundance of all cell types across all samples was measured, and CD14+CD16- monocytes

were identified as the most abundant population, correlating with the Hartmann et al. data

(Hartmann et al., 2019; Figure 2E). Individually displaying patient’s cell-type abundance means that

Figure 1. Initial exploration of liquid mass cytometry data from patients with leukemia who received bone marrow transplants (BMTs). (A, B)

Multidimensional scaling of data; median marker expression data from each sample were used to create plots, annotated with condition (graft versus

host disease or none) (A), and time after BMT treatment (B). (C) Heatmap showing the median marker expression for each patient.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Customizable figure outputs.

Figure supplement 2. ImmunoCluster typical pipeline runtime.
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Figure 2. Dimensionality reduced liquid mass cytometry CyTOF data and marker expression. (A) UMAP plots colored by graft versus host disease and

none and split by timepoint (30 and 90 days after bone marrow transplant treatment). (B) Expression of eight selected lineage markers projected onto

UMAP plot. Identifying cell types and abundance of clusters. (C) Heatmap showing median marker expression across all identified cell types. (D) UMAP

annotated with cell types. (E) Distribution of immune cell frequencies and abundance (%) of each cell type across all samples measured.

Figure 2 continued on next page
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we could identify variation within a group of interest; for example, we observed that although there

is variation within the GvHD and none, overall, they appear to follow the same trends in cell-type

abundance (Figure 3A). Additionally, significant differences between memory B-cells (false discovery

rate [FDR] p=4.38�10�3), naı̈ve B-cells (FDR p=1.35�10�2), and naı̈ve CD4+ T-cells (FDR

p=3.47�10�2) were identified between the GvHD and none (Figure 3B, C) using a t-test. A differ-

ence in number of naı̈ve B-cells was previously reported by Hartmann et al., 2019 in this dataset

and can be seen in Figure 2A (using Figure 2D for cell island identification), where there is a notice-

able reduction of these cells in the GvHD patients. In addition, a reduction in naı̈ve CD4+ T-cells can

also be seen, which was also previously reported, but to a lesser extent. A volcano plot can be used

to highlight the differentially abundant cell clusters between GvHD and none (GvHD logFC+ve and

none logFC-ve), where cell types with FDR p<0.05 are shown in red (Figure 3D), which is also in line

Figure 2 continued

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Expression of all markers measured projected onto cell islands produced by UMAP.

Figure supplement 2. Heatmap showing the marker expression of 56 FlowSOM clusters.

Figure supplement 3. Heatmap showing higher-level cluster of cell types.

Figure 3. Liquid mass cytometry (LMC) CyTOF data cluster and cell-type abundances. (A) Percentage of each cell type shown for each patient

numbered across the bottom of the plot. (B, C) Box plots portray interquartile range (IQR) with the horizontal line representing the median percentage

of cell types in both graft versus host disease (GvHD) and none patients for B-cell and CD4+ T-cell populations, respectively. (D) Differential abundance

analysis; volcano plot showing the significantly differentially expressed cell abundances (false discovery rate p<0.05) between GvHD and none (GvHD

logFC+ve and none logFC-ve). (E) Comparison of checkpoint-related molecules (PD-1 and TIM3), receptors (PD-L1), proliferative (Ki-67), and iNK T-cells

(TCRVa24-Ja18) marker expression between GvHD and none patients in the CD8+ T-cell cluster.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Biaxial plots.
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with the previously published data (Hartmann et al., 2019). We compared ImmunoCluster’s differ-

ential abundance testing output (stat_test_clust), run in the t-test mode, with the Hartmann et al.

data (Hartmann et al., 2019) into the diffcyt computational framework (Weber et al., 2019), which

is a state-of-the-art tool for differential discovery analyses. Diffcyt identified the same three cell clus-

ters (memory B-cells, naı̈ve B-cells, and naı̈ve CD4+ T-cells) as differentially abundant (FDR p<0.05)

between the GvHD and none conditions. This demonstrates concordance with ImmunoCluster’s sta-

tistical output that identified naı̈ve B-cells and naı̈ve CD4+ T-cells as one of the principal differentially

abundant populations, which was also identified in the original analysis of the data

(Supplementary file 4). Additionally, we explored the expression of checkpoint-related molecules,

and their receptors, markers of proliferation, and invariant natural killer T (iNK T) cells in CD8+ T-cells

and compared the expression of these in the patients with GvHD and none (Figure 3E). These

markers help assess the functional states of cells and the checkpoint-related molecules and prolifer-

ative activity markers such as PD-1, PD-L1, TIM3, Ki-67, and TCRVa24-Ja18; the expression of these

antigens has been proposed previously as candidate biomarkers for immunotherapy

(Hartmann et al., 2019). Visually, GvHD patients had a higher expression of PD-1 and a noticeable

difference in the Ki-67 proliferation marker as expected for these patients (Figure 3E).

Imaging mass cytometry
We utilized two different IMC datasets to demonstrate how ImmunoCluster would handle IMC data

from two different tumor microenvironments that possess (1) a biological image with clear bound-

aries, such as head and neck squamous cell carcinoma (HNSCC), where clear tumor and stroma

regions were evident; (2) a biological image that was more heterogeneous and diffuse, such as the

DLBCL lymph node section. ImmunoCluster’s ability to explore IMC data adds an important element

to the framework and demonstrates the flexibility and applicability of the tool. Researchers can

explore IMC data easily, and in line with LMC and FC data. After data preprocessing (see

Materials and methods and Figure 8—figure supplement 2), the transformed gated FCS files were

uploaded into the ImmunoCluster framework. Generally, the same workflow that was applied to the

LMC and FC data was applied to the IMC data from a section of tissue from patients with HNSCC

and DLBCL (lymph node) as a proof-of-principle application of the ImmunoCluster tool for IMC data

analysis (Figures 4 and 5). The only difference with the IMC data was the use of a rank heatmap (Fig-

ure 4—figure supplement 1); this ranks the order of each marker for each sample (1 – total number

of samples). The reason for this was clarity and ease of cell identification across clusters as IMC pro-

duces lower resolution data compared to the data output of LMC or FC, which makes manual

assignments of populations more difficult to interpret. Therefore, a rank of expression was used as

an easy means to facilitate the assignment of cell identity through defining the highest and lowest

expression of markers between clusters.

Head and neck squamous cell carcinoma tissue section
Cell segmented regions are annotated in Figure 4A, where regions 1–3 were selected as tumor

regions and 3–6 as stroma regions. The ImmunoCluster tool was able to distinguish between the

stroma and tumor regions of the tissue section from the HNSCC tumor (Figure 4B), and with addi-

tional markers could provide a more in-depth analysis of the cell phenotypes in each respective

region of the tumor. Dimensionality reduction of the data clearly separated the cell islands belong-

ing to the stroma and tumor regions of the tissue (Figure 4C), suggesting different cell phenotypes

between the regions. The FlowSOM algorithm was applied to cluster the cells and identify cell popu-

lations. The rank heatmap was used to show the ranked expression of each marker (ranked 1–10,

with 10 being high) for each cluster (1–10) (Figure 4—figure supplement 1), and the identified cell

types were then used to annotate the heatmap (Figure 4D). High expression of E-cadherin can be

used as a marker of cancerous tissue in HNSCC, and its expression correlates with the cancer regions

selected for analysis (Figure 4D). We focused on CD8+ T-cell, B-cell, and macrophage cell clusters

(Hladı́ková et al., 2019; Evrard et al., 2019). Regions 2 and 3 of the tumor mostly consist of prolif-

erating (Ki-67+) tumor cells and macrophages (tumor-associated and PD-L1+). Region 1 was a mix of

immune cells, B-cells, and PD-L1+ CD8+ T-cells (Figure 4E). Stromal regions 5 and 6 are mostly PD-

L1+ macrophages and CD8+ T-cells. Region 4 has a cluster of mixed immune cells, and from the IMC

image (Figure 4A) we can see that this region looks like the tumor is encroaching into the stromal
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Figure 4. HNSCC imaging mass cytometry (IMC) data. Immunophenotyping the tumor microenvironment with IMC data using ImmunoCluster. (A) IMC

image showing an example of five channels: PD-L1 (green), CD4 (yellow), E-cadherin (red), CD20 (magenta), and CD8a (blue). Images with the

segmented cell borders are highlighted. The tumor and stroma areas are clear to the eye, and three regions were selected from each as shown

(regions 1–6). (B) Multidimensional scaling plot of stroma and tumor regions. (C) Dimensionality reduced data (UMAP algorithm applied) annotated with

FlowSOM clusters and split by region type. (D) Rank heatmap: ranked expression (1–8, where 8 is high) of seven markers (CD20, CD8a, E-cadherin, Ki-

67, PD-L1, CD68, and PD-1) and identified cell type. (E) Proportion of cell types for each tissue region.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Rank heatmap for the head and neck squamous cell carcinoma patient imaging mass cytometry data.
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region. The stroma seems to be mostly nonproliferating cells (Ki-67- compared to the tumor region)

and CD8+ T-cells, including a CD20+ CD8+ cytotoxic subset (Gingele et al., 2020).

Diffuse large B-cell lymphoma lymph node section
The IMC DLBCL lymph node section was split by high and low Ki-67 expression to identify the highly

proliferative tumor cells (Figure 5A); Ki-67 is used as a prognostic marker in DLBCL (Tang et al.,

2017). The FlowSOM algorithm was applied to the data to split the IMC data into clusters; these

clusters were projected onto the UMAP plot to visualize how these clusters were split between the

Ki-67 high and low (Figure 5B). The marker expression ranking tool was applied to the clustered

data and used to identify cell types (Figure 5C, Figure 5—figure supplement 1). The majority of Ki-

67 high population were proliferating tumor cells (84%), and the Ki-67 low population consisted of a

heterogeneous collection of immune cell populations, such as CD4+ T-cells, CD8+ T-cells, B-cells,

macrophages, and dendritic cells (DCs) that were successfully identified using the ImmunoCluster

tool (Figure 5D).

Figure 5. Diffuse large B-cell lymphoma imaging mass cytometry (IMC) data. Immunophenotyping the lymph node microenvironment with IMC data

using ImmunoCluster. (A) IMC image showing an example of four channels: DNA (red), CD20 (green), CD8a (dark blue), and CD45RA (light blue). The

image was split by high and low Ki-67 expression to identify highly proliferative cells (tumor). (B) Dimensionality reduced data (UMAP algorithm applied)

annotated with FlowSOM clusters and split by Ki-67 high or low. (C) Rank heatmap: ranked expression (1–8, where 8 is high) of 12 markers (CD8, CD68,

CD4, CD3, CD45, CD20, CD45RA, Ki-67, CD74, CD16, PD-L1, and CD11c) and identified cell type. (D) Proportion of cell types for Ki-67 high and Ki-67

low cell populations.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Rank heatmap for the diffuse large B-cell lymphoma patient imaging mass cytometry data.
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Flow cytometry
The HD BM taken during hip surgery was gated for the CD3+CD4+ population before analysis within

the ImmunoCluster framework, with the aim of testing ImmunoCluster’s ability to identify minor pop-

ulations such as Tregs and their subpopulations (Kordasti et al., 2016). The FlowSOM algorithm

was applied to the data, resulting in 40 clusters (Figure 6—figure supplement 1), and a heatmap

was created with median expression of markers to identify cell types (Figure 6B). Due to the markers

used and the low prevalence of Tregs, the majority of cells were identified as CD4+ T-cells. Addition-

ally, three populations of Tregs were identified by the ImmunoCluster tool: Tregs (CD25+CD127low)

(3.6%, 1.3–5.5), Treg A (CD25+CD127low CD45RA+) (0.7%, 0.1–2.0), and Treg B-cells (CD25+-

CD127lowCCR4+CD95high) (0.9%, 0.2–2.4) (Figure 6C). The abundance of Treg A and B for all HDs is

shown in Figure 6D, and their distribution was as expected (Kordasti et al., 2016).

Figure 6. Healthy donor bone marrow flow cytometry data: identification of rare CD4+ T-cell immune cell subsets. (A) Multidimensional scaling plot of

each healthy donor (1–7). (B) Heatmap showing marker expression across clusters of identified cell types. (C) Dimensionality reduced data (UMAP

algorithm applied) annotated with cell type. (D) Proportion of Treg A and B from total cells from healthy donors.

The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. Heatmap showing the marker expression of 40 FlowSOM clusters.
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Discussion
Here, we provide an overview of the flexibility and scope for utilizing ImmunoCluster, an open-

access easy-to-use framework for LMC, IMC, and FC dataset analyses. The ImmunoCluster package

emphasizes ease of use in the generation of flexible and modular cytometry analysis pipelines for

applications such as clinical immune monitoring studies. Explanations of the functions and workflow

have been provided, and an in-depth step-by-step protocol and tutorial are available on the GitHub

site (https://github.com/kordastilab/ImmunoCluster).

The purpose for creating the ImmunoCluster framework was to support nonspecialist researchers

to carry out complex immunophenotyping experiments. The dawn of ‘cytometry big data’ and its

ever-growing utilization has surpassed the number of experimental parameters that a researcher can

feasibly analyze as a collective. The ImmunoCluster framework was designed in collaboration

between wet lab and computational biologists, with the purpose of creating a tool that enables

state-of-the-art analysis, yet easy to use in its application. We provide sufficient detail and explana-

tion for the nonspecialist researcher to understand the need for each analysis step as well as how to

confidently execute the process, with an aim of performing transparent and reproducible analyses.

ImmunoCluster has been built with an emphasis on generalizability and scalability to facilitate a

broad use and is an advance over other open-source tools as it provides an integrated framework to

uniquely perform a complete computational pipeline on high-dimensional LMC, IMC, and FC data.

The inclusion of IMC data analysis brings a unique element to the ImmunoCluster framework and dif-

ferentiates it from other published protocols. ImmunoCluster was built to easily leverage many pop-

ular R packages for cytometry data (i.e., RPhenograph [Levine et al., 2015], Rtsne [van der Maaten

and Hinton, 2008; Laurens van der, 2014], and FlowSOM [Van Gassen, 2015b]), selected because

they are open-source and regularly maintained with extensive documentation. All methods prioritize

customizable and attractive visualizations designed to be used by both dry- and wet-lab researchers/

clinicians. The inclusion of adaptive downsampling of cells for the running of computationally inten-

sive dimensionality reduction steps, using tools such as UMAP and tSNE, allows ImmunoCluster to

generate cytometry analysis pipelines that are readily scalable to a dataset of millions of cells across

several samples and a variety of experimental or phenotypic conditions. ImmunoCluster can also be

run on a local desktop/laptop computer with standard configuration, depending on the number of

cells, adaptive downsampling settings and selection of clustering algorithms can usually be run

within a day end-to-end (Figure 1—figure supplement 2). Whilst the PhenoGraph clustering

method does not readily scale, the FlowSOM-based clustering method can be implemented on

much larger datasets.

The limitations of this computational framework are important to take into consideration when

designing an experiment. Unsupervised clustering (stage 2) of samples is the most important stage

of the framework, and its ability to accurately define populations across all samples is critical to all

later stages of investigation. The number of k clusters to generate (cluster resolution) can signifi-

cantly affect the ability to identify or determine a change in a biologically relevant population. Merg-

ing two subpopulations due to low resolution of clustering may mask an important experimental

observation. Determining the precise number of clusters that are relevant for a given dataset is an

important step. In our step-by-step guide, we provide complete documentation and clear user-

friendly approaches to optimally define this.

Technical inter-sample marker signal variability due to batch effects may impact the ability of

unsupervised analysis to reliably detect certain populations if significant batch effects are present.

MDS plots created in stage 1 of the framework can be used to detect batch effects as well as other

technical artifacts such as antibody staining anomalies. An approach commonly employed in mass

cytometry to overcome this is to use sample barcoding, reducing the variability between each sam-

ple, allowing all samples to be exposed to the same antibody mixture (Schulz and Mei, 2019).

Another regularly employed approach is the inclusion of a shared control sample in each indepen-

dent batch, for example, the same cell type as the experimental samples but all from the same HD.

Statistical methods for batch correction may also be applied; in recent years, a class of methods

called remove unwanted variation (RUV) have been developed, and CytofRUV (Trussart et al., 2020)

is a recently developed package specifically designed for CyTOF dataset batch correction. If there

are significant differences in the total number of cells recovered between samples, samples with

many more cells may bias the clustering. Samples with very few cells recovered may result in
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information loss and missing populations that are in fact present. The ImmunoCluster framework

provides users with two opportunities (creating the SingeCellExperiment and running the dimension-

ality reduction) to downsample, which means the same number of samples will be used for each

sample, rectifying the problem of varying cell numbers. If a particular sample has very few cells, they

may need to be excluded from the analysis as they may not be a representative sample. Although

channel spillover is diminished in mass cytometry, it still exists in fluorescence-based FC and should

be considered when designing antibody panels to reduce the effects on introducing cell phenotype

artifacts in downstream unsupervised analysis. As such, initial exploratory data analysis (e.g., MDS

plots) is key to determining if any of these confounding factors might be present in the data. Addi-

tionally, users may want to introduce fluorescence-minus-one controls, where cells are stained with

all fluorescently tagged antibodies except for the one of interest (Roederer, 2001).

Summary
The ImmunoCluster package increases the accessibility of advanced computational methods for

users tasked with generating high-quality analysis of high-dimensional LMC, IMC, and FC data. More

advanced users can leverage ImmunoCluster’s data structures, methods, and suitability for scripted

analysis to integrate our work with other R analysis tools and build on the package’s foundation. In

our clinically relevant immune monitoring case study setting, the ImmunoCluster framework success-

fully identified 24 phenotypically distinct cell clusters, and their abundance across all samples, and

highlighted differentially represented cells between GvHD and none patients, all of which were con-

sistent with the Hartmann et al. data (Hartmann et al., 2019). We also applied the framework to

two sets of IMC data, showing the broad applicability of ImmunoCluster as well as the ease of being

able to analyze the IMC data in line with LMC data, helping compare these types of data, which will

be useful in future studies where multiple technologies are being applied within one study. Finally,

we implemented FC data into ImmunoCluster, confirming that it was able to analyze conventional

FC data and identify rare immune cell populations. Currently, the preprocessing of raw files is carried

out prior to implementation into the ImmunoCluster framework, but due to the flexibility and design

of the tool, future implementations may include IMC data preprocessing within the ImmunoCluster R

package. This versatile framework provides an opportunity to include all researchers with varying

knowledge and experience in computational biology to be involved in the experimental project from

experimental design, wet lab/clinical trial, all the way through the data analysis process and

visualization.

Materials and methods

Data file preprocessing and preparation for implementation into the
ImmunoCluster framework
LMC data
Here, we describe an example of the ImmunoCluster package analyzing previously published LMC

data (CyTOF) from 15 patients with leukemia 30 and 90 days after BMT, previously published by

Hartmann et al., 2019. After BMT, three of these patients suffered acute GvHD and 12 had no evi-

dence of GvHD (noted as ‘none’ herein). For systems-level biomarker discovery within this trial, a

panel of 33 antibodies were incorporated into the immunophenotyping panel (Supplementary file

1). The panel was designed to cover all major immune cell lineages and several functional subsets

including T-, B-, NK, and myeloid cells and granulocytes (detailed in Hartmann et al., 2019). The

marker panel also included a variety of immune-regulatory proteins, such as PD-1, PD-L1, and TIM3.

The publicly available dataset from the Hartmann et al. study was extracted for the current study

from the FlowRepository (http://flowrepository.org/id/FR-FCM-Z244) (Spidlen et al., 2012). Raw

FCS files for the LMC dataset that were collected on the Helios CyTOF system (Fluidigm, UK)

machine were first normalized using the free CyTOF 6.7 system control software (files can also be

concatenated using the same software if necessary). These files were gated using FlowJo (version

10.5.3) (Becton, Dickinson and Company, UK) to remove beads, doublets, dead cells, and non-

CD45+ cells as well as erythrocytes (CD235ab/CD61+) and neutrophils (CD16+) (Figure 8—figure

supplement 1), as described by Hartmann et al., 2019, before implementation into the Immu-

noCluster framework. There are various alternative open-access tools that can be used to gate these
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files, such as OpenCyto (Finak et al., 2014), CytoExploreR (Hammill, 2020), and Cytoverse (https://

cytoverse.org/).

IMC data
Two different examples of IMC datasets were implemented into the framework. One IMC dataset

was from a human tissue section taken from a patient with HNSCC. Consent was attained by the

Guy’s and St Thomas’ Research Biobank, within King’s Health Partners Integrated Cancer Centre.

The second IMC dataset was from a lymph node section from a patient with DLBCL. Formalin-fixed

paraffin-embedded (FFPE) DLBCL tumor tissue was obtained from King’s College Hospital, in accor-

dance with the Declaration of Helsinki and approved by the UK National Research Ethics Committee

(reference 13/NW/0040). A detailed protocol is available for both datasets as a Supplementary file

(Appendix 1 and 2, respectively). The raw HNSCC IMC data from 12 channels (10 markers + 2 inter-

calator-Ir channels; Supplementary file 2) and the raw DLBCL IMC data from 20 channels (19

markers + nuclei channel; Supplementary file 3) were processed with Python scripts and CellProfiler

pipelines according to Schulz et al., 2018 to segment the image data into individual cells (Figure 8—

figure supplement 2). The mean marker intensity for each segmented cell was exported (comma-

separated values [CSV] file) and either divided into six regions of equal area (HNSCC, three tumor

and three stroma regions) or divided by Ki-67 expression (DLBCL, Ki-67 high or low). The mean

marker intensity for each segmented cell was multiplied by 65,535 to recover the image intensities

(Fluidigm IMC machine = 16 bit, the dynamic range of the measurements is 0 to (216)�1) and asinh

(co-factor 0.8) transformed in R Studio. These CSV files were converted into FCS files and gated in

Cytobank (Chen and Kotecha, 2014); functions are also available within the ImmunoCluster package

to convert SCE or CSV data files into FCS format.

FC data
FC data from the BM of seven HDs were used to demonstrate the ability of the framework to ana-

lyze conventional FC data and identify rare immune cell populations. BM samples from HDs were

obtained by extraction of the bone marrow cells from the bone of the femoral head. This noninter-

ventional study was approved by the ethical committee of Cochin-Port Royal Hospital (Paris, France)

(CLEP Decision No.: AAA-2020-08039). Femoral heads were obtained after informed consent during

hip replacement surgery. These were cut in half and collected in a conservation medium (Hanks bal-

anced salt solution with NaHCO3, Eurobio), supplemented with heparin (7%) and then transported

to the laboratory at room temperature (RT). These were scraped with a spatula, ground in a mortar,

and washed with a PBS solution supplemented with 100 mg/ml DNAse (Sigma Aldrich). The FCS files

were gated for singlets using a FSCint/FSCpeak dot plot, and dead cells were removed using a for-

ward scatter (FSC) and side scatter (SSC) dot plot. Leukocytes were gated on a CD45/SSC dot plot.

Finally, they were gated to identify the CD3+CD4+ population of cells for analysis in the Immu-

noCluster framework (gated in Cytobank; Chen and Kotecha, 2014).

Workflow overview
The ImmunoCluster package is accessible via GitHub (https://github.com/kordastilab/ImmunoClus-

ter), where a detailed step-by-step walkthrough of the tool and R Markdown files (RMD) for LMC/FC

and IMC data analysis are available. The RMD files permit users to logically work through the frame-

work in sections in a ‘click and play’ manner. Additionally, all scripts to replicate figures published

here are available via GitHub. Users will need to have R downloaded to run the ImmunoCluster tool.

The ImmunoCluster framework provides tools and support, allowing researchers to follow a work-

flow that guides them through experimental design, data analyses, interpretation, and statistical sig-

nificance testing, to publishable graphics identifying differences in phenotype and abundance of

cells between conditions analyzed (Figure 2 and Figure 7 and Figure 8). The framework comprises

three core computational stages that are conducted by the ImmunoCluster tool:

Stage 1: Data import and quality control

a. We provide tools designed primarily for computational preprocessing of FCS data files for
downstream applications including parameter renaming and transformation. The generated
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Figure 7. ImmunoCluster workflow stages and SingleCellExperiment structure. (A) Schematic outlining the typical cytometry workflow and its

interactions with the SingleCellExperiement ImmunoCluster object. (B) SingleCellExperiment structure in ImmunoCluster. The SingleCellExperiment

class is a data container, storing multiple layers of data to create the SingleCellExperiment object, which holds all relevant data for an experiment.

Feature metadata: imported by the user in the form of a panel_metadata file, which is a table containing all markers measured, each annotated with

Figure 7 continued on next page
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high-dimensional data are imported into the computational framework as FCS file formats or
summarized feature expression values in CSV tabular format.

b. Associated metadata files need to be completed by the researcher in the experimental design
stage (Figure 7). This includes a sample_metadata file, in which all metadata relating to sam-
ples will need to be input, such as timepoints, response to treatments, and patient status (Fig-
ure 8—figure supplement 3A). For simplicity in executing this step, the panel_metadata file
allows users to rename parameters, such as the markers used in the analysis as well as select
the markers that are to be used for different analyses stages (all markers may not need to be
included in the following steps) (Figure 8—figure supplement 3B).

c. All of the above-mentioned data is stored within a SingleCellExperiment object (Lun, 2017).
The SingleCellExperiment is an S4 class object that is implemented into the ImmunoCluster
framework and is in essence a data container in which you can store and retrieve information
such as metal-barcoding for sample multiplexing, metadata, dimensionality reduction coordi-
nates, and more (outlined in Figure 7). FCS files can also be exported from the SingleCellEx-
periment using the write_sce_to_fcs function.

d. After the data and metadata files have been imported and stored in the SingleCellExperiment
object, we provide several approaches for initial exploratory visualization of the data. One
example of this is the MDS plots. The median marker expression data from each sample are
used to create MDS plots, and therefore allow for an initial visualization of data points (labeled
with metadata) and show the similarity and differences between samples in two-dimensions.
Additionally, these plots can be used to detect batch effects and other technical artifacts such
as antibody staining anomalies. Moreover, a heatmap of expression of markers measured for
each patient can be created and metadata can be used to annotate the heatmap.

Stage 2: Dimensionality reduction and unsupervised clustering

a. Dimensionality reduction is a key component of high-dimensional single-cell data analyses and
enables researchers to view high-dimensional data. For example, the 33 protein markers ana-
lyzed by Hartmann et al., 2019 can be reduced to lower dimensional embedded coordinates
per cell. Nonlinear dimensionality reduction techniques can avoid overcrowding and represent
data in distinct cell islands (Figure 8).

b. The framework offers users three nonlinear statistical methods for representing high-dimen-
sional single-cell data in low-dimensional space (Figure 8—figure supplement 4). MDS (uti-
lized in stage 1 for initial data exploration), uniform manifold approximation and projection
(UMAP) (Becht et al., 2019), and t-Distributed Stochastic Neighbor Embedding (tSNE)
(van der Maaten and Hinton, 2008) algorithms are available to generate a two-dimensional
(2D) embedding of the data. However, the SingleCellExperiment object can store any other
form of arbitrary dimensionality reduction, such as principal component analysis
(Blighe, 2020b) or DiffusionMaps (Angerer et al., 2016), among others.

c. The density of cells within the distinct cell islands produced by the 2D embedding of multidi-
mensional data can be viewed using the density_plot function (Figure 2—figure supplement
1).

d. After the data has been visualized in dimensionality reduced space, clustering algorithms can
be used to identify cell communities within the data, which allows the identification of pheno-
type and abundance of cell clusters within populations/groups being analyzed. A number of
clustering algorithms are available within the framework to define cell populations of interest
in an unbiased manner. First, an ensemble (use of multiple algorithms) clustering method of
FlowSOM (Van Gassen, 2015b) and Consensus clustering (ConsensusClusterPlus R package,
Wilkerson and Waltman, 2013), which tests the stability of the clusters, leading to better
results than applying a basic hierarchical clustering algorithm (Weber and Robinson, 2016).
Additionally, the PhenoGraph clustering algorithm is available, which uses K-nearest neighbors

Figure 7 continued

either lineage or functional information for downstream analysis. Primary and transformed data: the imported expression data is stored in an assay;

additionally, the scaled data (arcsinh transformed) is also stored in an assay, meaning both can be easily accessed. Cell metadata: the first metadata

added to this element of the structure will be a sample_metadata file imported by the user, containing any relevant metadata for the experiment,

that is, days after treatment and graft versus host disease or none. Throughout the ImmunoCluster tool, more layers of metadata are added to cell

metadata, that is, cell cluster identification (FlowSOM and Phenograph). Dimension reductions: dimensionality reduction coordinates, such as UMAP

and tSNE, are stored and can be easily accessed throughout the ImmunoCluster tool for downstream analyses.
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Figure 8. ImmunoCluster workflow overview. (0) Samples are stained/treated and measured, for imaging mass cytometry the tissue is segmented, and

regions selected for further downstream analysis. After measurement, the raw data is normalized, concatenated, (combining flow cytometry standard

files from the same samples, which may have been split due to large sample volume or technical issues) and gated, before importing into

ImmunoCluster. (1) Quality control of data is carried out before analysis. (2) Data is reduced to two dimensions using either UMAP or tSNE algorithm,

and data are clustered using the FlowSOM or Phenograph algorithms (these algorithms were selected as they are both high-performing unsupervised

clustering algorithms; an in-depth comparison has previously been described by Weber and Robinson, 2016). (3) Data is visualized, and metadata,

clusters, and cell-type labels are used to explore differences between samples/conditions. *A detailed step-by-step guide for using the ImmunoCluster

tool is available: https://github.com/kordastilab/ImmunoCluster.

Figure 8 continued on next page

Opzoomer, Timms, Blighe, et al. eLife 2021;10:e62915. DOI: https://doi.org/10.7554/eLife.62915 16 of 28

Tools and resources Computational and Systems Biology Immunology and Inflammation

https://github.com/kordastilab/ImmunoCluster
https://doi.org/10.7554/eLife.62915


and a Euclidean distance metric (DiGiuseppe et al., 2018). Lastly, k-means clustering, which
classifies cells into clusters with high intra-class similarity and low inter-class similarity,
where each cluster is represented by its center (centroid) that corresponds to the mean of
points (e.g., markers) assigned to the cluster. Either or all clustering algorithms can be applied
at the users’ discretion.

e. The aim of the clustering algorithms is to assign all cells to K clusters (K1, K2, . . .), resulting in
clusters corresponding to true cell types. Typically, a K larger than the number of expected
cell types is chosen at this stage as the ImmunoCluster framework allows users to explore all K
clusters (Figure 8—figure supplement 5), as well as collapsing clusters of the same cell type
into one cluster if the user feels over-clustering has occurred. Over-clustering may enable the
clustering identification of rare cell types, sometimes at the expense of creating several ‘artifi-
cial’ clusters of the more prevalent cell types. Additionally, the workflow allows the generation
of an elbow plot that is created to help the user to select an appropriate number of clusters
(Figure 8—figure supplement 6).

Stage 3: Annotation and differential testing

a. After dimensionality reduction and clustering, the next step is to annotate each cluster based
on marker expression. If over-clustering has occurred, multiple clusters of the same cell type
can be present, and either a lower number of K clusters can be used; additionally, clusters of
the same cell type can be collapsed into each other to create one cluster.

b. Clusters containing multiple cell types may also be identified; this could mean the user has
under-clustered or occasionally a group of different cells are clustered together by the
algorithms.

c. Expression of each marker analyzed can be projected onto the dimensionality reduced data
by the researcher, aiding with the identification of cell types or phenotypically distinct clusters.

d. Outputs such as heatmaps showing the expression of all markers for each cluster can be used
to identify the clusters of interest (Figure 2—figure supplement 2). These can be used to
annotate figures produced in stage 3.

e. Biaxial dot plots with contouring of the SCE data can be produced using the biaxial_plot func-
tion; the expression of markers can be explored in the entire dataset or a subset of the data,
that is, a particular cell cluster. A clustering option within biaxial_plot allows users to see the
spread of data across two selected markers for different conditions (any metadata from the
sample_metadata file), as well as different clusters (e.g., K1-60) (Figure 3—figure supplement
1).

f. Due to the type of data produced from IMC (lower resolution compared to LMC and FC), a
novel function called imc_rank was specifically designed for the IMC data; this creates a heat-
map in which the expression of each marker is ranked. This rank heatmap can be used to facili-
tate the identification of clusters that are ‘high’ or ‘low’ for particular markers to distinguish
and logically assign cell populations manually.

g. These tools help define biological identity of cell clusters from stage 2 and construct a hierar-
chy of biologically meaningful cell populations based on marker expression and similarity.

h. The metadata added to the SingleCellExperiment can be used to annotate the dimensionality
reduced (i.e., UMAP) and clustered (FlowSOM, Phenograph, or K-means) data, allowing for
visualization of the distribution of cell islands between different condition/timepoints
(Figure 8).

i. The above-mentioned metadata is also used to annotate all differential testing outputs, mean-
ing the user can make many comparisons and explore multiple parameters all within the Immu-
noCluster framework.

Figure 8 continued

The online version of this article includes the following figure supplement(s) for figure 8:

Figure supplement 1. Gating strategy for mass cytometry data in FlowJo.

Figure supplement 2. Imaging mass cytometry (IMC) data preprocessing workflow.

Figure supplement 3. Metadata files created in the experimental design stage.

Figure supplement 4. Dimensionality reduction.

Figure supplement 5. Selecting K clusters for visualization and downstream analysis.

Figure supplement 6. Elbow plot criterion to help determine optimal number of clusters for K-means clustering (FlowSOM).

Opzoomer, Timms, Blighe, et al. eLife 2021;10:e62915. DOI: https://doi.org/10.7554/eLife.62915 17 of 28

Tools and resources Computational and Systems Biology Immunology and Inflammation

https://doi.org/10.7554/eLife.62915


j. A variety of differential testing outputs can be created, such as median marker expression for
each sample (using clustered data) can be used to produce a hierarchical clustered heatmap,
and box plots of cell cluster abundance between different conditions at different timepoints
(any metadata can be used to annotate these figures).

k. Statistically significant differences in the annotated populations between conditions are identi-
fied and displayed throughout the framework to the user for ongoing investigation and inter-
pretation. Data from the ImmunoCluster-generated SingleCellExperiment object can be easily
extracted for downstream analysis with differential analysis packages such as diffcyt
(Weber et al., 2019) and cydar (Lun et al., 2017) for differential discovery, which is based on
a combination of high-resolution clustering and empirical Bayes moderated tests. In addition,
the ImmunoCluster framework offers the stat_test_clust and stat_test_expression functions
that use the Wilcox rank-sum or Welch’s T-test to identify which cell clusters are significantly
different between conditions (any two-way comparison can be made using metadata input by
user), and which markers are significantly different within cell clusters between different condi-
tions, respectively.
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. Supplementary file 2. Reference panel of anti-human antibodies for the head and neck cancer

(HNSCC) imaging mass cytometry experiment.

. Supplementary file 3. Reference panel of anti-human antibodies for the diffuse large B-cell lym-

phoma (DLBCL) imaging mass cytometry experiment.

. Supplementary file 4. Diffcyt computational framework output for differential discovery analysis for

identified cell clusters in the Hartmann et al., 2019 in LMC data.

. Transparent reporting form

Data availability

The liquid mass cytometry dataset is available from FlowRepository (http://flowrepository.org/id/FR-

FCM-Z244), the additional three datasets: ’Imaging mass cytometry data: Head and neck squamous

cellcarcinoma tissue section’, ’Flow cytometry data: healthy donor bone marrow taken during hip

surgery’, and ’Imaging mass cytometry data: Head and neck squamous cell carcinoma tissue section’,

are available from Dryad (https://datadryad.org/stash).

The following datasets were generated:

Author(s) Year Dataset title Dataset URL
Database and
Identifier

Opzoomer JW,
Timms J, Blighe K,
Mourikis TP,
Chapuis N, Bekoe
R, Kareemaghay S,
Nocerino P,
Apollonio B,
Ramsay AG,
Tavassoli M,
Harrison C,
Ciccarelli F, Parker
P, Fontenay M,
Barber PR, Arnold
JN, Kordasti S

2021 Imagingmass cytometry data:
Head and neck squamous cell
carcinoma tissuesection

https://doi.org/10.5061/
dryad.gf1vhhmpr

Dryad, 10.5061/dryad.
gf1vhhmpr

Opzoomer JW,
Timms J, Blighe K,
Mourikis TP,
Chapuis N, Bekoe
R, Kareemaghay S,
Nocerino P,
Apollonio B,
Ramsay AG,
Tavassoli M,
Harrison C,
Ciccarelli F, Parker
P, Fontenay M,
Barber PR, Arnold
JN, Kordasti S

2021 Flow cytometry data: healthy
donor bone marrow taken during
hipsurgery

https://doi.org/10.5061/
dryad.4b8gthtcf

Dryad, 10.5061/dryad.
4b8gthtcf

Opzoomer JW,
Timms J, Blighe K,
Mourikis TP,
Chapuis N, Bekoe
R, Kareemaghay S,
Nocerino P,
Apollonio B,
Ramsay AG,
Tavassoli M,
Harrison C,
Ciccarelli F, Parker
P, Fontenay M,
Barber PR, Arnold
JN, Kordasti S

2021 Imaging mass cytometry data:
Diffuse large B-cell lymphoma
lymph node section

https://doi.org/10.5061/
dryad.3n5tb2rhd

Dryad, 10.5061/
dryad.3n5tb2rhd

The following previously published dataset was used:

Database and
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Author(s) Year Dataset title Dataset URL Identifier

Hartmann FJ,
Babdor J,
Gherardini PF, Amir
ED, Jones K, Sahaf
B, Marquez DM,
Krutzik P,
O’Donnell E, Sigal
N, Maecker HT,
Meyer E, Spitzer
MH, Bendall SC

2019 Identification of disease-associated
immune signatures following bone
marrow transplantation

http://flowrepository.
org/id/FR-FCM-Z244

Flow Repository, FR-
FCM-Z244
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Appendix 1
Staining protocol for a human tissue section taken from a patient with head and neck squamous cell

carcinoma (HNSCC).

Equipment Consumables Reagents Reagent
initial
concentration

Reagent final
Concentration

Humidified slide chamber
(Sigma Aldrich, #H6644-
1EA)*

Sterile 3 ml pastettes
(Alpha Labs, #LW112)

DPBS, Ca, and Mg free
(Gibco, #14190-094)

Dedicated glassware,
coplin
jars (Fisher, #10264732) **

Superfrost Plus slides
(Fisher, #ES-325)

Tween-20 (Sigma Aldrich,
#P7949-100 ml)*

100% 0.1%

Orbital shaker Kimberly-Clark Precision
Wipers (Fisher, #10623111)
*

Antigen retrieval solution
pH 9.0
(R&D Systems, #CTS013)

1:10 in milli-Q
water

Water bath 0.2 syringe filter
(TripleRed, #FPE204030)

Superblock (Thermo
Fisher, #37515)**

Fridge 50 ml syringes
(Fisher, #10636531)

Iridium (Fluidigm,
#201192B)***

500 mM 0.5 mM in
DPBS

Milli-Q water purification
system (18.2 MW.cm)

Filter pipette tips Metal tagged antibodies
(Fluidigm)

Require
optimization
for your tissue
type

Hard slide box for storage
in �80˚C (VWR #631-1504)

PAP pen (Abcam, #ab2601) FcR block (Trustain,
Biolegend, # 422302)

100% 5%

Pipettes Xylene (Acros,
#180862500)

Plastic tweezers, to handle
slides (Farlamedical,
#400200)

Ethanol (Sigma Aldrich,
#32221-2.5L)

Plastic coplin
(Thermo Fisher, #E9611)
****

BSA (Sigma Aldrich,
#A9647)

20%
To prepare
on the same
day freshly

10%

Kiovin Hu IgG
Provide by Hospital’s
pharmacy

10%
100 mg/ml

5 mg/ml

* Alternatively, use a
pipette tip box with moist
towel at the bottom and
piece of parafilm on the
tray (this prevents
evaporation and stops
condensation gathering at
the back of the slide, which
can pool around edges
and dilute antibodies).
**Rinse in water, do not
clean with detergent or in
laboratory dishwasher
(source of barium
contamination).
**** Plasticware is required
for 96˚C water bath, used
when dedicated
histological autoclave or
decloaking chamber is not
available; you can also use
a 50 ml centrifuge tube,
loosely capped (Falcon or
Corning).

*Normal laboratory hand
towels and blue roll are
fine to tip excess buffer off
slide surface or to place in
the bottom of the
humidified slide chamber.
However, they should not
be used to wipe the back
of the slides or draw off
excess buffer from front –
as can transfer lint to the
slides.

*Permeabilization can also
be conducted with Triton
X100 or saponin
** Alternative blocking
solutions include BSA,
human albumin, human
immunoglobulin (KIOVIG
from Pharmacy), serum
same species as
antibodies (mouse serum,
Sigma Aldrich, # M5905-
10ML).
*** DNA stain use
alternative histone 3
antibody #3176023D.

Opzoomer, Timms, Blighe, et al. eLife 2021;10:e62915. DOI: https://doi.org/10.7554/eLife.62915 23 of 28

Tools and resources Computational and Systems Biology Immunology and Inflammation

https://doi.org/10.7554/eLife.62915


STAINING PROTOCOL DAY 1: SECTION CUTTING

Cut a 5 mm section from the block at and place in an incubation oven overnight (o/n) at 37˚C.
Cut a 3 mm section for hematoxylin and eosin (H&E) staining.

STAINING PROTOCOL DAY 2:
1. PREPARATION

Prepare xylene and ethanol at 50:50 ratio ~ 50 ml of final volume.
Prepare the following ethanol dilutions, with milli-Q water: 96%, 90%, 80%, and 70% (~50 ml
of final volume for each).
Dilute the 10X basic antigen retrieval buffer in milli-Q water in 50 ml falcon tube (leaving the
cap loose) and heat to 96˚C in a water bath.
*BSA (Sigma Aldrich, #A9647): prepare a 20% solution fresh using, 0.4 g BSA in a plastic tube.
Add 1 ml of superblock solution and incubate in the water bath for 1 hr. Once it is fully dis-
solved, top up to 2 ml (final volume).
Prepare the wash buffer using Dulbecco’s phosphate buffered saline (DPBS) (calcium/magne-
sium free) and 0.1% Tween-20 (500 ml of Tween-20 [Sigma Aldrich, #P7949-100 ml] in the 500
ml DPBS bottle). Filter the wash buffer every time you use it with a 0.2 mm filter. Store at room
temperature.

1. Notes for wash steps

Always conduct washes in ~50 ml of buffer in coplin jars on an orbital mixer.

Never wash in laboratory dishwasher or with detergent as this can represent a source of barium

contamination. Also, do not use metal slide holders or forceps.

2. STAINING

Heat the 1X antigen retrieval solution (1:10 dilute in milli-Q water) to 96˚C in a water bath.
Heat a coplin jar and a bottle of wash buffer (0.1% Tween-20 in DPBS) to 37˚C in a water bath.
Prepare the humidified slide chamber (box with a damp tissue in the bottom and lid or piece
of parafilm to cover).
Prepare blocking and antibody incubation buffer fresh: 10% BSA, 0.1% Tween-20, 1/20 dilu-
tion of FcR block (Trustain, Biolegend, #422302) and 1/20 dilution of KIOVIG (Kiovin Hu IgG) in
Superblock (Thermo Fisher, #37515) solution. Use Superblock to top up to final volume. Avoid
mixing, filtering, or centrifugation of the Superblock buffer prior to pipetting, let solution set-
tle at 4˚C and pipette from top of the solution to avoid any aggregate material (that will have
sunk to the bottom).

Conduct xylene washes in a safety cabinet.
Use separate coplin jars.
The xylene should be changed regularly, especially the first coplin jar in the sequence, which
will have the most wax dissolved in it (readily become cloudy and less efficient).

1. CLEAR WAX FROM SLIDES (you sequentially remove the wax, with each
wash in fresh xylene)

Incubate slide 1 hr at 60˚C.
Agitate slides (up and down motion) by hand, three washes at RT:
Xylene 100% for 5 min.
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Xylene 100% for 5 min.
50:50 xylene:ethanol mix for 10 min.

1. REHYDRATE TISSUE (outside hood, use plastic tweezers)

Remove slides from xylene:ethanol mix in the hood, transfer to 100% ethanol for 5 min, and
remove from cabinet.
Transfer slides to 90% ethanol – mix on orbital shaker for 5 min.
Transfer slides to 80% ethanol – mix on orbital shaker for 5 min.
Transfer slides to 70% ethanol – mix on orbital shaker for 5 min.
Remove slides and transfer to DPBS – mix orbital shaker for 10 min.
Slide can stay in DPBS until the antigen retrieval solution is ready.

RETRIEVE ANTIGEN

Fluidigm have validated all their FFPE antibodies using 30 min antigen retrieval, with basic buffer, in

a 96˚C water bath.

Heat 1X antigen retrieval solution to 96˚C in the water bath (in plastic coplin jar or closed fal-
con 50 ml centrifuge tube).
When the slides are added, the temperature may drop – do not start the timer until the probe
indicates the temperature in the tube has returned to 96˚C.
Incubate slides in 1X antigen retrieval solution to 96˚C in the water bath (in closed 50 ml falcon
centrifuge tube) and incubate for 30 min.
Cool down closed 50 ml falcon tube to around RT under cold running water.
Transfer slides to DPBS and wash on orbital shaker for 5 min.
Dry slides with tissue wipers (Thermo Fisher) and leave to dry for 10 s.
Draw a wax ring around the tissue.
Wash twice with filtered wash buffer (0.1% Tween-20) in DPBS on the orbital shaker for 8 min.
Filter it every time you use the wash buffer with 0.2 mm filter and store at RT.
Leave slides in the wash buffer until the block solution is ready.

1. BLOCK

While sections are in permeabilization buffer (0.1% Tween-20), prepare sufficient blocking
buffer to cover the tissue, within the wax ring.
For a very small diameter wax ring, 50 ml will suffice; however, a large piece of tissue (>1 cm
diameter) will require ~250 ml.

Blocking buffer preparation

Solution Dilute in
Initial
concentration

Final
concentration

Dilution
factor

Per 100
ml

Per
300
ml

Tween-20
(Sigma Aldrich, #P7949-100
ml)

Superblock
solution

Prepared first at 10%
Then at 1%

0.1% 10 10 30

Kiovin Hu IgG Superblock
solution

10%
100 mg/ml

5 mg/ml 20 5 15

FcR block
(Trustain, Biolegend, #
422302)

Superblock
solution

100% 5% (1/20) 20 5 15

BSA
(Sigma Aldrich, #A9647)

Superblock
solution

20%
(10 g in 100 ml =
10%)

10% 2 50 150

Superblock
(Thermo Fisher, #37515)

To top up
Until your final volume

30 90
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When you add the buffer to the inside of the wax circle, it should be contained and fully cover

the tissue.

Remove slides from DPBS and remove excess buffer by tipping slide.
Use a lint-free tissue to dry the back of the slide thoroughly and to gently draw excess buffer
away from the front, without touching the tissue or wax ring.
Transfer to humidified box, cover tissue with blocking buffer.
Incubate at RT for 90 min.

1. PREPARE ANTIBODY MIX AND INCUBATE

Antibody mix

Cat# Supplier Tag
Target/
solution

Dil
factor
(1:X)

Initial
concentration

Final
concentration

3170019D Fluidigm 170 CD3 (polyclonal,
C-terminal)

400

3156033D Fluidigm 156 CD4 100

3152016D Fluidigm 152 CD45 1000

3162035D Fluidigm 162 CD8-alpha 800

3161029D Fluidigm 161 CD20 250

MAB1561 R&D Systems 150 PD-L1 50

3158029D Fluidigm 158 E-cadherin 1000

3159035D Fluidigm 159 CD68 400

3165039D Fluidigm 165 PD-1 50

3168022D Fluidigm 168 Ki-67 400

#A9647 Sigma Aldrich BSA
Prepare fresh

2 20% 10%

#422302 Biolegend FCR 20 100% 5%

Provided by hospital’s
pharmacy

IgG Hu Kiovig 20 100 mg/ml 5 mg/ml

#P7949 Sigma Aldrich Tween-20 10 1% 0.1%

#37515 Thermo Fisher Superblock To top up to the required volume

You will require the same volume of antibody mix used for blocking solution and tip off excess

blocking buffer onto tissue paper.

Use a lint-free tissue to dry the back of the slide thoroughly and to gently draw excess buffer

away from the front, without touching the tissue or wax ring.

Incubate slide o/n with antibody mix at 4˚C in humidified chamber.

STAINING PROTOCOL DAY 3
1. WASH IN PERMEABLIZATION BUFFER

Tip off the antibody mix onto tissue paper.
Flush the slide surface gently but thoroughly with a pastette and permeabilization buffer
(DPBS with added 0.1% Tween-20) at RT.
Wash in the same RT buffer ~50 ml in coplin jar on the mixer for 8 min.
Repeat wash step for another 8 min.

1. WASH IN DPBS
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In the same jar, decant 0.1% Tween-20 DPBS wash buffer and add further wash buffer at RT
and then place on the mixer for 8 min.
Repeat wash step for another 8 min.

1. DNA STAIN

For initial testing, prepare iridium (Fluidigm) in DPBS at a final concentration of 0.5 mM (may require

some optimization for your tissue type).

Dilute 125 mM iridium stock (Fluidigm 201192A) 1/250 with DPBS.

Tip off excess DPBS onto tissue paper.
Use a lint-free tissue to dry the back of the slide thoroughly and to gently draw excess buffer
away from the front, without touching the tissue or wax ring.
Place slide in humidified chamber and load iridium solution into the wax ring so that it covers
the tissue.
Incubate at RT for 30 min.
Flush the slide surface thoroughly with RT DPBS gently using a pastette.
Wash in RT DPBS on the mixer for 5 min.
Wash in milli-Q water ~50 ml in a clean coplin jar on the mixer for 5 min.
Air dry.

Slides can be stored for several months at RT in a cool, dry, dust-free storage container.
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Appendix 2

Protocol for sectioning and staining of diffuse large B-cell lymphoma
lymph node section

1. A 5 mm tissue section was deparaffinized with xylene and sequentially rehydrated in graded
ethanol. Heat-induced antigen retrieval was performed in an automated pressure cooker
(Menapath Antigen Access Unit, Menarini) at 125˚C for 2 min in Antigen Retrieval Reagent-
Basic (R&D Systems).

2. The tissue was then permeabilized with DPBS, 0.1% Tween-20 for 15 min, and blocked with
Superblock (Thermo Fisher Scientific), 0.1% Tween-20, Fc Receptor Blocking solution (1:20;
Biolegend; blocking buffer) for 2 hr at RT.

3. Antibodies were diluted together according to Supplementary file 3 in blocking buffer and
applied to the tissue overnight at 4˚C.

4. After washing, the slide was incubated with the DNA intercalator (Cell-ID Intercalator-Ir, Fluid-
igm) for 30 min at RT.

5. The slide was then briefly washed with milli-Q water and air dried.
6. Acquisition of 1 mm2 tissue region was carried out using the Hyperion imaging system (Fluid-

igm) at 200 Hz, with a resolution of 1 mm/pixel.
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