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ABSTRACT: Despite the wide use and popularity of metal
hydride catalysis, methods utilizing zirconium hydride catalysts
remain underexplored. Here, we report the development of a mild
method for the in situ preparation and use of zirconium hydride
catalysts. This robust method requires only 2.5−5 mol % of
zirconocene dichloride in combination with a hydrosilane as the
stoichiometric reductant and does not require careful air- or
moisture-free techniques. A key finding of this study concerns an
amine-mediated ligand exchange en route to the active zirconocene hydride catalyst. A mechanistic investigation supports the
intermediacy of an oxo-bridged dimer precatalyst. The application of this method to the reduction of a wide variety of carbonyl-
containing substrates, including ketones, aldehydes, enones, ynones, and lactones, is demonstrated with up to 92% yield and exhibits
broad functional group tolerability. These findings open up alternative avenues for the catalytic application of chlorozirconocenes,
potentially serving as the foundation for broader applications of zirconium hydride catalysis.
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Metal hydrides are widely employed in chemical synthesis
for the delivery of both a hydride and a functional

group across various π-systems. The metal hydride chemistry
of copper, ruthenium, rhodium, iron, cobalt, palladium, and
nickel have seen broad application over the last two decades,
providing catalytic platforms for the efficient diversification of
simple chemical building blocks.1 However, the number of
catalytic applications of zirconocene hydrides are few, despite
the improved toxicity, orthogonal reactivity, and lower cost of
zirconium in comparison to many late-transition-metal
congeners.2−6

Wailes and Weigold’s venerable zirconocene hydrochloride
1, more commonly referred to as Schwartz’s reagent,
represents the most widely employed zirconium hydride
(ZrH) complex (Figure 1a).7,8 Upon hydrozirconation, the
resulting organozirconium reagents participate in a wealth of
organic transformations through transmetalation or electro-
philic trapping.9 Furthermore, the attenuated nucleophilicity of
organozirconium species renders these complexes compara-
tively mild and functional group tolerant. While Schwartz’s
reagent is commercially available and is frequently used to
achieve a variety of fundamental synthetic transformations in
organic synthesis, this reagent has an exceptionally short shelf
life due to air, moisture, and light sensitivity.10

For these reasons, the stable and inexpensive zirconocene
dichloride 2 represents an improved starting point for ZrH
chemistry (Figure 1b).11 The in situ conversion of dichloride 2
to the corresponding ZrH complex is most commonly
achieved through the implementation of alanes, boranes, or
alkyl metal reagents, providing a reliable alternative to
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Figure 1. Utility and preparation of reactive zirconocene hydride
complexes.
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Schwartz’s reagent.10b,12 However, these methods are predom-
inantly employed in the context of stepwise, stoichiometric
preparations of ZrH reagents.
Conversely, the number of synthetic procedures for the

catalytic generation and regeneration of ZrH complexes
remains underdeveloped and limited in scope. The lack of
mild and functional group tolerant methods for the in situ
conversion of stable zirconocene halides to reactive hydride
catalysts, in addition to the pronounced oxophilicity of
zirconium, have hindered progress in this research area.13

Herein, we report a strategy for the preparation and catalytic
turnover of ZrH catalysts for the selective reduction of
carbonyls.
To establish a platform for ZrH catalysis, we chose to

examine the catalytic reduction of acetophenone (Table 1, 3a).

This strategy would simplify preliminary studies to three key
steps: catalyst generation, hydrozirconation, and catalyst
turnover.14 Furthermore, we chose to focus our efforts on
the use of hydrosilanes as the hydride source for this chemistry.
These reductants are generally mild and compatible with a
wide assortment of functional groups. Moreover, we postulated
that the high oxophilicity of silicon would not only enable
catalyst turnover, but additionally act as a traceless in situ
protecting group for the newly formed product, thereby
avoiding catalyst inhibition.
We initiated our studies utilizing 10 mol % of Schwartz’s

reagent, 1, in combination with various silanes. Silanes
previously employed in Zr-catalyzed alkene hydrosilylation
chemistry failed to promote the catalytic reduction of ketone
3a (see Table S1 for details).5 However, when dimethoxy-
(methyl)silane (DMMS) was utilized as the stoichiometric
reductant (Table 1, entry 1), alcohol 4a was produced in 93%
overall yield, signifying that catalyst turnover using hydro-
silanes is feasible, even at room temperature.
Unsurprisingly, when dichloride 2 was used in lieu of

hydrochloride 1, the reaction failed to yield a significant
amount of the desired product (Table 1, entry 2). Attempts to
utilize various lithium, sodium, and potassium salts as additives
to activate 2 resulted in background reactivity, yielding 4a in

the absence of the zirconium catalyst (see Table S1 for
details).15 Curiously, when 10 mol % of diethylamine was
added in conjunction with catalyst 2, reactivity comparable to
that of 1 was observed (entry 3 versus entry 1). When the
amine additive was employed in the absence of 2, no reactivity
was seen (entry 4). The quantity of catalyst and amine additive
could be reduced to 2.5 mol %, affording a 92% isolated yield
of alcohol 4a (entry 5).16 Gratifyingly, when the reaction was
carried out using nondried glassware in ambient air, the desired
product was still obtained in comparable yield (entry 6),
demonstrating that this process is not especially air or moisture
sensitive.17

With the optimal conditions in hand, we then surveyed the
generality of the novel ZrH-catalyzed reduction (Table 2). Aryl
ethers, amines, nitro groups, and halides were tolerated under
these conditions, furnishing the corresponding alcohols in
good to excellent yields (4a−f). However, reactions ofTable 1. Optimization of the ZrH-Catalyzed Carbonyl

Reductiona

entry catalyst (mol %) additive (mol %) silane (equiv) yield (%)b

1 Cp2ZrHCl (10) 3 93
2 Cp2ZrCl2 (10) 3 8
3 Cp2ZrCl2 (10) HNEt2 (10) 3 90
4 HNEt2 (10) 3 ND
5c Cp2ZrCl2 (2.5) HNEt2 (2.5) 2 95 (92)d

6c,e Cp2ZrCl2 (2.5) HNEt2 (2.5) 3 91
aUnless specified otherwise, reactions were carried out under an N2
atmosphere at room temperature using 0.25 mmol of acetophenone in
anhydrous PhMe (1 mL). Reactions were run for a duration of 13−23
h. bYields were determined by 1H NMR spectroscopy of the crude
reaction mixture, using mesitylene as an internal standard. ND = not
detected. cReaction was run on a 1 mmol scale instead. dIsolated
yield. eReaction was run in nondried glassware in an air atmosphere
rather than an N2 atmosphere.

Table 2. Substrate Scope of the ZrH-Catalyzed Carbonyl
Reductiona

aUnless specified otherwise, reactions were carried out under N2
atmosphere at room temperature using 1 or 2 mmol of substrate in
anhydrous toluene (0.25 M). bReaction was run at 35 °C instead. c4
equiv of DMMS was used instead.
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electron-deficient arenes required longer reaction times and/or
heating. Fused bicyclic ketone 3g and α-bromoketone 3h
reacted smoothly to yield alcohols 4g,h in 82% and 84% yields,
respectively. Notably, hydrodehalogenation was not observed
with bromide 3h. Aliphatic and heteroaromatic ketone
substrates were also readily transformed under these
conditions (4i−m).
Next, we turned our attention to other classes of carbonyl

substrates. Enones reacted to selectively afford the 1,2-
reduction products 4n,o. As expected, this catalytic reduction
also accommodated aldehydes 3p,q. A series of competitive
reductions were also carried out with conjugated ynone 3r and
the polyene natural products cis-jasmone (3s) and (−)-carvone
(3t). In all cases, ketone reduction took place exclusively
without any detection of alkyne reduction or alkene isomer-
ization. Furthermore, the catalytic reduction of (−)-carvone
proceeded in a highly diastereoselective fashion, yielding
(−)-cis-carveol (4t) with a >20:1 diastereomeric ratio.
Additionally, the chemo- and diastereoselective reduction of
Wieland−Miescher dione 3u was accomplished with selective
reduction of the enone moiety. This result highlights the
orthogonal and mild nature of this protocol, as standard
reductive procedures yield the opposite chemoselectivity or
over-reduction to the corresponding diol.18 Finally, we
demonstrated the reduction of a lactone under the ZrH-
catalyzed procedure, cleanly affording symmetric diol 4v in
moderate yield.
A series of experiments were carried out in order to gain

further insight into the mechanism of the zirconium-catalyzed
reduction (Scheme 1). To better understand the role of the
amine additive, alternative N-containing additives were assayed
under the denoted reaction conditions. Notably, when
diethylamine was replaced with 2,2,6,6-tetramethylpiperidine
(TMP) in the reduction of acetophenone, phenylethanol 4a
was still obtained, albeit in diminished yield (Scheme 1a). This
reaction was likewise facilitated by catalytic quantities of
triethylamine. These findings indicate that neither an α-proton
on the amine nor an amine-ligated zirconocene complex is
necessary for the catalytic ketone reduction.19

Throughout the course of our studies, it became apparent
that trace quantities of water were necessary for the catalytic
reduction on starting from precatalyst 2.20 When 2 was studied
by 1H NMR in the presence of diethylamine under rigorously
anhydrous conditions, no apparent change was evident for the
chemical shifts attributed to the Cp-region of 2 or the amine
(Scheme 1b, NMR lines a and b). Upon the addition of 0.5
equiv of water, 2 undergoes rapid and clean conversion to the
previously reported μ-oxo dimer 5, as evidenced by the
downfield shift of the Cp signal (NMR lines c and d). Likewise,
the multiplets associated with diethylamine disappear entirely,
which is consistent with the salting out of an HCl adduct.
Interestingly, prior reports by Wailes and co-workers

detailed the formation of dimer 5 directly from 2 in the
presence of diethylamine and water (Scheme 1b, bottom).21

This prompted us to prepare 5 and employ it as a precatalyst
under the indicated reaction conditions. Reduction product 4a
was obtained in 83% yield, demonstrating that the oxo-bridged
dimer itself is competent as a precatalyst for the carbonyl
reduction.
When cyclopropyl phenyl ketone (6) was subjected to the

optimized reaction conditions, alcohol 7 was isolated after
employing a mild basic workup (Scheme 1c). Notably, no ring-
opened byproducts were observed, supporting a hydride

transfer mechanism rather than a radical pathway as a principal
contributor to the mechanism of C−O reduction.22,23

To further substantiate the formation of a discrete metal
hydride species from the dichloride precursor, a ZrH trap was
employed (Scheme 1d). Zirconocene dichloride was sequen-
tially treated with diethylamine, water, silane, and excess 5-
phenyl-1-pentyne (8), resulting in the formation of vinyl
zirconocene 9 in 45% yield. The observed trans-alkene
geometry of 9 is in accordance with a concerted four-center
hydrometalation mechanism.8a

Scheme 1. Experimental Mechanistic Studiesa

aReactions were carried out under N2 atmosphere at room
temperature unless otherwise indicated. Yields were determined by
1H NMR spectroscopy of the crude reaction mixture, using mesitylene
as an internal standard.
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On the basis of these findings, we propose the following
mechanism for the catalytic reduction of carbonyls (Scheme
2). First, oxo-bridged zirconocene dimer 5 could be formed via

an amine-mediated ligand exchange of the chlorides belonging
to 2 with the oxygen of water in a 2:1 ratio. We postulate that
the amine merely acts as an HCl acceptor. On the basis of
spectroscopic observations, this process appears to be rapid
and irreversible. Precatalyst 5 may be transferred directly to the
active zirconocene hydride species I, presumably via a σ-bond
metathesis with silane.24

Subsequently, ketone reduction is proposed to take place
through sequential hydrozirconation and σ-bond metathesis to
yield silyl ether III, which is desilylated upon workup to yield
alcohol V.25 The reaction generating III from hydride I is
energetically highly favorable and likely fast. Conversely, the σ-
bond metathesis to yield IV and regenerate I is anticipated to
be rate limiting on the basis of enthalpic considerations and
may be mechanistically more complex than what is currently
proposed. At this time, further experimental mechanistic
studies are underway.
In conclusion, we have developed a general method for the

ZrH-catalyzed reduction of carbonyls using 2.5−5 mol % of
zirconocene dichloride. This method features a mild and
functional-group-tolerant method for the in situ preparation of
the metal hydride species via an amine-mediated ligand
exchange followed by reaction with DMMS. This reaction
accommodates a wide assortment of carbonyl-containing
substrates and does not require rigorous exclusion of air or
moisture. We believe that these findings set the stage for an
alternative area of metal hydride catalysis that is likely to offer
selectivity orthogonal to that of other late-transition-metal
hydrides.
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