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Abstract: Chronic kidney disease (CKD) is a commonly occurring complex renal syndrome that
causes overall mortality in many diseases. The clinical manifestations of CKD include renal tubuloin-
terstitial fibrosis and loss of renal function. Metallothionein-I/II (MT-I/II) is potentially expressed
in the liver and kidney, and possesses antioxidant and metal detoxification properties. However,
whether MT-I/II expression is associated with the prognosis of nephropathy remains unknown. In
this study, we investigated the MT-I/II level in human CKD, using immunohistochemistry. MT-I/II
is located on the proximal tubules and is notably reduced in patients with CKD. MT-I/II expression
was significantly correlated with the functional and histological grades of CKD. In an aristolochic
acid (AAI)-induced nephropathy mouse model, MT-I/II was abundantly increased after AAI in-
jection for 7 days, but decreased subsequently compared to that induced in the acute phase when
injected with AAI for 28 days. Furthermore, we found that ammonium pyrrolidinedithiocarbamate
(PDTC) restored AAI-induced MT-I/II reduction in HK2 cells. The injection of PDTC ameliorated
AAI-induced renal tubulointerstitial fibrosis and reduced the concentrations of blood urea nitrogen
and creatinine in mouse sera. Taken together, our results indicate that MT-I/II reduction is associated
with advanced CKD, and the retention of renal MT-I/II is a potential therapeutic strategy for CKD.

Keywords: ammonium pyrrolidinedithiocarbamate; aristolochic acid; chronic kidney disease;
metallothionein-I/II; nephropathy

Key Contribution: Reduced expression of renal metallothionein-I/II is associated with advanced
chronic kidney disease. The development of approaches targeting MT-I/II is a potential therapeutic
strategy for CKD.

1. Introduction

Chronic kidney disease (CKD) is characterized by the gradual loss of kidney func-
tion. It displays a decrease in the glomerular filtration rate (GFR) and an increase in
urine protein excretion [1,2]. The causes of CKD include hypoxia, hypertension, diabetes,
glomerulonephritis, or tubulointerstitial damage [1,2]. In addition to the deaths caused by
the accumulation of abnormal waste and electrolyte concentration in the body due to the
loss of kidney function, it also causes complications such as cardiovascular diseases [1,2].
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The experimental animal models of CKD, including aristolochic acid (AA)-induced
nephropathy (AAN), puromycin aminonucleoside and adriamycin nephropathies, uni-
lateral streptozotocin (STZ), and ureteral obstruction (UUO), have been established pre-
viously [1]. The renal failure-inducing agent, AA, is found in the root extracts of some
herbs [3,4]. The earliest record of human AAN was reported in the 1990s, following the
use of some weight loss pills containing AA, particularly subtype I of AA (AAI) [3,4]. In
addition, AA could be obtained from herbs, food, or some plant extracts [3,4]. The major
characteristics of extensive tubulointerstitial fibrosis and the scar formation accompanied
by renal tubular atrophy have been found in mouse and human AAN [3–9]. Recent studies
have revealed that AAI causes severe a reduction in the capillaries around the renal tubules,
leading to hypoxia and the death of the renal tubular epithelial cells [5–11]. Furthermore,
AAI increased the expression of fibrotic cytokine transforming growth factor 1 (TGF-1) and
connective tissue growth factor (CTGF), which enhance fibrosis and scar formation [5,6,11].
According to previous studies, the symptoms of AAN mice are very similar to those in
patients with CKD [1–4].

Metallothioneins (MTs) are cysteine-rich, small intracellular proteins (6–7 kDa) that
are capable of binding to heavy metal ions (Zn, Cu, Cd, Hg) [12–14]. The four isoforms of
MT, including MT-I, MT-II, MT-III, and MT-IV, are encoded on chromosome 16 [15]. MT-I
and II appear in several normal mammalian tissues, particularly the liver and the kidney, as
well as in tumors. MT-III expression is mainly expressed in brain neurons, while MT-IV is
expressed in the epithelial cells of skin and the upper gastrointestinal tract [13,15]. MT-I/II
plays a crucial role in metal homeostasis, metal-regulated transcription activity, and detoxi-
fication [16–18]. They are stimulated by exposure to heavy metals, inflammatory cytokines,
reactive oxygen species (ROS), and toxins [12–14,17,19–21]. Some reports indicated that
MT-I could be induced by ischemia or hypoxia and stabilized HIF-1α against hypoxic
damage in the kidney [16,22–24]. A decreased MT-I expression has been demonstrated in
hepatocellular carcinoma (HCC), and the overexpression of MT-I is reported to suppress
tumor growth and HCC progression significantly [25]. These results suggest that MT
proteins play a crucial protective role in normal tissues and organs.

Although MT expression has been reported in kidney injury [16,22–24], whether
MT is associated with the stages of CKD and its role in the malignant process of CKD
need to be investigated further. In this study, we found that MT-I/II was localized in the
renal proximal tubule (PT) and the amount of MT-I/II protein was significantly decreased
in the kidneys of CKD patients and chronic AAN mice. Furthermore, we identified a
compound, ammonium pyrrolidinedithiocarbamate (PDTC), that significantly restored
the AAI-induced MT-I/II reduction in HK2 cells and attenuated the tubulointerstitial
fibrosis and nephropathy damage in an AAN mouse model. Thus, we show that reduced
MT-I/II expression is associated with advanced CKD, and targeting MT-I/II is a potential
therapeutic approach to attenuate the progression to end-stage renal disease (ESRD).

2. Results
2.1. Expression of MT-I/II in Renal Tissues of Human CKD and Its Clinical Characteristics

A total of 120 patients were retrospectively enrolled in this study with a median age of
65.0 ± 15.1 years old and slight male predominance (62/120, 51.2%) (Table 1). The prevalent
renal disease included renal cell carcinoma (RCC), followed by urothelial carcinoma (UC).
About 33% (40/120) of the patients had stage 4–5 CKD, and grade 4 histological changes
were noted in 29.8% (36/120) of the cases.

Kidney tissue damage, loss of integrity, and increase in nonfunctional interstitials
were observed in normal and CKD kidney tissues using hematoxylin-eosin (H&E) staining
(Figure 1, left panel). AMACR marks the position of the proximal tubule (PT). This revealed
that both the number and the diameter of functional proximal tubules (PTs) were decreased
in the CKD patients (Figure 1, middle panel). The distributions of MT-I/II in the kidney
tissue were labeled with specific antibodies and highly correlated with the position of the
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PT region (Figure 1, right panel). Furthermore, the expression of MT-I/II was significantly
reduced in the kidney tissues of the patients with CKD (Figure 1, right panel).

Table 1. Demographics of the patients with available renal pathological specimens. AML, angiomy-
olipoma; CKD, chronic kidney disease; ESRD, end-stage renal disease; GFR, glomerular filtration
rate; RCC, renal cell carcinoma; SD, standard deviation; UC, urothelial carcinoma.

Characters Number (%)

Total 120 (100%)
Age (y/o)
Median ± SD 65.0 ± 15.1
20–29 1 (0.8%)
30–39 12 (9.9%)
40–49 11 (9.1%)
50–59 18 (14.9%)
60–69 32 (26.4%)
70–79 30 (24.8%)
≥80 16 (13.2%)
Gender
Male 62 (51.2%)
Female 58 (47.9%)
Diagnosis
RCC 53 (43.8%)
UC 42 (34.7%)
AML 6 (5.0%)
ESRD 11 (9.1%)
Other 8 (6.6%)
CKD stage
1 10 (8.3%)
2 41 (33.9%)
3 29 (24.0%)
4 5 (4.1%)
5 35 (28.9%)
Functional grade
I 51 (42.1%)
II 34 (28.1%)
III 35 (28.9%)
eGFR (excluding dialysis)
Mean ± SD 66.8 ± 27.6
Histology Grade
1 37 (30.6%)
2 30 (24.8%)
3 17 (14.0%)
4A 14 (11.6%)
4B 22 (18.2%)

The expression of MT-I/II correlated with underlying renal diseases, while ESRD
was significantly lower than others (ESRD vs. others, Q score difference −2.455 ± 0.570,
p < 0.001) (Table 2). The expression of MT-I/II was also decreased in the advanced func-
tional grades (grade III vs. others, Q score difference −2.062 ± 0.218, p < 0.001) and
histological grades (grade 4 vs. others, Q score difference −1.909 ± 0.227, p < 0.001). Mul-
tivariate logistic regression analysis further revealed that the advanced functional grade
and the histological grade were independent predictive factors for MT-I/II expression in
non-tumor renal tissues (Table 3).
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Figure 1. MT-I/II located within proximal tubule (PT) in normal and CKD renal parenchyma. The histopathological images 
of human kidney slides stained with hematoxylin and eosin (H&E) (Left panel). The location and morphology of PT dis-
played with alpha-methyl CoA racemase (AMACR) using immunohistochemistry (Middle Panel). Histological images 
revealed the location and changes of MT-I/II by their specific antibody (Right panel). Bar = 500 μm. 
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grades (grade III vs. others, Q score difference −2.062 ± 0.218, p < 0.001) and histological 
grades (grade 4 vs. others, Q score difference −1.909 ± 0.227, p < 0.001). Multivariate logistic 
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Table 2. Correlation of non-tumor part MT-I/II expression with clinico-pathological parameters. 
AML, angiomyolipoma; CKD, chronic kidney disease; ESRD, end-stage renal disease; RCC, renal 
cell carcinoma; SD, standard deviation; UC, urothelial carcinoma. 

Characters Non-Tumor Part Q-Score p-Value 
 (Mean ± SD)  
Age   
<65 y/o 5.16 ± 1.14 0.184 
≥65 y/o 4.81 ± 1.45  
Gender   
Male 4.82 ± 1.41 0.230 
Female 5.14 ± 1.46  
Diagnosis   
RCC 5.43 ± 1.08 <0.001 
UC 4.36 ± 1.43  
AML 6.50 ± 1.23  
ESRD 3.55 ± 0.69  
Others 6.00 ± 1.51  
Functional grade   
I 5.86 ± 1.18 <0.001 
II 5.15 ± 1.13  
III 3.51 ± 0.72  
Histology Grade   
1 6.76 ± 0.44 <0.001 
2 4.77 ± 0.79  

Figure 1. MT-I/II located within proximal tubule (PT) in normal and CKD renal parenchyma. The
histopathological images of human kidney slides stained with hematoxylin and eosin (H&E) (Left
panel). The location and morphology of PT displayed with alpha-methyl CoA racemase (AMACR)
using immunohistochemistry (Middle Panel). Histological images revealed the location and changes
of MT-I/II by their specific antibody (Right panel). Bar = 500 µm.

Table 2. Correlation of non-tumor part MT-I/II expression with clinico-pathological parameters.
AML, angiomyolipoma; CKD, chronic kidney disease; ESRD, end-stage renal disease; RCC, renal cell
carcinoma; SD, standard deviation; UC, urothelial carcinoma.

Characters Non-Tumor Part Q-Score p-Value

(Mean ± SD)

Age

<65 y/o 5.16 ± 1.14 0.184

≥65 y/o 4.81 ± 1.45
Gender
Male 4.82 ± 1.41 0.230
Female 5.14 ± 1.46
Diagnosis
RCC 5.43 ± 1.08 <0.001
UC 4.36 ± 1.43
AML 6.50 ± 1.23
ESRD 3.55 ± 0.69
Others 6.00 ± 1.51
Functional grade
I 5.86 ± 1.18 <0.001
II 5.15 ± 1.13
III 3.51 ± 0.72
Histology Grade
1 6.76 ± 0.44 <0.001
2 4.77 ± 0.79
3 4.29 ± 0.92
4A 3.86 ± 0.77
4B 3.50 ± 0.74
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Table 3. Multivariate analysis of clinico-pathological parameters on non-tumor part MT-1/II expres-
sion. AML, angiomyolipoma; CKD, chronic kidney disease; ESRD, end-stage renal disease; RCC,
renal cell carcinoma; UC, urothelial carcinoma.

Parameters Estimated 95% Confident Intervals p-Value

Age

<65 y/o 1

≥65 y/o 0.989 0.757–1.292 0.934
Gender
Male 1
Female 1.326 1.037–1.697 0.025
Diagnosis
RCC 1
UC 0.813 0.578–1.144 0.232
ESRD 0.894 0.534–1.496 0.666
AML + Others 0.892 0.591–1.347 0.583
Histology Grade
1 1
2 + 3 0.130 0.097–0.175 <0.001
4A + 4B 0.089 0.287–0.718 <0.001
Functional grade
I 1
II 1.113 0.781–1.585 0.550
III 0.454 0.287–0.718 0.001

2.2. Expression of MT-I/II in AAI-Induced Nephropathy (AAN) Mouse Model

To elucidate the role of MT-I/II in chronic renal injury, we established a mouse
model of kidney damage induced by AAI. Eight to 10-week-old C57BL/6 mice were
intraperitoneally injected with AAI for 7 days or 28 days, and MT-I/II expression was
examined using immunohistochemistry. The MT-I/II expression was abundantly increased
by AAI treatment with an acute induction (7 days) in the renal PT group compared with
the control group (representative images in Figure 2A). For a longer period of treatment
(28 days), although the expression level at PT was higher than that without AAI treatment
(2.5 or 5 mg/kg AAI vs. control group) (Representative image in Figure 2B), the MT-
I/II expression was significantly reduced as compared with short-term (7 days) AAI
administration (representative images in Figure 2B and statistical analysis in Figure 2C).

We then examined the levels of blood urea nitrogen (BUN) (Figure 3A) and creatinine
(CRE) (Figure 3B) in the AAN mice sera. The serum BUN and CRE levels were significantly
increased in the AAN mice (Figure 3A,B) as compared with the normal group. Similarly, the
levels of BUN and CRE were substantially increased in the acute renal injured mice (7 days),
but significantly declined in the long-term (4 weeks) AAN-treated mice (Figure 3A,B).
Additionally, the body weight of the mice injected with long-term (5 mg/kg) AAI was
dramatically decreased as compared with the 2.5 mg/kg AAI-treated mice and the control
group (Supplementary Figure S1).
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Figure 2. MT-I/II levels in kidney of aristolochic acid (AAI)-induced nephropathy (AAN) mice. (A) 
Histological images of MT-I/II stained using immunohistochemistry in mice without (CTR) or with 
AAI (5 mg/kg bw) injection for 7 days. (B) Histological images of MT-I/II in mice without (CTR) or 
with AAI injection (2.5 and 5 mg/kg) for 4 weeks. Bar = 200 μm in low magnification image; Bar = 
50 μm in high magnification image. (C) The statistic figure showing the raw values of distribution 
area times stain intensity of MT-I/II in (A) and (B). n ≥ 6 in each group. 

Figure 2. MT-I/II levels in kidney of aristolochic acid (AAI)-induced nephropathy (AAN) mice.
(A) Histological images of MT-I/II stained using immunohistochemistry in mice without (CTR) or
with AAI (5 mg/kg bw) injection for 7 days. (B) Histological images of MT-I/II in mice without (CTR)
or with AAI injection (2.5 and 5 mg/kg) for 4 weeks. Bar = 200 µm in low magnification image; Bar =
50 µm in high magnification image. (C) The statistic figure showing the raw values of distribution
area times stain intensity of MT-I/II in (A) and (B). n ≥ 6 in each group.
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Figure 3. The amounts of serum BUN and CRE in AAN mice. Serum concentrations of (A) BUN and 
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Figure 3. The amounts of serum BUN and CRE in AAN mice. Serum concentrations of (A) BUN
and (B) CRE in mice without (CTR) or with AAI (2.5 and 5 mg/kg) injection detected using ELISA
analysis at 7 days and 4 weeks as indicated. n ≥ 6 in each group. P values of the t-test were denoted
as indications.

2.3. PDTC Restored AAI-Reduced MT-I/II Expression in HK2 Cells

To elucidate whether AAI affects MT-I/II expression in cultured cells, HK2 cells
(kidney PT cell line) were treated with or without 25 µM AAI for 2, 4, and 6 days. The
expression of MT-I/II was determined using Western blot analysis. The expression of
MT-I/II gradually decreased in a time-dependent manner and was barely detected on
days four and six (Figure 4A). As reported by a previous study that PDTC induced MT-I
expression through an NFκB-independent mechanism in HCC [25], we examined whether
PDTC induced MT-I/II expression in HK2 cells. Our results confirmed that PDTC induced
MT-I/II expression in a dose-dependent manner (Figure 4B). To further investigate the
effect of PDTC on AAI-reduced MT-I/II expression, the HK2 cells were treated with 25 µM
AAI and/or 30 µM PDTC for 2 days. PDTC significantly induced the MT-I/II expression
in AAI-treated HK2 cells (Figure 4C).
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Figure 4. PDTC restored AAI-reduced MT-I/II expression in the HK2 cells. Representative images
of (A) Expression of MT-I/II treated with 25 µM AAI (DMSO as control) for 0–6 days in HK2 cells.
(B) Expression of MT-I/II treated with 0–30 µM of PDTC (DMSO as control) for 2 days in HK2
cells. (C) MT-I/II expression treated with 25 µM AAI or/and 30 µM PDTC for 2 days in HK2 cells.
MT-I/II levels as determined using Western blot analysis. Actin or tubulin was used as the internal
loading control.



Toxins 2021, 13, 568 8 of 14

2.4. PDTC Attenuated Kidney Injury in AAN Mice

To investigate whether PDTC attenuates AAI-induced renal damage, AAI and/or
PDTC was injected into chronic AAN mice. PDTC (10 mg/kg) was injected into 8–10-
week-old mice with or without 2.5 mg/kg AAI. The experimental mice were sacrificed on
day 28. Both serum BUN and CRE were increased in the AAN mice compared to those
without AAI injection (Figure 5A,B). However, the elevated BUN and CRE induced by
AAI were attenuated by PDTC treatment (Figure 5A,B). In addition, the amount of renal
MTI/II protein in AAI/PDTC treated mice was analyzed using Western blot analysis.
PDTC slightly induced MT-1/II expression when compared with AAI treatment, but there
is no significant difference between the other groups (Supplementary Figure S2).
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Further, renal fibrosis was determined in AAN mice injected with or without PDTC,
using Masson’s trichrome staining. Renal fibrosis was significantly increased in the AAN
mice compared with the control group (Figure 6A,B). Intriguingly, a PDTC injection signifi-
cantly attenuated the renal fibrosis caused by AAI treatment (Figure 6A,B).
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3. Discussion

MT-1/II are cysteine-rich, low molecular weight proteins that are capable of directly
binding heavy metal ions and reactive oxygen species. Thus, MT-1/II are major protective
effectors for scavenging metal toxicity and oxidative stresses. A previous study indicated
that MT proteins and glutathione are decreased, and MT expression is relevant to type
2 diabetes mellitus [26]. A significant reduction in MT content has been reported in the
peritoneal biopsies of ESRD patients [19]. In this study, we found that MT-I/II is located in
the renal tubules of human kidney tissues. In CKD patients, with the atrophy of the renal
tubules, the amount of MT-I/II was greatly reduced. A reduced MT-I/II expression was
significantly correlated with advanced renal functional grades and ESRD (Tables 2 and 3).
These results indicate that a reduced renal MT-I/II level is associated with advance CKD.

High MT-I/II expression occurs perinatally in the liver and lower expression is seen
in the kidney; however, both decrease to the basal levels in adult mice and rats [27]. Here,
we showed that AAI treatment induced large amounts of MT-1/II upon intraperitoneal
injection for 7 days. However, after 28 days of AAI treatment, the amount of MT-I/II was
reduced in the renal tubules of AAN mice. This phenomenon is similar to that reported by
a previous study, in which MT-I/II proteins in mouse kidneys were induced by hypoxia
for 3 days but reduced on day seven [22]. Additionally, earlier studies have demonstrated
that MT-I/II proteins are protective against ischemic renal failure and gentamicin-induced
nephrotoxicity in mice and rats [24,28]. This suggests that MT-I/II may play a role in
protecting the kidney against stress, heavy metals and/or chemical-induced renal injury.

Our results demonstrate that the acute phase of MT-I/II was induced by AAI and
might be associated with the AAI-related cell protection mechanism under stress. This
mechanism may occur due to the inhibition of cell apoptosis and the removal of ROS.
Furthermore, long-term AAI treatment induced renal tubule atrophy in the AAN mice,
and MT-I/II expression in the renal tubules was significantly decreased. Reduced MT-I/II
levels may lead to the impairment renal cell and tissue protective mechanisms. Although
the values of serum BUN and CRE in the AAN mice were largely increased in the acute
phase, they were ameliorated upon long-term AAI treatment. These results may be caused
by physiological compensation, and this phenomenon has also been reported in a previous
study [24].

An earlier study indicated that MT-I is expressed in the normal liver, but its expression
is reduced in HCC (25). The reduction in MT-I in the liver promotes cancer cell prolifer-
ation, tumor growth, and progression. Treatment with PDTC abundantly induced MT-I
expression through regulating epigenetic modulation but not an NFκB-dependent path-
way in HCC, thereby reducing cancer cell proliferation and tumor growth in a xenograft
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mouse model [25]. In this study, we demonstrated that AAI reduced MT-I/II expression,
whereas PDTC greatly induced MT-I/II but had no effect on DNMT1 expression in HK2
cells (Figure 4 and Supplementary Figure S3). We hypothesize that PDTC may have a
protective effect on AAI-induced kidney injury and renal function loss. Our results indicate
that PDTC injection significantly improved AAI-induced renal fibrosis and reduced BUN
and CRE in the AAN mice (Figures 5 and 6). Instead of inducing MT-I/II, PDTC has been
extensively used for NFκB inhibition, metal chelation [29], and anti-oxidative stress [30–32].
The molecular mechanism by which PDTC induces MT-1/II expression and attenuates
renal injury in AAN warrants further investigation.

In conclusion, our results reveal that MT-I/II may play a crucial role in protection
against renal injury/failure. The reduced MT-I/II levels significantly correlate with ad-
vanced functional grades of CKD and ESRD in human patients. The administration of
PDTC in HK2 cells induced MT-I/II expression and ameliorated AAI-induced renal fibrosis
and kidney function loss in the AAN mice. Therefore, developing approaches to maintain
renal MT-I/II levels may be a potential therapeutic strategy for CKD.

4. Materials and Methods
4.1. Patients and Specimens

A total of 120 patients who underwent nephrectomy were enrolled in this study.
Renal tissue specimens were obtained from the tissue bank of the Taichung Veterans
General Hospital, Taichung, Taiwan. The current study, along with the policy of waiving
informed consents, was approved by the Institutional Review Board of Taichung Veterans
General Hospital (No. CE16146B). The clinicopathological characteristics of the patients are
presented in Table 1. The median age of patients was 65.0 ± 15.1 years, including 62 males
and 58 females. The pathological diagnoses included 53 renal cell carcinomas (RCCs),
42 urothelial carcinomas (UCs), 6 angiomyolipomas (AMLs), 11 ESRDs, one oncocytoma,
one metastatic HCC, one metanephric adenoma, one pyelonephritis, one leiomyoma, one
schwannoma, one spindle cell sarcoma, and one urothelial neoplasm of low malignant
potential (UNLMP). The mean estimated glomerular filtration rate (eGFR) (excluding
dialysis) was 66.8 ± 27.6 mL/min/1.73 m2. The functional grade was stratified into
three levels, according to the nearest eGFR, prior to the time of surgery. Grade 1 (normal
functions) was referred for those patients with eGFR ≥ 60 mL/min/1.73 m2, grade 2
(impaired function) for eGFR ≥ 15 mL/min/1.73 m2 but < 60 mL/min/1.73 m2, and grade
3 (ESRD) for those with eGFR < 15 mL/min/1.73 m2 or on dialysis.

Histological grade was stratified into five grades based on the histological degree
of renal injury on non-neoplastic renal tissue. The injured renal parenchyma may show
tubular necrosis, tubular atrophy, decreased tubular density, glomerular sclerosis, fibrosis,
and inflammatory cell infiltration. The degree of renal injury was examined and graded
on one representative tissue section using hematoxylin and eosin (H&E) staining. Re-
nal injury < 1% was defined as grade 1, renal injury ≥ 1% but < 50% as grade 2, renal
injury ≥ 50% but < 99% as grade 3, and renal injury ≥ 99% as grade 4. Grade 4 renal injury
was subclassified into grades 4a, defined as the presence of a recognizable proximal tubule
on H&E, and grade 4b, defined as the absence of a recognizable PT on H&E.

4.2. Immunohistochemical Stain of Human Kidney Tissues

Immunohistochemical staining was performed on formalin-fixed paraffin-embedded
tissue sections using an automatic immunostaining device and OptiView detection kit
(Ventana XT Medical System, Tucson, AZ, USA). MT-I/II expression in tissue sections was
analyzed using immunostaining with an anti-MT-I/II antibody (clone: E9; 1:300 dilution;
Invitrogen). The target for evaluating MT-I/II expression was the proximal tubule. The
immunostaining of MT-I/II was scored semi-quantitatively using the Quick score (Q-score)
method [33–39], based on the intensity and proportion of the positive cells of the stain. The
intensity of staining was scored as 0 (negative), 1 (weak), 2 (moderate), or 3 (strong). The
percentage score was defined as the proportion of the number of MT-I/II-stained proximal
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tubules to the number of proximal tubules in the normal kidney, and it was scored as 0
(0%), 1 (1–25%), 2 (26–50%), 3 (51–75%), and 4 (76–100%). The sum of the intensity score
and percentage score yields a Q-score, which ranges from to 0–7.

4.3. Cell Culture and Reagents

The HK2 cell line (American Type Culture Collection, ATCC-CRL2190) was cultured in
Dulbecco’s modified Eagle’s medium (DMEM) supplemented with 10% fetal bovine serum
(FBS), 100 U/mL penicillin, and 100 mg/mL streptomycin at 37 ◦C in a humidified 5% CO2
atmosphere. Ammonium pyrrolidine dithiocarbamate (PDTC) and dimethyl sulfoxide
(DMSO) were purchased from Sigma-Aldrich (St. Louis, MO, USA). AAI (Subtype I of
AA) was purchased from Cayman Chemical Company (Ann Arbor, MI, USA). Masson’s
trichrome stain kit was purchased from ScyTek Laboratories (Logan, UT, USA). The met-
allothionein (MT) antibody was purchased from Invitrogen Corporation (Camarillo, CA,
USA). DMEM, FBS, MEM non-essential amino acids (NEAA), penicillin, and streptomycin
for cell culture were obtained from Invitrogen-Gibco (Grand Island, NY, USA).

4.4. Western Blot Analysis

The cells were lysed in ice-cold RIPA buffer (Millipore, Temecula, CA, USA) con-
taining a protease inhibitor cocktail (Roche, IN, USA). Cell lysates were centrifuged at
15,000 rpm for 20 min at 4 ◦C, and total protein concentrations were determined using a
Bio-Rad protein assay kit (Bio-Rad Laboratories). Equal amounts of total protein from each
sample were run through a gradient SDS-PAGE gel, followed by immunoblotting onto
PVDF membranes. The membranes were blocked and probed with primary antibodies
against actin (Sigma-Aldrich), tubulin (Sigma-Aldrich), and MT-I/II (Invitrogen). The
membranes were immersed in 0.1% PBST containing horseradish peroxidase-conjugated
secondary antibodies, and the protein levels were determined using enhanced chemilumi-
nescence reagents.

4.5. Experimental Animals

All experimental procedures were performed in accordance with the guidelines and
regulations approved by the Institutional Animal Care and Use Committee of the National
Health Research Institutes. Eight to 10-week-old C57BL/6 mice were purchased from
the National Laboratory Animal Center and housed in microisolator cages in a specific
pathogen-free facility at the National Health Research Institutes. AAN was induced in
C57BL/6J mice by intraperitoneal injection of AAI. Acute kidney injury was induced
by administration of AAI (5 mg/kg) every day for 7 days [40], and chronic renal injury
was carried out by the administration of AAI (2.5 mg or 5 mg/kg) once every 2 days for
4 weeks [1,2]. The control animals received an intraperitoneal injection of vehicle control
(DMSO) diluted in an equal volume of phosphate-buffered saline (PBS) solution. PDTC
(10 mg/kg) was injected intraperitoneally with/without AAI at the same time once every
2 days for 4 weeks. All the procedures were carried out under license, according to the
regulations laid down by Her Majesty’s Government, United Kingdom (Animals Scientific
Procedures Act, 1986).

4.6. Immunohistochemical Analysis and Measurement of Renal Fibrosis

For immunohistochemical analysis, kidney tissues from the sacrificed mice were har-
vested and fixed in 10% formaldehyde. Paraffin cross-sections with a thickness of 5 µm were
stained with antibodies against MT-I/II (Invitrogen), followed by N-Histofine® MOUS-
ESTAIN KIT (414321F; Nichirei Biosciences Inc.; Tokyo, Japan). To measure renal fibrosis,
the paraffin-embedded sections were stained using Masson’s Trichrome stain kit (ScyTek
Laboratories Inc., Logan, USA). Quantification of kidney immunohistochemical assay and
fibrosis on Masson’s trichrome-stained sections were performed using ImageJ analysis.
The raw pixel values of the selected areas were estimated using the ImageJ software. These
values indicated the distribution area times the stain intensity of the images.
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4.7. Statistical Analysis

Kruskal–Wallis one-way ANOVA test and post hoc Dunnett’s test were utilized to
identify the correlation of MT-I/II expression with the clinicopathological parameters.
Multivariate logistic regression was used to analyze the factors affecting MT-I/II expression
in non-tumor renal tissues. For the results of the AAN mouse model, data were analyzed
using Student’s t-test between different groups. All statistical analyses were performed
using SPSS Statistics version 23 (IBM) for Windows. Statistical significance was set at
p < 0.05.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/toxins13080568/s1, Figure S1: Body weight of AAN mice. Body weight of mice without
(CTR) or with AAI (2.5 and 5 mg/kg) injection were detected at indicated days. n ≥ 6 in each group,
Figure S2: The representative result of renal MT-I/II protein in AAN/PDTC treated mice determined
by Western blot analysis, Figure S3: The representative result of DNMT1 expression AAI-treated
HK2 cells determined by Western Blot analysis.
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