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Iron is involved in many biological processes essential for sustaining life. In excess,
iron is toxic due to its ability to catalyze the formation of free radicals that damage
macromolecules. Organisms have developed specialized mechanisms to tightly regulate
iron uptake, storage and efflux. Over the past decades, vertebrate model organisms have
led to the identification of key genes and pathways that regulate systemic and cellular
iron metabolism. This review provides an overview of iron metabolism in the roundworm
Caenorhabditis elegans and highlights recent studies on the role of hypoxia and insulin
signaling in the regulation of iron metabolism. Given that iron, hypoxia and insulin signaling
pathways are evolutionarily conserved, C. elegans provides a genetic model organism that
promises to provide new insights into mechanisms regulating mammalian iron metabolism.
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INTRODUCTION
Iron is essential due to its presence in proteins involved in key
metabolic processes such as DNA synthesis, mitochondrial respi-
ration, and oxygen transport. Regulation of cellular iron content
is crucial as excess iron catalyzes the generation of reactive oxygen
species that damage DNA and proteins, while cellular iron defi-
ciency causes cell cycle arrest and cell death. Disruption of iron
metabolism, by iron excess or iron deficiency, leads to common
hematological, neurodegenerative, and metabolic diseases (Flem-
ing and Ponka,2012). As a consequence, organisms have developed
strategies to sense, transport and store this metal.

Our understanding of the mechanisms that regulate iron
metabolism has advanced through the use of model organ-
isms. Physiological and genetic studies in transgenic mice have
revealed the mechanism regulating systemic iron metabolism by
the ferroportin–hepcidin axis. Saccharomyces cerevisiae have been
used to unravel the complex pathways involved in Fe-S cluster
synthesis (Lill and Muhlenhoff, 2008), while zebrafish have been
critical in the identification of genes involved in hematopoiesis
(Shafizadeh and Paw, 2004). More recently, the soil nematode
Caenorhabditis elegans has emerged as a model of iron metabolism.
The advantages of C. elegans include a short generation time
and life span, the feasibility of genetic screens and the oppor-
tunity to study physiological processes in a whole organism
context. C. elegans orthologs have been identified for many human
genes (Shaye and Greenwald, 2011) and many of the key genes
and pathways regulating mammalian iron metabolism are con-
served in C. elegans. The genetic tractability of C. elegans can
provide a complementary approach to mammalian systems to
identify novel genes and unravel complex pathways involved in
iron metabolism. This review provides an overview of our cur-
rent understanding of iron metabolism in C. elegans, how iron
metabolism integrates with oxygen and insulin signaling, and

how this genetic model can provide insights in mammalian iron
metabolism.

CONSERVATION OF IRON METABOLISM IN C. ELEGANS
All organisms must maintain cellular iron content within a nar-
row range to avoid the adverse consequences of iron depletion
or excess. This is accomplished in vertebrates by precise mech-
anisms that regulate iron uptake, storage and efflux (Andrews
and Schmidt, 2007; Zhang and Enns, 2009; Figure 1). Mam-
mals acquire iron solely from the diet. Dietary non-heme iron
is reduced by membrane bound ferrireductases (e.g. DCYTB,
also known as CYBRD) and transported across the apical mem-
brane of intestinal enterocytes by divalent-metal transporter 1
(DMT1, also known as NRAMP2, SLC11A2 and DCT1; Macken-
zie and Garrick, 2005; Shawki et al., 2012). Iron is released into
a cellular labile iron pool thought to consist of low molecular
weight iron complexes. This pool is kept small due to the abil-
ity of iron to catalyze the production of reactive oxygen species.
Iron is utilized by the mitochondria for Fe-S cluster and heme
biosynthesis, and by iron-containing proteins in the cytosol and
nucleus. Iron is exported across the basolateral membrane into
the circulation by ferroportin (FPN1, also known as SLC40A1,
IREG1 and MTP1) in concert with its oxidation by the multi-
copper oxidase hephaestin (HEPH). Iron enters the circulation
where it binds with high affinity to transferrin for delivery to cells
expressing transferrin receptor 1 (TfR1, also known as TFRC).
TfR1-transferrin-Fe(III) complexes are internalized by receptor
mediated endocytosis. Iron is released from transferrin, reduced
to Fe(II) by the ferrireductase STEAP3 and transported across
the endosomal membrane to the cytoplasm by DMT1. Thus,
DMT1 is essential in intestinal non-heme iron absorption as
well as transport of endosomal iron released by transferrin into
the cytoplasm. Although most cell types express TfR1, erythroid
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precursors are dependent on Tf-TfR1-DMT1 for iron uptake as
disruption of Tfrc gene in mice (Levy et al., 1999) or mice with
reduced transferrin (Trenor et al., 2000) developed severe ane-
mia. DMT1 mutations in humans (Shawki et al., 2012), the mk
mouse (Fleming et al., 1997), and the Belgrade rat (Fleming et al.,
1998) also cause a severe microcytic hypochromic anemia, under-
scoring the importance of DMT1 in intestinal and erythroid iron
acquisition.

Mammals can also acquire iron by the intestinal absorption of
heme iron that comes primarily from animal sources. Although
several heme importers have been identified (Yuan et al., 2013),
the mechanism regulating intestinal heme import is not well
understood. It is likely that heme oxygenase 1 releases iron from
dietary heme, which is then exported by ferroportin into the
circulation.

When body iron stores are high, cytosolic iron is not exported,
and is instead sequestered in ferritin in an inert form unable to
catalyze free radical formation (Harrison and Arosio, 1996; Torti
and Torti, 2002; Theil, 2011). After 3 days, iron in ferritin is lost
by enterocyte sloughing into the intestinal lumen. The regula-
tion of intestinal ferritin is crucial as it serves as a cellular iron
“sink” to limit efflux of iron into the circulation (Vanoaica et al.,
2010; Galy et al., 2013). Because there is no regulated mechanism
for iron excretion, precise regulation of intestinal iron uptake
and storage is required. Given the fundamental nature of iron
metabolism, it is not surprising that many proteins involved in
intestinal iron uptake, storage and export are highly conserved
between C. elegans and mammals. C. elegans express orthologs for
DMT1 (SMF-3), ferritin (FTN-1, FTN-2), and ferroportin (FPN-
1.1, FPN-1.2, FPN-1.3; Figure 1). The C. elegans genome also
encodes potential orthologs for DCYTB ferrireductase and hep-
haestin multicopper oxidase. The intestinal anatomy in C. elegans
is similar to vertebrates in that they contain an apical brush border
facing the lumen and a basolateral membrane facing the intersti-
tial space (circulation in mammals) (McGhee, 2013) (Figure 1).
The intestine serves as the major site for absorption of dietary
nutrients and a defense against xenobiotics and pathogens. C.
elegans lack adipose tissue, liver, and pancreas and the intes-
tine fulfills these functions by serving as a major site of lipid
and glucose metabolism. Unlike mammals, C. elegans are heme
auxotrophs and are dependent on acquiring heme from the envi-
ronment (Rao et al., 2005; Hamza and Dailey, 2012; Yuan et al.,
2013).

SMF-3 is the principal intestinal Fe(II) transporter in C.
elegans. Consistent with its role in intestinal iron transport,
SMF-3 is highly expressed at the apical membrane of intestinal
epithelium (Au et al., 2009; Bandyopadhyay et al., 2009), tran-
scriptionally activated during iron deficiency (Romney et al., 2011)
and loss of SMF-3 expression leads to reduced iron content in
smf-3(ok1035) null mutants (Romney et al., 2011). SMF-3 also
transports Mn(II) as demonstrated by reduced Mn content in
smf-3(ok1035) mutants (Romney et al., 2011), increased tolerance
of smf-3(ok1035) mutants to Mn overload (Au et al., 2009) and
Mn-mediated reduction in smf-3 mRNA and SMF-3 protein in
intestine (Au et al., 2009; Settivari et al., 2009). Like SMF-3, DMT1
transports Mn(II), which competes with Fe(II) uptake (Gunshin
et al., 1997; Illing et al., 2012). The DMT1-deficient Belgrade rat

FIGURE 1 | Conservation of intestinal iron metabolism in mammals

and Caenorhabditis elegans. C. elegans anatomy is shown in the left
panel. The body plan of C. elegans is made up of two concentric tubes
separated by the interstitial space (pseudocoelum). The inner tube consists
of the intestine and the outer tube consists of cuticle, hypodermis, muscle
and nervous tissue. The digestive tract is an epithelial tube containing the
mouth, pharynx (foregut) and intestine (midgut). Right panel, an intestinal
epithelial cell is shown with an apical brush border membrane facing the
lumen and a basolateral membrane facing the interstitial space or blood in
mammals. Mammalian proteins (black) and C. elegans orthologs (red) are
indicated. Dietary non-heme iron is reduced by ferrireductases (e.g.
DCYTB1) and transported across the apical intestinal membrane by
SMF-3/DMT1. Cytosolic iron is incorporated in iron-containing proteins and
transported to mitochondria for Fe-S cluster biosynthesis and heme
biosynthesis in mammals. C. elegans are heme auxotrophs and are
dependent on acquiring heme from the environment (Rao et al., 2005). Iron
is also exported across the basolateral membrane into the interstitial space
(blood in mammals) by FPN-1.1, FPN-1.2, FPN-1.3/ferroportin. Ferroportin is
the sole iron exporter in mammals, whereas C. elegans express three
orthologs whose specific functions in iron export are not well understood.
Iron export by ferroportin is coupled to the oxidation of iron by the
multicopper oxidase hephaestin (HEPH). The C. elegans genome harbors
putative DCYTB and HEPH homologs. Iron not utilized or exported is
stored in FTN-1, FTN-2/ferritin. Iron deficiency stabilizes C. elegans HIF-1
and mammalian HIF-2α, leading to the transcriptional activation of
smf-3/DMT1 to increase iron absorption. Mammalian DCYTB and
ferroportin are also activated by HIF-2α during iron deficiency. HIF-1
regulation of C. elegans DCYTB and FPN-1-1, FPN1.2, and FPN-1.3
orthologs remains to be determined. Iron deficiency reduces ferritin
abundance in C. elegans and mammals by different mechanisms: C.
elegans lack the IRP-IRE network and ferritin is transcriptionally repressed
by HIF-1, whereas mammalian ferritin is translationally repressed by IRPs.

displays impaired Mn uptake in intestine and erythroid precur-
sors consistent with a physiological role for DMT1 in Mn uptake in
mammals (Chua and Morgan, 1997). In excess, manganese is toxic,
and in humans chronic occupational nasopulmonary exposure to
Mn causes a neurological disease known as manganism (Roth and
Garrick, 2003). Because Mn(II) and Fe(II) compete for DMT1
transport, this suggests that iron deficiency may be an important
factor in the predisposition to Mn toxicity. Consistent with this are
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studies showing that iron deficiency is associated with increased
Mn content in the brain of rats (Chua and Morgan, 1996; Erikson
et al., 2002), in the olfactory epithelium of the DMT1-deficient
Belgrade rat (Thompson et al., 2007) and in serum of humans
with anemia or an iron deficient diet (Davis et al., 1992; Rahman
et al., 2013).

Caenorhabditis elegans also express DMT1-like proteins SMF-
1 and SMF-2 that share about 55–58% amino acid identity
with DMT1 (Settivari et al., 2009). SMF-1 is widely expressed,
but showed high expression in the apical intestinal membrane
(Au et al., 2009; Bandyopadhyay et al., 2009), whereas SMF-2 is
mainly cytoplasmic with high expression in pharyngeal epithelium
(Au et al., 2009). smf-3 and smf-1 are transcriptionally induced
upon exposure to pathogenic Staphylococcus aureus, and smf-
3(ok1035), and smf-1(ok1748) mutants showed hypersensitivity
to this pathogen, indicating a role for these proteins in innate
immunity (Bandyopadhyay et al., 2009). Like smf-3, exposure to
high Mn reduces smf-1 and smf-2 mRNA levels, suggesting that
reduced expression of these transporters may be a mechanism to
reduce Mn toxicity (Settivari et al., 2009). This is consistent with a
study showing that SMF-1 expression in dopamine neurons con-
tributes to Mn2+-mediated neuronal death (Settivari et al., 2009).
The roles of SMF-1 and SMF-2 in iron metabolism are not well
understood; however, unlike smf-3 mutant worms, iron and man-
ganese content were not significantly reduced in smf-1 and smf-2
mutants compared to wildtype worms consistent with a promi-
nent role of SMF-3 in iron and manganese transport (Romney
et al., 2011).

The mechanism regulating basolateral transfer of iron to the
interstitial space and to tissues in C. elegans is not known. In mam-
mals, ferroportin is the sole exporter of iron to the circulation.
C. elegans express three ferroportin orthologs, FPN1.1, FPN-1.2,
and FPN-1.3, but their specific roles in iron export remains to be
determined.

Caenorhabditis elegans express genes orthologous to human fer-
ritin heavy subunit (FTH) and ferritin light subunit (FTL) genes.
Ferritin is a ubiquitously expressed protein that stores iron in a
form that is unable to generate free radicals. Mammalian ferritin
is composed of a mixture of 24 FTL and FTH subunits that form a
shell containing up to 4500 iron atoms (Theil, 2013). FTH exhibits
ferroxidase activity that facilitates oxidation of iron, while FTL
participates with FTH in the nucleation of iron (Bou-Abdallah,
2010; Liu and Theil, 2005). C. elegans FTN-1 and FTN-2 are more
similar to human FTH than to FTL and both FTN-1 and FTN-2
contain ferroxidase active-site residues (Gourley et al., 2003). ftn-1
is highly expressed in intestine whereas ftn-2 is expressed in many
tissues such as pharynx, body-wall muscle, hypodermis and intes-
tine (Gourley et al., 2003; Kim et al., 2004). ftn-1, and to a lesser
extent ftn-2, are induced by high iron exposure (Gourley et al.,
2003; Kim et al., 2004). Only ftn-1 mutants are iron sensitive and
have reduced lifespans when exposed to high iron (Kim et al., 2004;
Valentini et al., 2012).

Iron induces ferritin expression in mammals and in C. elegans,
but the mechanism regulating ferritin differs in these organisms.
In mammals, ferritin is primarily regulated at the translational
level by iron-regulatory proteins 1 and 2 (IRP1 and IRP2) (Hentze
et al., 2010; Anderson et al., 2012). During iron deficiency, IRPs

bind to an RNA stem-loop known as the iron-responsive element
(IRE) in the 5′ untranslated regions of FTH and FTL mRNAs to
repress ferritin synthesis. When cellular iron increases, IRP1 is
converted to its Fe-S cluster aconitase form concomitant with loss
of RNA-binding activity, while IRP2 is targeted for ubiquitination
and proteasomal degradation causing ferritin synthesis to increase
(Salahudeen et al., 2009; Vashisht et al., 2009). C. elegans lack the
IRP-IRE system, but express a cytosolic aconitase (ACO-1; Gourley
et al., 2003; Kim et al., 2004). ACO-1 is homologous to mammalian
IRP1 and its aconitase activity is regulated by iron, but unlike
IRP1, it lacks RNA-binding ability. Despite lacking IRP-IRE reg-
ulation, C. elegans have evolved unique mechanisms to regulate
iron storage.

HIF-1 REGULATES IRON UPTAKE AND STORAGE DURING
IRON DEFICIENCY
In C. elegans, hypoxia signaling is the predominant mechanism for
regulating iron metabolism (Romney et al., 2011; Ackerman and
Gems, 2012). Hypoxia signaling is a highly conserved process that
conditions organisms to low oxygen and iron environments by reg-
ulating diverse biologic processes, including glucose metabolism,
angiogenesis and iron metabolism (Semenza, 2007; Kaelin and
Ratcliffe, 2008). During iron deficiency in mammals, hypoxia-
inducible factor 2α (HIF-2α, also known as EPAS1) activates
the transcription of DMT1, FPN1 and DCYTB genes in the
intestine to increase iron absorption (Taylor et al., 2011; Mastro-
giannaki et al., 2009; Shah et al., 2009). Hypoxia-inducible factors
(HIF-1 and HIF-2) are basic helix-loop-helix (bHLH) transcrip-
tion factors that consist of oxygen-regulated α subunits (HIF-1α

and HIF-2α) and a constitutively expressed β subunit (HIF-1β,
also known as aryl hydrocarbon nuclear translocator or ARNT)
(Semenza, 2007; Kaelin and Ratcliffe, 2008; Kaluz et al., 2008).
Under normal conditions, in the presence of oxygen and iron,
HIF-α subunits are hydroxylated by prolyl hydroxylase (PHD2,
also known as EGLN1) whose activity is dependent upon oxy-
gen and iron. Hydroxylated HIF-α is targeted for proteasomal
degradation by the E3 ubiquitin ligase von Hippel Lindau tumor
suppressor protein (VHL) (Ivan et al., 2001). During hypoxia or
iron deficiency, PHDs are inactive, thus allowing HIF-α sub-
units to translocate to the nucleus, dimerize with HIF-1β and
recruit coactivators to activate target gene expression in pathways
such as erythropoiesis, iron metabolism, glucose metabolism and
angiogenesis (Semenza, 2007; Kaelin and Ratcliffe, 2008; Kaluz
et al., 2008). HIF-1α and HIF-2α regulate overlapping, but dis-
tinct sets of target genes (Kaluz et al., 2008). For example, only
HIF-2α is responsible for the coordinate upregulation of DMT1,
DCYTB and FPN1 in intestine during iron deficiency (Mastro-
giannaki et al., 2009; Shah et al., 2009; Taylor et al., 2011). HIF-2α

regulation of intestinal iron metabolism during iron deficiency
ensures that sufficient iron is absorbed and delivered to the
bone marrow for production of red blood cells (Shah and Xie,
2014).

The HIF signaling pathway is conserved in C. elegans. C. elegans
express HIF-1, AHA-1, VHL-1, and EGL-9, which are orthologs
of HIF-1α/HIF-2α, HIF-1β, VHL and PHD, respectively, in verte-
brates (Epstein et al., 2001; Jiang et al., 2001). Unlike mammals, C.
elegans express a single hif-1 gene that shares homology to HIF1α
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FIGURE 2 | Model for HIF-1 iron-dependent activation and inhibition of

intestinal iron uptake and storage in C. elegans. Iron sufficiency : ELT-2
binds to GATA binding sites located in the ftn-1 and ftn-2 IDEs. We
propose that ELT-2 cooperates with an unidentified transcriptional activator
(ACT) that binds to the hypoxia-response elements (HREs) to regulate
transcription. As HREs resemble E-box elements, which are binding sites
for bHLH transcription factors, it is possible that a bHLH transcription
factor serves this role. smf-3 is transcribed at basal levels during iron
sufficiency to limit iron absorption. HIF-1 is expressed during normal

growth conditions, but at low levels. Iron deficiency : HIF-1 accumulates
and dimerizes with AHA-1. HIF-1/AHA-1 (denoted by HIF-1) displaces the
transcriptional activator ACT binding to the ftn-1 and ftn-2 HREs and
inhibits transcription. Another possible mechanism for HIF-1 mediated ftn-1
repression is the displacement of ELT-2 by HIF-1. HIF-1/AHA-1 binds to the
smf-3 HREs, recruits coactivators (CoA) and cooperates with ELT-2 to
activate smf-3 transcription. Whether ELT-2 is bound to the ftn-1 GATA
sites during iron deficiency and to the smf-3 GATA sites during iron
sufficiency has not been determined. (Adapted from Romney et al., 2011).

and HIF2α (Jiang et al., 2001). HIF-1 functions in a variety of bio-
logical processes ranging from stress response, innate immunity,
neuronal development, ageing and iron metabolism as discussed
below (Shen et al., 2005; Chang and Bargmann, 2008; Pocock and
Hobert, 2008; Luhachack et al., 2012; Jones et al., 2013).

During iron deficiency, ftn-1 and ftn-2 transcription is
repressed and is dependent upon a cis-regulatory element termed
the iron-dependent enhancer (IDE) located in the ftn-1 and ftn-
2 promoters (Kim et al., 2004; Romney et al., 2008) (Figure 2).
Basal expression of ftn-1 and ftn-2 is mediated by the intestinal
GATA transcription factor ELT-2 that binds GATA sites located in
ferritin IDEs (Romney et al., 2008). Further studies revealed that
HIF-1 binds to hypoxia response elements (HREs) located in the
IDEs of ftn-1 and ftn-2 to repress transcription during iron defi-
ciency (Romney et al., 2011; Ackerman and Gems, 2012). Intestinal
iron uptake through SMF-3 is also regulated by HIF-1 during
iron deficiency. Similar to ftn-1 and ftn-2 IDEs, smf-3 contains
an IDE in its promoter that contains HRE binding sites that con-
fer HIF-1 dependent activation during iron deficiency (Romney
et al., 2011) (Figure 2). Romney et al. (2011) also showed that hif-1
(ia04) mutants have reduced iron and manganese content and are
developmentally delayed when grown in iron deficient conditions.

Notably, development of hif-1(ia04) mutants was restored when
the cellular iron pool was increased by RNAi depletion of ftn-
1 and ftn-2. It is not known whether the ferroportin homologs
fpn-1.1, fpn-1.2 and fpn-1.3 and DCYTB homologs are regulated
by hypoxia. These studies show that regulation of iron uptake
and storage by HIF-1 is crucial for ensuring proper growth and
development during iron deficiency.

HIF-1 is well known as a transcriptional activator but less is
known about its role as a transcriptional repressor. The ques-
tion arises regarding the mechanism of HIF-1 transcriptional
repression of ftn-1 and ftn-2. Chromatin immunoprecipitation
analysis and electrophoretic mobility gel assays showed direct
HIF-1 binding to the ftn-1 IDE (Romney et al., 2011; Acker-
man and Gems, 2012). Another study showed that mutations
of all three HREs in the ftn-1 IDE abolished expression of a
pftn-1::gfp transcriptional reporter, suggesting that an activator
may bind the HREs during normal conditions (Romney et al.,
2011; Figure 2). HREs resemble E-box elements and it is pos-
sible that this activator may be a member of the basic helix
loop helix (bHLH) transcription factor family that can bind to
non-canonical E-boxes (Kewley et al., 2004). A MAD-like tran-
scription factor MDL-1 was identified in an RNAi screen as a
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transcriptional activator of ftn-1 expression (Ackerman and Gems,
2012). mdl-1 encodes a bHLH transcription factor that bind E-box
sequences as a dimer with MXL-1 to regulate target genes(Yuan
et al., 1998). MDL-1 transcriptional regulation of ftn-1 was shown
to be iron independent (Ackerman and Gems, 2012), suggest-
ing the possibility that MDL-1 may bind to the ftn-1 and ftn-2
HREs when iron is sufficient, but is displaced by HIF-1 when
iron is low. Alternatively, it is possible that during iron deficiency
the displacement of ELT-2 from its GATA binding sites by HIF-1
results in decreased ftn-1 and ftn-2 transcription. Further work
is required to define this mechanism. In mammals, ferritin has
not been reported to be regulated by HIF-2α; however, hypoxia
regulates ferritin expression by altering IRP1 RNA binding activ-
ity and IRP2 protein abundance (Schneider and Leibold, 2003;
Meyron-Holtz et al., 2004; Salahudeen et al., 2009; Vashisht et al.,
2009).

FERRITIN REGULATION BY THE INSULIN/INSULIN-LIKE
GROWTH FACTOR SIGNALING PATHWAY
Ferritin is regulated by the insulin/insulin-like (IIS) growth factor
signaling pathway in C. elegans. The IIS pathway is a con-
served pathway in vertebrates and C. elegans that coordinates
nutrient availability with development, metabolism and stress
responses (Accili and Arden, 2004; Figure 3). When nutrients
are available, insulin and insulin-like growth (IGF) factors acti-
vate tyrosine kinase receptors DAF-2/IGFR1, triggering a kinase
cascade that leads to the phosphorylation of the Forkhead box,
Class O (FOXO) transcription factor DAF-16/FOXO and its cyto-
plasmic retention and inhibition. When IIS is reduced during
nutrient deprivation, DAF-16/FOXO phosphorylation is reduced,
promoting DAF-16/FOXO translocation to the nucleus where it
regulates the expression of target genes involved in stress resis-
tance, metabolism, and innate immunity (Murphy and Hu, 2013).
A recent study showed that ftn-1 expression was elevated in daf-2
mutants compared to daf-16;daf-2 mutants, indicating that DAF-
16 activated ftn-1 expression (Ackerman and Gems, 2012). Further
genetic studies showed that hif-1 and daf-16 act in parallel path-
ways to regulate ftn-1 and that DAF-16 regulation of ftn-1 was
not iron dependent (Ackerman and Gems, 2012). Less is known
about the role of IIS in smf-3 regulation. One study showed
that glucose treatment induced the smf-3 expression, suggesting
a potential role for IIS and DAF-16 in smf-3 downregulation (Lee
et al., 2009). Reduced IIS leads to DAF-16 dependent upregulation
and downregulation of a diverse set of genes, which are desig-
nated as class 1 and class II genes, respectively (Lee et al., 2003;
McElwee et al., 2003; Oh et al., 2006). More recently, the tran-
scription factor PQM-1 was discovered to regulate class II genes
by binding to the DAF-16 associated element (DAE) located in
the promoter of these genes, whereas DAF-16 regulates class 1
genes by binding to the DAF-16 binding element (DBE; Tepper
et al., 2013). The smf-3 promoter contains both DBE and DAE
binding sites, but whether DAF-16 or PQM-1 regulates smf-3
awaits future studies. Taken together, these studies suggest that
DAF-16 activation of ftn-1 during reduced IIS provides C. elegans
with a mechanism to increase iron storage, thereby limiting iron
toxicity during stress conditions (Figure 3). When IIS is stim-
ulated, DAF-16 is inhibited and ftn-1 transcription is reduced,

FIGURE 3 | Pathways regulating cellular iron metabolism in C. elegans.

Iron deficiency-HIF-1 pathway : this pathway is activated in response to iron
deficiency or hypoxia and results in HIF-1 dependent repression of ftn-1 and
ftn-2 and activation of smf-3. This leads to reduced iron storage and
increased iron uptake, ultimately increasing the cellular iron pool and
promoting survival during iron limitation. Insulin/insulin growth factor-1
(IGF-1) signaling (IIS) pathway : the IIS pathway is a conserved pathway in
worms, flies and in vertebrates that regulates the transcription factor
DAF-16/FOXO. DAF-16/FOXO regulates genes in essential processes, such
as metabolism, stress resistance, pathogen defense and lifespan
extension. Activated IIS initiates a phosphorylation cascade that leads to
the cytoplasmic retention of DAF-16/FOXO and inhibits its function. Nutrient
deprivation reduces IIS leading to the nuclear localization of DAF-16 to
activate ftn-1. Glucose upregulates smf-3 expression, but whether DAF-16
directly regulates smf-3 remains to be determined. This pathway provides a
mechanism to increase cellular iron by reducing ftn-1 when nutrients are
abundant to promote growth and to reduce cellular iron during stress by
increasing ftn-1 to limit iron-catalyzed oxidative stress.

increasing the availability of iron required for development and
growth

Insulin signaling and FOXO regulation of mammalian ferritin
has not been reported. However, mammalian ferritin is transcrip-
tionally activated by oxidative stress (Thimmulappa et al., 2002;
Pietsch et al., 2003a,b; Hintze and Theil, 2005) and repressed
by oncogenes, providing a mechanism to sequester iron during
stress and to increase iron availability during cell proliferation
(Tsuji et al., 1993, 1995; Wu et al., 1999). Similarly, several studies
have shown that ferritin depletion stimulates cell proliferation by
increasing available iron, whereas sequestration of iron by ferritin
overexpression slows cell proliferation (Cozzi et al., 2000; Kakhlon
et al., 2001; Cozzi et al., 2004; Baldi et al., 2005). Like C. elegans,
changes in ferritin expression in response to environmental stimuli
are essential for survival during stress and growth during normal
conditions.

OTHER REGULATORS OF FERRITIN EXPRESSION
ftn-1 transcription has also been shown to be repressed by the REF-
1-like protein HLH-29 (Quach et al., 2013) and UNC-62 a member
of the TALE family of homeobox transcription factors (Catoire
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et al., 2011; Ackerman and Gems, 2012). HLH-29 is homologous
to the HairyVEnhancer of Split (HES) transcription factors that
regulate embryonic development through Notch-dependent and
independent pathway (Fischer and Gessler, 2007). HLH-29 was
recently shown to bind promoter sequences upstream of the ftn-1
IDE and repress its transcriptional expression independent of the
iron responsive HIF pathway (Quach et al., 2013). Additionally,
hlh-29 mutants have elevated levels of ftn-1 and are resistant to per-
oxide stress. Further studies are needed to define the mechanism
and significance of this regulation.

unc-62 encodes the mammalian ortholog of MEIS1 that has a
crucial role in normal development and in leukemia (Azcoitia et al.,
2005; Argiropoulos et al., 2007). MEIS1 has also been identified as
a Restless Leg Syndrome (RLS) predisposing gene (Winkelmann
et al., 2007; Xiong et al., 2009; Spieler et al., 2014). RLS is a sensori-
motor disorder that is associated with iron insufficiency in brain,
but the role of iron in RLS is not well understood (Clardy et al.,
2006; Allen and Earley, 2007; Catoire et al., 2011). It is of inter-
est that ftn-1 expression is significantly decreased in C. elegans
treated with unc-62 RNAi (Ackerman and Gems, 2012), suggest-
ing that dysregulation of MEIS-1/MEIS can lead to altered iron
metabolism.

Ferritin regulation spans beyond iron and nutrient stress. For
instance, ftn-2, but not ftn-1, was shown to be necessary for proper
innate immune response to pathogenic S. aureus (Simonsen et al.,
2011). During infection, ftn-2 was also transcriptionally upregu-
lated along with several DAF-16 targets. It is likely that DAF-16
activates ftn-2 to protect C. elegans from bacterial infection by
limiting iron availability.

CONCLUDING REMARKS
We have highlighted recent studies showing the potential of C.
elegans as a useful genetic platform to explore mechanisms inte-
grating iron and oxygen metabolism. Future genomic studies are
needed to identify additional target genes of HIF-1 that are spe-
cific to hypoxia or iron deficiency and the unique HIF-1 partner
proteins that coordinate these responses. A better understanding
of how iron and insulin signaling are coordinated in C. elegans
could provide new knowledge about the role of iron in glucose
metabolism and in the pathogenesis of diabetes in humans. Finally,
these studies have set a foundation for the development of genetic
screens to identify novel regulators that are involved in iron sens-
ing, uptake, storage and utilization. C. elegans holds promise as a
system to decipher complex pathways regulating iron metabolism
that can be followed up in mammals.
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