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ABSTRACT

Motivation: The Prokaryotic-genome Analysis Tool (PGAT) is a
web-based database application for comparing gene content
and sequence across multiple microbial genomes facilitating
the discovery of genetic differences that may explain observed
phenotypes. PGAT supports database queries to identify genes that
are present or absent in user-selected genomes, comparison of
sequence polymorphisms in sets of orthologous genes, multigenome
display of regions surrounding a query gene, comparison of the
distribution of genes in metabolic pathways and manual community
annotation.
Availability and Implementation: The PGAT website may be
accessed at http://nwrce.org/pgat.
Contact: mbrittna@uw.edu
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1 INTRODUCTION
Whole-genome sequence comparison of related bacteria is
increasing in scale owing to second-generation sequencing
technologies such as Illumina (http://www.illumina.com/) and 454
pyrosequencing (http://www.454.com) that can sequence more than
a hundred bacterial genomes in few months. The main challenge
currently presented by those technologies is the ability to compare
a large number of draft sequences efficiently in order to elucidate
the biological significance of the differences. Substantial progress
has been made to accurately align whole genome sequences to
uncover genetic polymorphisms (Darling et al., 2010). However,
linking polymorphisms with functional differences still requires
examination of their effect on proteins encoded by these regions (e.g.
non-synonymous substitutions, gene inactivation by frameshifts,
etc.). The motivation for the development of the Prokaryotic-
Genome Analysis Tool (PGAT) was the need for a data-mining
tool by which draft genome sequences could be compared among
themselves and with completed genomes to explore genetic
differences that result in functional differences. The main features
of PGAT are as follows: (i) implementation as a web-based database
application to support data mining; (ii) ability to efficiently integrate
large numbers of genomes including draft genome assemblies; (iii)
homogenization of genome annotation across the genomes; and
(iv) support for manual community annotation. PGAT integrates
many features of current online resources such as the Integrated
Microbial Genomes IMG (Markowitz et al., 2010), the Burkholderia
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Genome Database (Winsor et al., 2008) and Neisseria Base (Kislyuk
et al., 2010). Its main difference is the homogenization of gene
features across the genomes and the integrated functionality to
compare gene content, single nucleotide polymorphisms (SNPs) in
orthologous genes, and the resulting impact of SNPs and indels on
the encoded proteins. Currently, PGAT websites host Burkholderia
pseudomallei—B.mallei, Francisella tularensis, Yersinia pestis and
Salmonella enterica.

2 RESULTS

2.1 Ortholog assignment
In order to determine the presence or absence of genes and to detect
sequence polymorphisms in their coding regions in a multigenome
comparison, it is essential to accurately define orthologous genes
for this set of genomes. There are many methods of determining
orthologs [for a recent evaluation of popular methods, see Salichos
and Rokas (2011)]. Ortholog prediction methods typically depend
upon annotation that has been derived from single genome
processing. Spurious results are possible where the particular genes
that were called vary from genome to genome, a problem that is
more acute in high GC content genomes. To homogenize annotation
across a set of highly related genomes, the authors developed a
method of ortholog assignment that removes the bias of individual
genome annotation. Genes from an initial set of complete genomes
are pooled and a single ‘reference’ gene is selected for each
gene family determined by Blast (Altschul et al., 1990) protein
sequence alignment of this set on itself. The reference genes are
then mapped, using protein Blast sequence alignment, into the set
of all open reading frames (ORFs) in a six-frame translation of each
genome sequence. A homogenized set of orthologous genes are thus
identified across all genomes. Pseudogenes are also identified where
reference gene alignments are split across two or more ORFs, or the
ORF contains only part of a gene. We use the very conservative rule
that ortholog sequence alignments must include >80% of the gene
length and have sequence identity greater than 91–92%. The latter
threshold is determined by statistical comparison with a reference set
of orthologs. This method is only applicable to highly similar (∼96%
identity or higher) genome sequence where the arbitrary choice of
the reference gene has little impact on the results. The same method
of aligning reference genes with all ORFs is applied to draft genomes
to identify orthologs. Gene start sites are homogenized across
genomes based on the most consensual site. Functional annotation
of orthologs is derived from previously annotated genomes. Novel
genes, identified as Glimmer-predicted (Delcher et al., 1999) coding
regions that do not map back into any of the previously processed
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genomes, are added to the set of reference genes. The PGAT web
interface facilitates manual annotation to correct errors introduced
by these automated methods. This feature will also support the
involvement of experts in the microbial research community in the
ongoing improvement of the functional annotation, similar to what
has been done for Pseudomonas research (Brinkman et al., 2000;
Winsor et al., 2009).

2.2 Gene content queries
Lists of genes can be generated through user-defined queries that
compare gene content between genomes. For example, selecting
options for ‘present’ in all 22 Burkholderia pseudomallei genomes
with both chromosomes available returns a list of 4983 core genes
(i.e. genes present in every genome in the database). There is an
option to ‘consider pseudogenes as present’ in order to include genes
that may not be assembled properly in draft sequences. A query
of all distinct genes returns 8568 genes in the ‘pan-genome’, a
concept introduced by Tettelin et al. (2005) referring to all genes
existing in at least one of the genomes available for the species.
These numbers are consistent with the results of a recent study of
B.pseudomallei genomes (Nandi et al., 2010) based on 11 genomes.
Loss of function through gene deletion or gain of function through
gene acquisition, commonly used to explain differences in observed
phenotypes, can also be explored in PGAT. For example, selecting
‘present’ for B.pseudomallei K96243 and 668, ‘absent’ for 1106a
and 1710b, ‘ignore’ for the remainder and the ‘present in all’ option,
a list of 38 genes is returned. Most of these genes occur in genomic
islands in K96243 and 668 that are absent from the 1106a and 1710b
strains. This organization in islands can be easily visualized through
the ‘synteny map’ that displays the genomic region from 1 to 100 kb
in length aligned around a selected gene for the genomes in which
this gene is present. Lists and sequences of orthologous genes can
also be generated and downloaded.

2.3 Sequence polymorphisms
Sequence polymorphisms (nucleotide substitutions, insertions or
deletions) in gene sequences are useful for inferring phylogeny and
possible loss/change of function by deleterious mutations. For each
gene, a table of sequence polymorphisms, identified by multiple
sequence alignment of orthologs using Muscle (Edgar, 2004), is
displayed. The nucleotide and protein sequence alignment can also
be generated from within each gene page. A table of all SNPs in
genes common to the genomes (core genes) can be downloaded in
order to derive phylogenetic relationships or to develop an overview
of sequence variation.

2.4 Metabolic pathways
The Pathways tab allows selection of a subset of genomes in which
to compare the presence and absence of genes in various metabolic
pathways. Expanding the metabolic pathway categories leads to
tables of the numbers of genes represented in the pathway for each
of the selected genomes. Genes that are functional in those pathways

can be compared with the total number of genes in those pathways
for the set of genomes in PGAT. The number of pseudogenes (if any)
is shown in parentheses. KEGG (Kanehisa and Goto, 2000) pathway
diagrams display functional genes and pseudogenes, along with a
table of KO numbers and description.

3 IMPLEMENTATION
The PGAT application has a relational database back end that runs on
a PostgreSQL server(http://www.postgresql.org). The web interface,
implementedusing Perl CGI scripts, runs on an Apache web server
(http://www.apache.org). A ‘demo tool’ and a tutorial is available
online to introduce the user to many features of PGAT.
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