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The immune response to COVID-19 infection is variable. How COVID-19 influences
clinical outcomes in hospitalized patients needs to be understood through readily
obtainable biological materials, such as blood. We hypothesized that a high-density
analysis of host (and pathogen) blood RNA in hospitalized patients with SARS-CoV-2
would provide mechanistic insights into the heterogeneity of response amongst COVID-
19 patients when combined with advanced multidimensional bioinformatics for RNA. We
enrolled 36 hospitalized COVID-19 patients (11 died) and 15 controls, collecting 74 blood
PAXgene RNA tubes at multiple timepoints, one early and in 23 patients after treatment
with various therapies. Total RNAseq was performed at high-density, with >160 million
paired-end, 150 base pair reads per sample, representing the most sequenced bases per
sample for any publicly deposited blood PAXgene tube study. There are 770 genes
significantly altered in the blood of COVID-19 patients associated with antiviral defense,
mitotic cell cycle, type I interferon signaling, and severe viral infections. Immune genes
activated include those associated with neutrophil mechanisms, secretory granules, and
neutrophil extracellular traps (NETs), along with decreased gene expression in
lymphocytes and clonal expansion of the acquired immune response. Therapies such
org July 2021 | Volume 12 | Article 6942431
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as convalescent serum and dexamethasone reduced many of the blood expression
signatures of COVID-19. Severely ill or deceased patients are marked by various
secondary infections, unique gene patterns, dysregulated innate response, and
peripheral organ damage not otherwise found in the cohort. High-density
transcriptomic data offers shared gene expression signatures, providing unique insights
into the immune system and individualized signatures of patients that could be used to
understand the patient’s clinical condition. Whole blood transcriptomics provides patient-
level insights for immune activation, immune repertoire, and secondary infections that can
further guide precision treatment.
Keywords: COVID-19, SARS-CoV-2, blood transcriptomics, RNAseq, immune repertoire, interferon response,
immune cell deconvolution, secondary infections
INTRODUCTION

Coronavirus Disease of 2019 (COVID-19), caused by the ~30kb
single-stranded RNA virus known as SARS-CoV-2, primarily
infects the respiratory system resulting in a variety of
pulmonary insults ranging from pneumonitis to acute
respiratory distress syndrome (ARDS) (1). COVID-19 involves
responses from both innate and adaptive immune system
branches, leading both to an overactive inflammatory
process and clonal lymphocyte anti-SARS-CoV-2 antibodies
(2). Patients with higher severity of illness have elevated blood
pro-inflammatory cytokines, secondary hemophagocytic
lymphohistiocytosis, hyperferritinemia, and cytokine storm,
resulting in end-organ damage (3–5). It is not well understood
why some individuals are asymptomatic, yet others advance into
multiorgan failure and die. Upon entering the respiratory
epithelial cells through the ACE2 receptor, the virus can evade
intracellular detection (6), causing an altered type I interferon
(IFN) response (7). The adverse immune response is
characterized by an increased risk of secondary infections,
lymphopenia, over-activation of neutrophil mechanisms, and
increased systemic coagulation issues leading to end-organ
injury (8–10). Several immune system components have been
identified to have genetic variants that contribute to severity
(11, 12).

Yet, despite these observations and mechanistic understanding,
the range of clinical variability in affected patients is vast. This
unpredictability of disease course, comorbidities, and severity
create challenges for understanding individual vulnerability and
determining when and if appropriate therapies need to be initiated
(13). In choosing the right treatment strategy for the immune-
mediated complications of coronavirus infection, neutralizing the
“cytokine storm” is often the putative goal. Still, it is vital to
recognize immune incompetence that turns into immuno-
paralysis with increased vulnerability to secondary infections
(14). In addition to acute complications, the global activation of
the immune system may be related to poorly understood chronic
problems in survivors of COVID-19 (15, 16) that are beginning to
surface in COVID-19 “long-haulers.” The altered immune
responses, if identified early, could provide therapeutic options.
org 2
This has highlighted the further need for developing and testing
precision medicine-based tools to understand pathology in each
patient using easier to obtain biomaterials such as blood.

Immunomodulatory strategies appear to be promising in
patients with severe COVID-19 disease (17). Many different
immunomodulatory strategies have been studied, but this
requires early identification of the specific patient subgroups
who could benefit from their use. The transcriptome has the
utility of understanding immune system interactions with
various viral infections (18), especially if these tools can be
applied to biomaterials such as blood collected into sample
tubes that are easy to process, such as the PAXgene tube. Here,
we present the highest density (most sequenced bases per
patient) blood PAXgene tube transcriptome analysis of severely
ill patients hospitalized with COVID-19. We explore the ability
to detect multiple insights from the sequenced RNA bases. The
work highlights the diverse mechanisms of systemic immune
activation and repression while uncovering the heterogeneity of
multiple data analyses, all of which suggest the need for further
development of precision transcriptomic tools for COVID-19
patients and the immune response. It provides proof that blood-
based PAXgene tube RNAseq combined with advanced
bioinformatics can give precision medicine insights into each
patient impacted by an infectious agent in a way not
before appreciated.
METHODS

Patients were consented and samples collected as approved by the
Spectrum Health IRB. Inclusion criteria included a PCR positive
SARS-CoV-2 clinical test, above 18 years of age, hospitalized with
COVID-19. Exclusion criteria included patients with neoplasms,
autoimmune disease, immunosuppressive or immunodeficient
state, human immunodeficiency virus (HIV) infection, asplenia,
recurrent severe infections, or systemic immunosuppressants or
immune-modifying drugs for >14 days in total within six months
before enrolling. Patients that tested SARS-CoV-2 positive by
PCR test had 2mL of blood drawn into PAXgene™ Blood
RNA tubes (PreAnalytiX). Control samples received a negative
July 2021 | Volume 12 | Article 694243
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SARS-CoV-2 PCR test and showed no signs of lung pathologies.
RNA was isolated from tubes using Thermo MagMAX™

Isolation Kit on Thermo KingFisher Presto. RNA yield was
quantified using M200 Infinite® (Tecan) and sequencing
libraries prepared using a Globin-minus, RiboErase, RNA
HyperPrep Kit (KAPA Biosystems) as previously described
(19). Whole transcriptome sequencing was done using 150 bp,
paired-end reads on a single Illumina NovaSeq6000 sequencing
run on a 300-cycle S4 flow cell to remove batch effect.

A total of 51 patients were consented, blood collected, and
RNAseq performed for 74 transcriptomes, where some patients
had multiple time points of collection (1 patient with 4
collections, 3 with 3, 14 with 2, 33 with 1). Of these patients,
15 were suspected COVID-19 negative (asymptomatic controls),
and 36 were COVID-19 positive as determined by clinical PCR
test. Of the 36 COVID-19 positive patients, 11 had mortality.
Frontiers in Immunology | www.frontiersin.org 3
Patients were 21-95 years of age, with 30/51 male and 21/51
female (Table 1). The mean age of 61 for the cohort shows the
focus on sample collection for hospitalized non-elderly
individuals. Moreover, 13/36 COVID-19 positive patients
required mechanical ventilation. Simplified Acute Physiology
Score (SAPSII) was collected to estimate probability of
mortality amongst the patients. Admissions diagnoses included
COVID-19 (47%), hypoxia (22%), pneumonia (19%), ARDS
(17%), and hypertension (14%). A total of 42% of the COVID-
19 patients had heart disease as a pre-existing condition, with
lung disease at 25%, hypertension at 19%, and diabetes at 19%.

Paired-end fastq reads were quasi-aligned to Homo sapiens
Gencode v35/38 or our single-gene to sequence transcriptome
(15) using salmon_0.14.1 (20). Mapped transcripts per
million (TPM) for all samples were processed through
NetworkAnalyst3.0 (21) using Limma (22) to identify gene-
TABLE 1 | Patient demographics of COVID-19 Cohort 2020 (N=51).

Range (n) % mean median st.dev.

Age (Years) 21-95 51 100 55 56 18
Controls 21-59 15 40 41 11
COVID+ 24-95 36 61 62 17
Sex
Male 30 58.82
Controls 5
COVID+ 25

Female 21 41.18
Controls 10
COVID+ 11

Race
Controls 15
Caucasian 5 33.30
Black 2 13.33
Hispanic 7 46.67
Multiracial 0 0
Other 1 6.67

COVID+ 36
Caucasian 21 58.33
Black 7 19.44
Hispanic 6 16.67
Multiracial 1 2.78
Other 1 2.78

BMI (kg/m2) 16.11-45.14 51 30.68 28.48 9.12
Controls 20.74-38.52 15 28.63 28.02 4.89
COVID+ 16.11-45.14 36 31.54 28.74 0.32

SAPS II Score*
COVID+ 27-66 36 40.00 33.00 12.92

Ventilationa

Controls 15
Mechanical 0 0
Room Air 15 100

COVID+ 36
Mechanical 13 36.11
Non-Invasive 23 63.89

Hospital LOS (days)
Controls 0 15 0 0 0
COVID+ 2-40 36 14.97 13.50 9.79
Mortalityb

Controls 0 0
COVID+ 11 30.56
July 20
21 | Volume 12 | Article
*Simplified Acute Physiology Score; this score estimates the probability of mortality with ICU patients. SAPSII score was not calculated for Control patients aPatients on Room Air did not
receive oxygen therapy during stay. b(n) represents total group number.
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level annotations that differ between groups. Pathways identified
in NetworkAnalyst to have variable gene expressions with an
adjusted p-value (< 0.01) and log2 fold change of 2 were
extracted for Gene Ontology (GO) enrichment. Sex of each
sample was determined by the presence of multiple
chromosome Y genes within RNAseq. CIBERSORTx digital
cytometry cell fraction imputation (23) was performed using
gene mapping on LM22 signature matrix without batch
corrections and 500 permutations.

Bacterial and viral read mapping was performed using
kraken2-2.0.7-beta (24) using PlusPFP database, with mapping
normalized to every million mapped human reads. The immune
repertoire was mapped in each sample using the MiXCR tools
(25). Cell-type-specific genes were identified from the human
protein atlas (HPA) (26) single cell type atlas. The tissue or blood
tools of HPA were used to address significant genes in our
samples to determine cell type origins. From the gene level
annotation, z-scores were calculated for each gene TPM value
across all samples ([Patient gene-level - Gene average]/standard
deviation of gene values). Genes for each patient greater than 1
TPM and four standard deviations were identified and assessed
with STRING (27) for pathway enrichment. The top 1,000 SNPs
from the COVID-19 Host Genetics Initiative (HGI) (12) were
extracted from the A2_ALL very severe respiratory confirmed
COVID vs. population dataset, including 23andMe. The data was
processed through SNPnexus (28) to list possible connected
genes, followed by analysis with our RNAseq.
RESULTS

Transcriptome Statistics
The RNAseq sequenced 11,927,375,976 clusters for an average of
161.18 ± 21.49 million clusters per sample. We averaged 97.02%
of the sequences with perfect matching barcodes and a mean
quality score of 35.59 ± 0.07, meaning the sequencing was
performed to a high level with low error. This represents a
high-density and quality dataset of COVID-19 and control
whole-blood total RNAseq. In comparison, 76 BioProject have
been completed and made publicly available in NCBI SRA for
blood PAXgene tube RNAseq in paired-end (Table 2). This
current study generated an average of 45 billion bases of
sequencing for each patient, more than 10 billion higher than
any other study performed to date. Having this valuable resource
with extreme coverage, one can imagine creating a program
focused on exploring all the origins of RNA within the blood that
can be sequenced, gaining valuable insights into biomarkers and
precision medicine. With this depth of sequencing within each
patient, we sought out to define the insights that one can gain
using advanced bioinformatics (Figure 1) for genes (Figure 2),
transcripts (Figure 3), gene panels (Figure 4), cell composition
(Figure 5), foreign RNA including secondary infections
(Figure 6), the immune repertoire (Figure 7), and patient-
specific biology (Figure 8) applied to hospitalized COVID-
19 patients.
Frontiers in Immunology | www.frontiersin.org 4
SARS-CoV-2 vs. Control Gene Differences
Beginning with an analysis of the first collection time point for
each of the 51 patients (15 controls relative to 36 COVID-19
patients), there is a clear segregation of COVID-19 vs. control
based on principle component analysis (Figure 1A). LIMMA-
based differential analysis revealed 725 genes significantly higher,
and 45 genes lower in COVID-19 patients vs. controls, with 34
genes found related to IFN signaling (Figure 1B). IFI27 shows
the most considerable fold change, while DHCR24 and FCER1A
are the most significant (Figure 1C). IFI27 is a known biomarker
of viral vs. bacterial infections connected to IFN signaling (29).
DHCR24 is an endoplasmic reticulum (ER) protein that
facilitates the final step of cholesterol biosynthesis and is
connected to ER stress in viral infections (30). FCER1A codes
for the alpha subunit of IgE receptor associated with allergy
response (31).

The 770 significant genes in COVID-19 vs. controls allows for
an analysis of enriched biological processes (Figure 1D). From
the 45 genes lower in COVID-19 patients, there is an enrichment
in major histocompatibility complex (MHC) class II proteins
through genes HLA-DOA, HLA-DQA1, HLA-DQA2, HLA-
DQB1, HLA-DRA, and HLA-DPB1. Additional critically
important lower genes include Wnt regulated master
transcription factors TCF7 and LEF1 that are involved in T-
regulatory cell differentiation, survival, and immunosuppression
(32–34); IL7R connected to T-cell exhaustion and lymphopenia
(35); CCR7 implicated in homing and priming of T-cells and
antibody response (36); and CD3E connected to combined
immunodeficiency (37). Thus, many of the genes lower in
COVID-19 are related to the acquired/adaptive immune
response in COVID-19 patients. Among the additional genes
involved in T-cell exhaustion, we do not see significant
differences (Supplemental Figure S1), suggesting that the
repression signals are not as easy to define pathway alterations
as those activated genes.

SARS-CoV-2 vs. Control Transcript
Differences
Similar to gene analysis, focus on reads found on unique splicing
sites for each gene allows the transcript changes to be defined
(Figure 3). The Gencode 38 database contains 236,186
transcripts, where 64,640 are detectable in at least one sample
greater than 1 TPM. The blood transcripts show the separation
of control samples relative to COVID-19 patients that survived
or passed away (Figure 3A). A total of 313 transcripts have a fold
change of 2 or more and adjP <0.0005 (Figure 3B). Most of the
top transcripts are within protein-coding transcripts of immune
genes and show a significant difference for all COVID-19
patients, including lethal cases, relative to controls
(Figure 3C). Using the biotype annotations for each transcript
significantly altered relative to the blood-identified transcripts
shows the highest enrichment in TR_V_genes (Figure 3D),
which are the genes that code for the variable T-cell receptor
suggesting a significant change to T-cell biology within COVID-
19. Those genes with the most transcripts identified significantly
July 2021 | Volume 12 | Article 694243

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Prokop et al. COVID-19 High-Density RNAseq
TABLE 2 | Public datasets found in each BioProject on the NCBI SRA (as of June 2021) for blood PAXgene tube RNA done in paired end with fastq files available.

BioProject # Blood Samples Study Total spots Total bases Bases per Sample

PRJNA691933 74 SARS-CoV-2 (Current Study) 11,927,375,976 3,336,510,420,209 45,087,978,651
PRJNA588242 100 tuberculous 17,441,858,528 3,473,056,592,305 34,730,565,923
PRJNA358580 16 pregnant women 1,507,551,371 304,525,376,942 19,032,836,059
PRJNA521868 6 multiple sclerosis 466,613,597 93,322,719,400 15,553,786,567
PRJNA702558 95 SARS-CoV-2 4,774,111,508 1,441,781,675,416 15,176,649,215
PRJNA647880 105 sepsis 5,035,786,125 1,510,735,837,500 14,387,960,357
PRJNA341405 44 Malaria Vaccine 2,509,308,757 632,345,806,764 14,371,495,608
PRJNA679264 201 SARS-CoV-2 14,028,038,243 2,833,663,725,086 14,097,829,478
PRJNA703029 70 Trisomy 21 3,206,115,333 961,834,599,900 13,740,494,284
PRJNA600846 101 Crohn’s disease 5,928,019,591 1,197,459,957,382 11,856,039,182
PRJNA728070 10 Spinal Muscular Atrophy 743,666,190 110,857,361,100 11,085,736,110
PRJNA430406 37 Cross Tissue 2,013,009,263 402,601,852,600 10,881,131,151
PRJNA476781 468 lupus 25,280,746,391 5,056,149,278,200 10,803,737,774
PRJNA437114 43 tuberculous meningitis 2,343,938,349 463,538,572,586 10,779,966,804
PRJNA579053 8 luminal-B breast cancer 270,853,633 81,256,089,900 10,157,011,238
PRJNA664368 12 tuberculous 572,922,378 115,730,320,356 9,644,193,363
PRJNA693881 47 Viral Bronchiolitis 4,320,326,973 440,673,351,246 9,376,028,750
PRJNA329148 26 idiopathic pneumonia 1,596,881,008 239,532,151,200 9,212,775,046
PRJNA251404 16 coronary artery calcification 961,484,870 146,145,700,240 9,134,106,265
PRJNA390289 172 Chikungunya infection 5,324,807,224 1,570,379,541,476 9,130,113,613
PRJNA634938 76 SARS-CoV-2 3,422,333,457 677,622,024,486 8,916,079,270
PRJNA562305 49 cystic fibrosis 2,798,471,909 419,770,786,350 8,566,750,742
PRJNA494155 51 cervical lesions 1,450,406,148 435,121,844,400 8,531,800,871
PRJNA632871 18 globin gene depletion 759,197,460 153,357,886,920 8,519,882,607
PRJEB14743 8 leishmaniasis 277,784,189 67,426,701,419 8,428,337,677
PRJEB23048 17 visceral leishmaniasis 588,699,414 142,931,836,858 8,407,755,109
PRJNA639278 36 ADNP syndrome 987,218,170 296,165,451,000 8,226,818,083
PRJNA306908 12 Pediatric Tumors 656,614,836 98,641,641,250 8,220,136,771
PRJNA357628 13 autoimmune disease genetics 519,146,305 104,867,553,610 8,066,734,893
PRJNA591657 15 Plasmodium falciparum 783,112,666 117,466,899,900 7,831,126,660
PRJNA638653 48 Tuberculosis 1,854,820,555 370,964,111,000 7,728,418,979
PRJEB20731 13 DNASE2 mutations 599,733,466 99,295,863,162 7,638,143,320
PRJNA277352 14 multiple sclerosis 512,318,064 103,488,248,928 7,392,017,781
PRJNA511891 25 Acne 601,115,130 180,334,539,000 7,213,381,560
PRJNA504827 31 Tuberculous Meningitis 1,098,311,879 221,858,999,558 7,156,741,921
PRJNA526839 52 influenza vaccine 1,859,507,256 371,901,451,200 7,151,950,985
PRJNA680771 25 tuberculosis 621,704,238 178,360,488,275 7,134,419,531
PRJEB33892 53 Plasmodium falciparum malaria 1,875,460,009 370,990,061,196 6,999,812,475
PRJEB36928 19 Leishmania 605,785,718 132,240,365,548 6,960,019,239
PRJNA378794 38 preterm labor 1,048,641,007 264,257,533,764 6,954,145,625
PRJNA427575 2 Cryptococcal osteomyelitis 45,492,469 13,647,740,700 6,823,870,350
PRJNA454694 64 pregnancies 2,226,299,528 428,877,904,875 6,701,217,264
PRJNA384259 50 leishmaniasis 1,418,303,493 330,043,893,650 6,600,877,873
PRJEB44660 19 decompression sickness 1,218,267,812 121,826,781,200 6,411,935,853
PRJNA552286 16 high altitude 340,942,208 102,282,662,400 6,392,666,400
PRJNA305001 18 Acute mountain sickness 637,689,123 114,784,042,140 6,376,891,230
PRJNA601661 38 Cardiopulmonary bypass 1,153,286,556 228,604,842,466 6,015,916,907
PRJNA630674 79 acute respiratory illness 4,649,964,787 473,952,469,749 5,999,398,351
PRJEB41073 41 interferonopathy 1,481,311,728 245,636,835,758 5,991,142,336
PRJNA327986 36 Mycobacterium tuberculosis 1,091,879,049 205,237,031,937 5,701,028,665
PRJNA608900 8 nephrotic syndrome 515,074,459 43,781,288,465 5,472,661,058
PRJNA369684 434 Mycobacterium tuberculosis 24,108,707,793 2,362,653,363,714 5,443,901,760
PRJEB27958 28 Aicardi-Goutières syndrome 941,110,802 148,090,827,683 5,288,958,132
PRJNA397222 275 malaria vaccination 13,402,529,173 1,370,652,640,846 4,984,191,421
PRJNA493832 48 kidney transplantation 1,058,879,166 213,893,591,532 4,456,116,490
PRJNA352062 914 Mycobacterium tuberculosis 41,358,057,742 4,053,089,658,716 4,434,452,581
PRJEB27965 12 connective tissue diseases 347,784,291 52,511,397,108 4,375,949,759
PRJNA398240 22 Mycobacterium tuberculosis 1,070,313,577 92,046,967,622 4,183,953,074
PRJNA686397 271 leprosy 3,745,132,928 1,131,030,144,256 4,173,542,968
PRJNA201433 25 implant of left ventricular devices 486,115,991 97,223,198,200 3,888,927,928
PRJNA354367 24 rheumatoid arthritis 440,934,780 89,068,825,560 3,711,201,065
PRJNA401870 670 malaria infection 23,803,919,884 2,427,999,828,168 3,623,880,341
PRJNA315611 355 Mycobacterium tuberculosis 12,621,668,141 1,258,394,190,556 3,544,772,368

(Continued)
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different include the immune system genes IFI27, TC2N, CASS4,
and SMARCD3 (Figure 3E).

Patient-Level Gene Panel Differences
Moving from single genes and transcripts to panels of genes, one
can increase the confidence of activated biological pathways,
primarily when focused on each patient. Twenty-three genes are
significantly higher in the COVID-19 patients were also
identified in a single-cell analysis of severe COVID-19 (38).
Using the gene sets from enriched terms (Figure 2D), we can
mark pathway activation in each individual, the total elevation of
gene signatures (x-axis, Figures 4A–C) relative to the number of
elevated genes (y-axis, Figures 4A–C). Multiple enrichment
terms are associated with viral response, including 48 genes
that have previously been connected to severe pediatric influenza
infection (39). The three patients with the highest activation
(patients 1, 8, 41) had lethality (Figure 4A). In comparison, three
patients (11, 17, 40) had high activation of only a subset of
Frontiers in Immunology | www.frontiersin.org 6
influenza-connected genes PRTN3, LTF, PGLYRP1, DEFA1B,
DEFA1, DEFA4, ELANE, and MPO (Figure 4A). This suggests
more than one mechanism in activated antiviral defense, which
requires future segregation analysis with a larger cohort.

Multiple enriched terms of genes higher in COVID-19
samples are connected to neutrophil processes, including
secretory granules, neutrophil activation, and neutrophil
extracellular traps (NETs). The 35 genes connected to NET
biology associate with long-term risk of autoimmune diseases
and coagulation (41, 42). NET activation’s hallmark is the
upregulation of histone genes, with 44/725 (6%) of the
significantly upregulated genes histones. Many of these histone
transcripts are not polyadenylated (43), making their detection
benefited from the total RNAseq strategy used. A total of 106
genes upregulated in COVID-19 patients are connected to
secretory granules, where several of the deceased patients (51,
8, 1, and 41) had high activation (Figure 4B). Genes including
CEACAM6, RETN, MPO, LTF, MMP8, CEACAM8, DEFA4,
TABLE 2 | Continued

BioProject # Blood Samples Study Total spots Total bases Bases per Sample

PRJNA380820 40 malaria 1,385,805,539 141,352,164,978 3,533,804,124
PRJNA494572 2 Immune Rep 17,746,758 6,958,474,116 3,479,237,058
PRJNA526259 99 Myalgic encephalomyelitis 1,635,104,044 330,291,016,888 3,336,272,898
PRJNA230906 6 H7N9 infection 104,404,498 18,945,387,393 3,157,564,566
PRJNA232593 47 globin depletion 925,123,735 138,768,560,250 2,952,522,559
PRJNA533086 1021 Zika 8,394,083,256 2,339,713,683,748 2,291,590,288
PRJNA679331 147 COVID-19 3,020,052,290 313,658,976,932 2,133,734,537
PRJNA613909 20 psoriasis 747,490,987 38,122,040,337 1,906,102,017
PRJNA607120 128 metabolic syndrome 1,211,648,818 182,913,643,573 1,429,012,840
PRJNA693202 26 Parkinson’s disease 364,029,613 37,131,020,526 1,428,116,174
PRJNA683803 211 HIV-infected patients 1,628,600,937 287,831,202,774 1,364,128,923
PRJNA454445 612 Circadian State 4,466,128,161 371,064,549,144 606,314,623
PRJNA459725 96 pregnancy 437,555,274 34,129,311,372 355,513,660
July 2021 | Volume
Projects are listed in order of bases per sample, with our current study the top listed.
FIGURE 1 | Workflow for precision high-density transcriptomics used within the current study. The black text is the various steps used within the current study to
generate and process fastq reads (cyan) for multiple levels of insights (red) shown within the various figures of the paper (blue). RNAseq was done in paired-end (PE)
with 150 basepair (bp) reads with at least one hundred million reads generated per patient.
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OLR1, DEFA3, DEFA1B, DEFA1, ELANE overlap secretory
granule and whole-blood based severity expression in
respiratory syncytial virus (44).

The highest activation of mitotic cell cycle genes was seen in
patients who survived, with lower levels in some deceased
patients (Figure 4C). Segregation of activated genes from Type
I vs. Type II IFN response (45) suggests several deceased
COVID-19 patients have elevation (Figure 4D). In contrast,
most COVID-19 patients showed a decreased overall IFN
activation signal relative to controls (Figure 4D). A
comparison between hospitalized COVID and COVID/lethal
revealed no significant genes, suggesting that lethality is either
outside blood measurements, diverse, or is highly stratified with
some survivors activated similar to deceased patients. The
SAPSII score is a standard ICU metric that integrates multiple
clinical annotations to predict disease severity and mortality risk
(46). There is a significance of 1.44E-5 between COVID and
COVID/Lethal at collection time point 1 for the SAPSII. A total
of 17 genes (STAT2, SPATS2L, PARP14, OLFM5P, NAPA,
DDX60, CTSL, IFI44, LAMP3, APOBEC3A, UBQLNL, FANCA,
HESX1, CCNA1, IL15RA, SERINC2, LAP3) have 0.5 to 0.4
correlation to SAPSII, where the elevated expression of these
genes accounts for 7 (1, 5, 8, 36, 37, 39, 43) of the patients with
elevated SAPSII (Figure 4E). These genes are significantly
associated with autoimmune phenotype genes (47, 48) (FDR
>1e-5). Two of the patients (18 and 17) with high SAPSII have
enrichment of a different set of 17 genes (DEFA8P, CA1,
DEFT1P, ELANE, PRTN3, AZU1, DEFA3, AHSP, ADAMTS2,
DEFA4, HBD, DEFA1, CTSG, SMOX, EMID1, DAAM2,
Frontiers in Immunology | www.frontiersin.org 7
RNASE3), associated with innate overactivation (49) (FDR 1e-
10). The intricate pattern of genes relative to lethality or SAPSII
score suggests a need for further segregation mechanisms more
focused on individual patient response. In total, based on the 770
COVID-19 significant genes, there is a clustering of two groups
of COVID-19 patients (Figure 4F).

From our 36 enrolled COVID-19 patients, we collected a
second PAXgene tube following treatment for 12 receiving
Tocilizumab, three with convalescent serum, two with
Decadron (dexamethasone), five with Tocil izumab/
convalescent serum, and one with Tocilizumab/Decadron.
Focusing on the 770 COVID-19 significant genes, we assessed
how these treatments impacted gene signatures by changes to the
fold change significance, p-value significance, or the total fold
change of all significant genes. Tocilizumab (12 patients) had
slight alteration of elevated genes (Supplemental Figure S2A),
while it did change several of the suppressed genes
(Supplemental Figure S2B). Both convalescent serum and
Decadron reduced the change to both elevated and suppressed
genes closer to control levels. Of note, the type I/II IFN response
genes show significant activation with convalescent serum
treatment but not Decadron (Supplemental Figure S2C).
Three of the five patients with before and after transcriptomes
for convalescent serum treatment show initial repression of type
I/II IFN response genes that are elevated following treatment
(Supplemental Figure S2D). One of the samples that did not
respond in this way was a deceased case of COVID-19. This
dataset was generated as a preliminary insight into how
treatments changed these COVID-19 blood signatures, and
A B

DC

FIGURE 2 | Blood transcriptome gene signatures of SARS-CoV-2 patients. (A) Three dimensions of principal components (PC1-PC3) of first collection time point
RNAseq gene annotations for samples of COVID-19 (red) or control (blue) patients. (B) Volcano plot of gene expression in COVID-19 or control patients with
significant genes higher (red) or lower (blue) marked. The x-axis shows the log2 fold change, and the y-axis shows the -log10 of the adjusted p-value. Shadowed
genes are involved in interferon signaling. (C) Box and whisker plot of the top three genes labeled in panel (B, D) Top gene ontology (GO) enrichment terms for up
(red) or down (blue) genes. The term for each enriched description is shown first, followed by the name, and then in parentheses, the number of genes is significant
relative to the number of genes within the genome annotated for the term. The x-axis shows the -log10 of the false discovery rate (FDR).
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numerous future analyses from the deposited Supplemental
Data can be performed.

Cell Level Damage Biomarkers
While traditional RNAseq analysis tools focus on comparisons
between two groups of samples, we utilize bioinformatics tools to
identify unique insights for each sample that may contribute to
severity (15). We began assessing genes expressed primarily
within specific cell types that are significant in Figure 1 or
those with a maximum expression in the dataset using various
thresholds (Figure 5A). As expected, many of the genes found
significantly elevated within the cohort come from immune or
blood-based cell types. More revealing is the elevation of genes in
the blood from cells like type 2 alveolar cells, cardiomyocytes,
and ciliated cells in some of the patients. These types of RNA
from peripheral tissue likely are found in the blood due to release
in exosomes, detachment/circulation of cells, or RNA escape
Frontiers in Immunology | www.frontiersin.org 8
during cell death. Samples from two patients who died from
COVID-19 (1 and 8) have a spike in type 2 alveolar cell genes in
the blood. The control sample 25 shows a spike in cardiomyocyte
genes, correlating to a history of cardiovascular disease.
Expanding on the immune cell types, CIBERSORTx analysis
revealed segregation of lymphocytes vs. neutrophil and CD4
memory T-cell genes in COVID and COVID/lethal relative to
controls (Figure 5B).

Secondary Infections
We analyzed nonhuman RNA presence within each sample
using KRAKEN2 tools and a database of thousands of
transcriptomes from bacteria/plants/viruses/fungi. Three
patients (13, 28, 36) have higher values of mapped bacterial
RNA, four (12, 14, 18, 25, 28) with higher plant RNA, and two
(27 and 25) with high viral RNA (Figure 6A). Multiple patients
carried elevation of bacterial species such as Photobacterium
A B

D E

C

FIGURE 3 | Blood transcriptome transcript isoform signatures of SARS-CoV-2 patients. (A) Two dimensions of principal components (PC1-PC2) of first collection
time point RNAseq transcript annotations for samples of control (red), COVID-19 and survived (green), or COVID-19 and lethal (blue). (B) Volcano plot of transcript
expression in COVID-19 or control patients with significant genes with a Log2 of 2 and adjP <0.0005 marked in red. The x-axis shows the log2 fold change, and the
y-axis shows the -log10 of the adjusted p-value. (C) Box and whisker plot of the top six transcripts, with each having the transcript identifier, biotype, and Ensembl
transcript ID listed. (D) Top biotypes enriched in the significant transcripts for COVID-19, with the percent listed in paratheses for each biotype annotation. The top
biotypes are listed based on enrichment of significance annotation (red) relative to detection within blood within at least one sample with >1TPM (cyan). The percent
of transcripts for the entire Gencode 38 database of 236,186 known transcripts is shown in gray. (E) The number of transcripts significantly different in the COVID-19
group relative to controls for each gene. The percent of transcripts identified significant relative to all known transcripts for each gene is shown in paratheses.
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profundum, Bacillus megaterium, and Cryobacterium arcticum.
Bacteria like Pseudomonas species and E. coli are elevated in
specific patients (patients 13/36/42, cyan, Figure 6B). The
viruses mapped at high levels in one or more samples are
human pathogenic viruses like Epstein Barr Virus (EBV.
patient 45), Hepatitis C (HepC, patient 27), or markers of
immune-compromised patients like Torque teno virus and
Shingles seen in patient 47 (red, Figure 6B). We do note the
detection of specific RNA reads to SARS-CoV-2 only in COVID-
19 positive patients and not within controls, with the highest
levels detected in the blood of patients 42, 4, and 36 (Figure 6C).
The detection of SARS-CoV-2 using RNAseq requires the high-
density performed within this study, such that for patient 42 with
the highest mapping total, a total of ~10 million reads are
Frontiers in Immunology | www.frontiersin.org 9
required to observe a single read of SARS-CoV-2. The foreign
RNA mapping data suggests secondary infections can contribute
significantly to patient phenotypes.

Immune Repertoire
The immune repertoire, mapped with the MiXCR tools, assesses
the clonal expansion of the B and T cell variable region
recombination. One can observe what pathology activates
specific antibodies and T-cell receptor sequences by observing
the RNA of the variable regions. The immune repertoire showed
a significant elevation of reads mapped to the CDR3 region, reads
per clonotype, and the max read percent in one clonotype for
COVID and COVID/Lethal at collection one and further
collections (Figures 7A–D). A total of 50 clonotypes are
A B
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FIGURE 4 | Blood transcriptome gene panel signatures of SARS-CoV-2 patients. (A–C) Enriched associated genes for severe pediatric influenza (A), secretory
granule (B), and mitotic cell cycle (C). The x-axis shows the added transcript per million (TPM) of all genes in the gene list, and the y-axis shows the added z-score
for each group’s genes. Control samples are shown in black, COVID-19 patients in cyan, and COVID-19 patients deceased in red. The outlier samples are labeled
(Sample #:collection #:Sex : Group). (D) Average Z-score for genes specifically activated to Type I IFN (x-axis) or Type II IFN (y-axis). (E) The analysis of SAPSII
(Simplified Acute Physiology) relative to combinations of genes that are correlated 0.5-0.4 to the SAPSII. (F) Heat map of the 770 significant genes in all samples.
Clustering dendrogram of rows and columns is based on Spearman’s rank correlation.
A B

FIGURE 5 | Blood transcriptome cell-specific gene signatures of SARS-CoV-2 patients. (A) The number of genes unique to various cell types (x-axis) expressed
in the significant group of Figure 1 (red) or have expression in one or more of the samples greater than 100 TPM (orange), >10 TPM (yellow), or >1 TPM (cyan).
(B) Absolute values of CIBERSORTx additive for resting CD4 T-cells, CD8 T-cells, and memory B-cells relative to neutrophil and CD4 memory T-cells within the
control (black), COVID-19 (cyan), or COVID-19 lethal (red).
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A B C

FIGURE 6 | Blood transcriptome foreign RNA signatures of SARS-CoV-2 patients. (A) Box and whisker plots for normalized reads mapped to bacteria, plants
(Viridiplantae), or viruses with outlier samples labeled. (B) Top mapping values in samples for parasite (orange), bacteria (cyan), or virus (red) RNA. Values are shown
as the highest (max) sample normalized counts (x-axis) for each labeled vs. the z-score for that sample (y-axis) relative to the entire cohort. (C) Box and whisker plot
for normalized SARS-CoV-2 reads. Controls are gray, COVID samples cyan, and COVID/Lethal red.
A B D
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FIGURE 7 | Blood transcriptome immune repertoire signatures of SARS-CoV-2 patients. (A–D) Box and whisker plots for statistics for MiXCR CDR3 analysis.
Samples are grouped as controls (gray), COVID first collection (cyan), COVID later collections (blue), COVID/Lethal first collection (red), or COVID/Lethal later
collections (orange). Data is shown for the % of reads mapped to CDR3 from all reads (A), the number of clonotypes per sample (B), the number of reads per
clonotype per patient (C), and the max number of reads within one of the clonotypes for each patient (D). (E) The log2 fold change (x-axis) of group averages relative
to the max values (y-axis) for each clonotype in all COVID samples vs. Controls (top) or Lethal COVID vs. non-Lethal COVID (bottom). Outlier clonotypes enriched in
one of the groups are labeled (cyan, red, orange). (F) Clones labeled in panel E (cyan, red, orange) analyzed through CDR3 types (IGL, IGH, IGK, TRB). (G) Meme
motifs for labeled CDR3 types of extracted clones. Color of IGH/IGL/IGK corresponds to the clones extracted from the colored outliers of panel E.
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enriched in COVID-19 patients (cyan, Figure 7E), primarily
consisting of IGL, IGH, and IGK chains (Figure 7F) that are
enriched for an N-terminal set of amino acids for the IGH chain
(Figure 7G). The COVID-19 deceased patients have an elevation
of IGL clonotypes with a serine-dense sequence (orange,
Figures 7E–G). In contrast, the COVID-19 patients who
survived relative to both controls and COVID deceased
patients had 38 clonotypes elevated for a conserved motif in
IGK chains (red, Figures 7E–G).

Patient-Level Differences
Unique biology within each patient was identified for genes or
transcripts elevated four or more standard deviations from the
cohort (Figure 8). For each sample, genes were assessed for
overlapping biological function using STRING-based
enrichment tools. Thus, we take the genes or transcripts
significantly higher in a patient relative to the cohort and
address overlapping biological function from those genes using
GO enrichment statistics, representing a common statistical
strategy applied within precision medicine. This yields insight
for each sample from overactive components of the immune
system, potential neurological complications, and cardiovascular
impairments (Figure 8). This precision insight into COVID-19
patients and controls suggests an underappreciated role of cell
type damage resulting in elevation of RNA into the blood,
secondary infections including other viruses, and unique
biological responses involved in outcomes of infections. This
can be highlighted in patient 1, who had lethal COVID-19. In
this patient, we observe high mapping for organ severity SAPSII,
significant genes including those involved in overlap to severe
influenza or neutrophil biology, neutrophil to lymphocyte ratio,
genes connected to blood group antigens/erythroblastosis, and
RNA unique to Type 2 Alveolar cells. Yet this patient maintained
average to below-average values for mapping secondary
infections and expanding clonotypes within B and T-cells.
Other deceased patients, such as patient 51, presents similar to
COVID-19 survivors, with lower SAPSII, gene activation in
nearly every category, and minimal reads from cell-specific
RNA but show activation of secondary viral EBV and a unique
over-activation of a subset of significant genes, suggesting that
Frontiers in Immunology | www.frontiersin.org 11
COVID-19 pathology is not one mechanism but rather can result
in severity through different fundamental mechanisms.

Transcriptomics Relative to COVID-19
HGI GWAS
This new high-density transcriptome of severe COVID-19 has
additional utility outside of precision transcriptomics, namely in
being a tool in further filtering public data. To show this
potential, we have filtered the severe COVID-19 Genome-
Wide Association (GWAS) data from the COVID-19 HGI
(12). Using the top 1,000 variants based on the lowest p-value,
SNP Nexus (28), and various genome level annotations,
including GeneHancer and RegulomeDB, allowed top variants’
prioritization (Supplemental Figure S3A) to gene annotations.
Based on Combined Annotation Dependent Depletion (CADD)
score, chr19:10317045 T/A (p-value 1.52E-10) ranks the highest
(CADD 17.68) with an expression quantitative trait locus (eQTL)
to KRI1. The 3p21.31 region has been the center of many
investigations since its original report as associated with
COVID-19 severity (50). The most highly associated 12 SNPs
(p-value <10^-50) of the region remain weakly associated to any
genes, with rs71325088 (p-value 9.75E-61) scoring high in
CADD (10.54) but little biological connection to COVID-19
severity. The SNP rs13082697 (p-value 2.23E-32) found in the
3p21.31 region also has a high CADD score (16.25) with some
potential eQTL for the gene CXCR6. This suggests the need for
additional tools to narrow the search of causal genes than many
functional annotation tools can currently provide.

The list of 115 genes connected to the top 1,000 SNPs was
assessed through our differential data of hospitalized COVID-19
blood transcriptomics vs. controls (Supplemental Figure S3B).
Seven of our significant genes higher (GALNT14, OAS1, CCRL2,
OAS3, CCR1, OAS2, SIPA1L2) in COVID-19 and two lower (HLA-
DPB1, HLA-DQA2) were identified to overlap. The larger region of
3p21.31 with the significant association has SNP rs3181080 (p-value
7.13E-11), with a perfect RegulomeDB score, an eQTL for the
significant CCR1 gene, and GeneHancer linkage to the significant
CCRL2 gene. CCR1 is associated with antiviral defense, and its
deletion attenuates pathological overactive immune responses in the
respiratory system (40, 51). SNP rs2384072 ranks as 1b in
FIGURE 8 | Blood transcriptome outlier gene/transcript signatures of SARS-CoV-2 patients. The number of genes (x-axis) and transcripts (y-axis) in each sample
that has a z-score >4. Those samples with enriched gene ontology terms are shown.
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RegulomeDB, an eQTL for OAS1 connected to viral susceptibility
(52). A full data insight and gene matrix for the GWAS regions can
be found in the online data (https://doi.org/10.6084/m9.figshare.
13524275.v1). The data suggest the utility of our RNAseq in future
filtering and understanding of immune and viral response genetics.
DISCUSSION

Viruses are intracellular pathogens that eradication is largely
dependent on the host’s immune system (53). The host-pathogen
relationship is complex, even more so in aging patients. This
leads to variability in clinical outcomes in viral infections and has
been particularly notable within COVID-19 patients. This work
shows that clinical severity can be correlated to gene markers;
however, we could not differentiate by lethality likely due to our
sample size and the complicating effect of patient comorbidities
and divergent responses to treatments for COVID-19 that were
used based on the best evidence at that time. Despite this
limitation, we were able to show some relationship to SAPSII
scores which control for comorbidities.

Utilizing all of the mapped data, we can cluster COVID-19
patients into two distinct groups that cluster separately from
controls (Figure 9). All COVID-19 patients show strong
downregulation of genes and clonal expansion of the acquired
immune system. One group of COVID-19 patients (denoted as
group A) have the highest activation of our significant gene list,
suggesting an overactive immune system that might benefit the
Frontiers in Immunology | www.frontiersin.org 12
most from immune-suppressive drugs. The second group of
COVID-19 patients (denoted as group B) have strong
suppression of Type I IFN response and an elevation of RN7SL2
and RN7SL1 genes collectively known as 7SL RNA, both connected
to viral packing and trafficking (54, 55) and known to interact with
the SARS-CoV-2 NSP8 and NSP9 proteins to impact viral
trafficking to the cell membrane (56). This group B set of patients
may benefit from higher suspicion for nosocomial infections and
respond better to immune-stimulating agents that activate the Type
I IFN response, such as convalescent serum, as they appear to be an
immune-suppressed group. This is highlighted by the patient 47
inclusion in the group that had an elevation of the Torque teno virus,
which can be associated with immune system suppression (57). The
Type I IFN response has been central to COVID-19 pathology, with
numerous treatment strategies being tested (58). Consistent with
our findings, protein cytokine profiles have also suggested that
COVID-19 has impaired Type I IFN response (59, 60), but we
suggest here that this is not common to all COVID-19 hospitalized
patients. Amongst the top genes we see altered in COVID-19 is the
interferon response protein ISG15, which is also known to be a
direct target of the SARS-CoV-2 NSP3 protease for the removal of
ISGylation from target proteins such as the MDA5 sensor that can
regulate the intracellular IFN response by viruses (61–63).

The utility of PAXgene tube total RNA at such a high-depth
sequencing provides a unique resource to both the clinical and
scientific community that is currently not being utilized. This high
sequencing depth allowed us to show that many hospitalized
COVID-19 patients had distinct factors that were not clinically
FIGURE 9 | Schematic of two different groups of COVID patients relative to controls. Red represents the immune overactive COVID-19 patients (group A), cyan the
immune suppressed patients (group B), and controls cluster in black (group C).
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detectable, including secondary infections and peripheral organ
damage. Even in our small sample size, we were able to show by
serial assessment of data that treatments such as convalescent
serum and dexamethasone (Decadron) dampened some of the
signatures of COVID-19 hospitalized infections. While the sample
size before and after therapy was limited, the signatures seen
would suggest the need to perform additional analysis using
similar or lower depth RNAseq. Patients were enrolled in the
study before treatment, and the observational study did not
influence the clinical course. Therefore, as COVID-19
treatments changed early in the pandemic, our groups of
patients for each treatment were not balanced. Our in-depth
ability to evaluate therapeutic responses could provide valuable
information to a treating physician in a timely fashion. RNA
sequencing (RNA-Seq) provides transcriptome profiling that
allows an unbiased survey of the entire transcriptome in a high-
throughput manner. The deeper coverage and single-nucleotide
resolution of our RNAseq provides a platform to determine
differential expression of genes or isoforms that could provide a
deeper understanding of the host-pathogen relationship. The
depth shows the uniqueness of individual patients with the same
disease, a critical need in precision medicine.

Detection of RNA from other pathogenic or opportunistic
viruses and bacteria (EBV, Shingles, Pseudomonas, E. coli)
brings about an interesting question of whether COVID-19
alone drove hospitalizations or whether these other agents
contributed or even resulted in the hospitalization. We know
that all COVID-19 patients displayed the classical symptoms of
lung infections and were hospitalized primarily for COVID-19.
We, therefore, assume that these other agents contribute to the
severity of phenotype but were not the leading cause
of hospitalization.

Our findings overlap with other COVID-19 transcriptomic
studies but suggest caution in extrapolating single group
comparisons regarding either severity or lethality. Multiple
factors can independently contribute to the outcome through
diverse mechanisms. RNAseq in infected epithelial cells,
peripheral tissues, and blood has suggested a mechanism of
decreased IFN response (5), yet we show this to occur only in
a subset of patients. Studies show a subset of COVID-19 patients
to develop autoantibodies against type I IFN (11, 64), so further
work is warranted to show if autoantibodies correlate to
decreased IFN signaling. Profiles of single-cell RNAseq from
patient blood samples confirm the suppression of B- and T-cells
(lymphopenia), T-cell exhaustion, and TNF/IL1b–driven
inflammation signature (65–68) not typical to all mortalities in
this study. Targeted immune repertoire sequencing strongly
supports our findings that the B-cell repertoire has clonal
expansion (69), further expanding in later collection time
points. To the best of our knowledge, this is the first
transcriptomic study performed at this high depth of reads with
the integrationof broadermultidimensional bioinformatic analyses
focused more on the patient level insights rather than a cohort-
based approach for infectious disease and immune response.

An improved understanding of severe COVID-19 disease
pathogenesis and the patient’s physiologic and immunologic
Frontiers in Immunology | www.frontiersin.org 13
state could help identify patients at significant risk for
complications, guiding precision therapeutic approaches. RNA
transcriptomic analysis in hospitalized patients can guide clinical
trials and individualized treatment with various immunomodulators
for COVID-19 and future emerging infectious diseases. The value of
our study is that it highlights how transcriptomics provides a detailed
snapshot of the patient’s entire immunologic state that could have
value in immediate clinical decision-making. In the long term, this
data may also help us understand and more effectively predict,
prevent, and treat long-term sequelae of this and other viral
infections. Thus, additional studies of high-density precision
transcriptomics in patients with COVID-19 infection are
greatly needed.
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