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Abstract: Lipids were determinants in the appearance and evolution of life. Recent studies disclose
the existence of a link between lipids and animal longevity. Findings from both comparative studies
and genetics and nutritional interventions in invertebrates, vertebrates, and exceptionally long-lived
animal species—humans included—demonstrate that both the cell membrane fatty acid profile and
lipidome are a species-specific optimized evolutionary adaptation and traits associated with longevity.
All these emerging observations point to lipids as a key target to study the molecular mechanisms
underlying differences in longevity and suggest the existence of a lipidome profile of long life.
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1. Introduction

In contrast to life expectancy (also named mean lifespan, and frequently and wrongly termed
“longevity”) that may be modified depending on living conditions, maximum longevity (henceforth
referred to as “longevity” for practical purposes) is a species-specific feature. For instance, for the world
as a whole, human life expectancy has increased more than two-fold in the last century, from 30 years
in 1900 to 65 years in 2000 and is estimated to increase to 81 by the end of the 21st century. However,
our longevity has remained at approximately 120 years [1]. At the same time, longevity varies
widely among animal species with differences of up to 5000 times occurring, for example, between
some invertebrates and the mollusk Arctica islandica, which at 507 years has the record for animal
longevity [2,3], demonstrating the evolutionary plasticity of longevity. Therefore, animal (and human)
longevity is flexible, regulated, and evolves rapidly during animal species evolution.

Despite the importance of understanding the mechanisms involved in longevity, the existence and
nature of the molecular mechanisms determining and controlling this biological trait remains unclear.
Some mechanisms discovered from studies within and among animal species, but not exclusively,
include oxidative stress-related pathways [4,5], insulin signaling pathways [6–9] and mechanistic
targets of rapamycin pathway [10–13]. Notably, genetic, dietary and pharmacological manipulations
targeting some of these pathways resulted in more than 10-fold longevity extension in the worm
Caenorhabditis elegans [14], but only about 1.4-fold longevity extension in rodents [15,16].

Evidence accumulated during the last 25 years demonstrate that lipids are determinant players
of animal (and human) longevity. Thus, genomic studies demonstrate that genetic changes in genes
controlling lipid metabolism play a role in human longevity [17–20], as well as in longevity differences
among animal species [21,22] and lipid studies on changes in membrane lipid unsaturation and
lipidomic profiles (see next sections) among animal species clearly point to lipids as a good potential
target for research on molecular mechanisms underlying differences in longevity among animal species.
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2. Lipids Are Essential for Life

Lipids possess an inherent ability to spontaneously self-organize to generate membranes [23].
This property of lipids was determinant for the origin and early evolution of life [24,25]. The relevance
of lipids in life is found in the fact that, without exception, all organisms in the three domains of
life (eukaryotes, bacteria, and archaea) have lipid membranes [26]. Indeed, this hydrophobic film of
around 30 Å of thickness marks the limit between life and death for cells [27]. The unique trait of the
first lipids to form membranes was expanded during evolution to cell signaling as new functional
property, and finally to the energy storage [28]. This diversification of functional properties demanded
and was supported by an enlargement in the structural and functional diversity of lipid species that
conformed early organisms and that evolved toward more complex cell systems. This complexity
is reflected in the genetic code, which assigns more than 5% of their genes for the biosynthesis of
thousands of different lipids [29], which participate in multitude of pathways and mechanisms that are
essential for cell physiology.

In agreement with the current classification system, lipids are categorized into eight groups: sterol
(ST) and prenol lipids (PR), saccharolipids (SL) and polyketides (PK), glycerolipids (GL), sphingolipids
(SP), glycerophospholipids (GP), and fatty acyls (FA). There are, at present, no consistent assessments
on the number of discrete lipid compounds in nature, but the estimations of the cellular lipid profile
comprise thousands of different molecular species [30]. This complexity is magnified when the
membrane compositional diversity is considered. For instance, the lipid compositional profile varies
between animal species, between tissues–organ, between subcellular organelles, between membrane
domains, and between the two leaflets of the lipid bilayer [27,31–46] (Figure 1). However, the complexity
increases when this diversity in spatial distribution must be added as a temporal distribution variable.
Thus, the lipid profile varies in time according with circadian rhythmicity [47], the physiological state,
the vital cycle of an organism, and during evolution [45,48–50].
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Figure 1. Specific lipidomic profiles at subcellular, tissue, and animal species level. (A) Specific
lipidomic profile defines different subcellular components such as endoplasmic reticulum (ER)
mitochondrial-associated membranes (MAM), and mitochondrion (MIT). (B) Specific lipidomic profile
for rat tissues. Principal component analysis (PCA) representation of the lipidome of all the tissues in
positive ionization. Modified with permission from [46]. (C) Specific plasma lipidomic profiles for
mammalian species. PCA representation (positive ionization molecules) showing that plasma lipidomic
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profiles are species-specific. Modified with permission from [35]. (D) Human extreme longevity as
model of healthy aging. PCA (positive ionization) revealed differences in adults, aged, and centenarian
plasma lipidomic profiles. Modified with permission from [48].

The importance of lipids in cell structure and physiology can also be applied to the pathological
condition. Thus, a large number of human pathologies are either etiologically or physiopathologically
linked to alterations in lipid homeostasis including genetic disorders [51], and common diseases such
as neurodegenerative diseases [52,53], cancer [54,55], non-alcoholic fatty liver [56], cardiovascular
disease [57], metabolic risk [58], and obesity and diabetes [53], among several others.

From these findings we can infer that the membrane lipidome (the comprehensive lipid
profile) is a structured, complex, dynamic and flexible system, which demands functional plasticity,
a location-specific recognition, internal controls to monitor changes and confer stability, and adaptive
responses to preserve essential membrane biological properties and cellular functions within
physiological limits [37,59]. The result is the formation and maintenance of a specific membrane
lipidome. Current evidence from long-lived humans and model organisms demonstrate that the
membrane lipidome is associated with longevity, and that it is possible to define a lipid profile of
long life.

3. Membrane Unsaturation and Longevity

3.1. Membrane Unsaturation: A Double-Edged Sword

Membrane unsaturation was an early evolutionary adaptation of biological membranes of the
first organisms to maintain the viscosity of the lipid bilayer [60]. Membranes need to stay in the liquid
crystalline state to avoid rupture and to provide a homeoviscous environment for the insertion of
membrane proteins over the temperature range that a cell can be exposed to [60–62]. The affected lipid
molecules are essentially fatty acids, the core of most membrane lipids such as glycerophospholipids
and sphingolipids, leading to the formation of unsaturated fatty acids. Membrane fatty acids have the
dominant influence on the physical and chemical properties of the bilayer they constitute.

Unsaturation of fatty acids carries an inevitable physiological consequence of spontaneous
chemical oxidation under aerobic conditions, a process also termed lipid peroxidation [63,64]. It is
important to highlight that the degree of sensitivity to oxidation of unsaturated fatty acids is determined
by the number of double bonds present in the acyl chain [64,65]. Thus, in saturated or monounsaturated
fatty acids, the sensitivity to oxidation is non-existent or practically null, while in unsaturated ones
with two or more double bonds their sensitivity to oxidation increases rapidly [66,67]. Thus, from the
profile and susceptibility to oxidation of fatty acids of a certain membrane, the so-called peroxidizability
or peroxidation index (PI) can be calculated. The peroxidizability index is calculated as PI = [(%
monoenoic × 0.025) + (% dienoic × 1) + (% trienoic × 2) + (% tetraenoic × 4) + (% pentaenoic × 6) + (%
hexaenoic × 8)]. The higher the PI value, the more susceptible to oxidation is the membrane, and the
lower the PI, the greater the resistance of the lipid bilayer to oxidation [66,67].

The lipid peroxidation process occurs in three main phases: an initiation event, chain propagation,
and termination [64]. This chemical process is singular so that a single initiation reaction (mediated by
e.g., the attack of a free radical) results in 200–400 propagation cycles, rapidly amplifying free radical
damage in highly oxidizing unsaturated fatty acid rich environments such as a biological membrane.
This radical propagation has been proposed as rate-limiting for the rate of aging, and consequently for
longevity, and should be studied more deeply [68]. The termination of the lipid peroxidation process
leads to the generation of reactive carbonyl compounds, over a hundred different reactive species have
been described, which are mostly cytotoxic, but can also behave as signaling compounds to activate
cell antioxidant response systems [37,69,70]. The cytotoxic or regulatory function of these compounds
depend on their half-life, reactivity, and abundance. The cytotoxic effects are derived of the ability of
these compounds to react chemically and non-enzymatically with functional groups on proteins, nucleic
acids, and aminohospholipids, leading to the formation of adducts and cross-links termed advanced
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lipoxidation endproducts [69,71]. These non-enzymatic modifications induce damaging effects on
the molecules, which are modified and have detrimental consequences on the cell physiology [69,71].
In this context, it is plausible to hypothesize that animal species impose clear limitations on the use of
unsaturated fatty acids in parallel with increased longevity (see next section).

3.2. Membrane Unsaturation and Longevity

The seminal finding of a link between membrane unsaturation and longevity was the work of
Pamplona et al. (1996) [72], which revealed that the PI of liver mitochondria from humans, pigeons and
rats was negatively correlated with their respective longevities. Later, it was evidenced that this was
the case for a wide range of tissues and animal species including both invertebrates and vertebrates
(Table 1). All these outcomes obtained at tissue and mitochondrial level were also extended to plasma
lipids of mammalian species, including humans [35], demonstrating that the greater the longevity of a
species, the lower its plasma PI, reinforcing the idea that lipid unsaturation is a general adaptive trait
associated with animal longevity.
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Table 1. Updated list of comparative studies on the relationship between membrane peroxidation index (PI) and longevity in invertebrates and vertebrates,
including humans.

Animal Species Longevity PI * Values
Tissue (or Subcellular

Organelle)
PI in Long-

Lived Species Ref

Human, pigeon, rat 120, 35, 4 yrs 45, 67, 97 Liver mitochondria Lower [72]
SAM-R/1 vs. SAM-P/1 mice 1.8, 1.2 yrs n.a. (1) Liver Lower [73]

8 mammals From 46 to 3.5 yrs From 71 to 145 Liver mitochondria Lower [74]
Pigeon vs. rat 35, 4 yrs 80, 145 Heart mitochondria Lower [75]

Canary vs. mouse 24, 3.5 yrs 180, 230 (2) Heart Lower [76]
Parakeet vs. mouse 21, 3.5 yrs 150, 230 (2) Heart Lower [76]

Pigeon vs. rat 35, 4 yrs 119, 153 Liver mitochondria Lower [77]
Pigeon vs. rat 35, 4 yrs 95, 151 Liver microsomes Lower [77]
Pigeon vs. rat 35, 4 yrs 131, 122 Heart mitochondria Unchanged [77]
Pigeon vs. rat 35, 4 yrs 110, 126 Heart microsomes Lower [77]

8 mammals From 46 to 3.5 yrs From 70 to 246 Heart Lower [78]
7 mammals From 46 to 3.5 yrs From 65 to 158 Liver Lower [79]
8 mammals From 46 to 3.5 yrs For PC: from 122 to 152 (2). For

PE: from 140 to 220 (2). For CL:
from 115 to 132 (2).

Liver mitochondria (PC, PE,
and CL fractions)

Lower [80]

Pigeon vs. rat 35, 4 yrs 60, 120 Skeletal muscle Lower [81]
Canary, parakeet, mouse 24, 21, 3.5 yrs 225, 223, 210 Whole brain Unchanged [82]

8 mammals From 46 to 3.5 yrs From 70 to 247 Heart Lower [83]
Naked-mole rat vs. mouse 32, 3.5 yrs 150, 225 Skeletal muscle Lower [84]
Naked-mole rat vs. mouse 32, 3.5 yrs 160, 265 Heart Lower [84]
Naked-mole rat vs. mouse 32, 3.5 yrs 130, 225 Kidney Lower [84]
Naked-mole rat vs. mouse 32, 3.5 yrs 160, 170 Whole Brain Unchanged [84]
Naked-mole rat vs. mouse 32, 3.5 yrs 130, 185 Liver Lower [84]
Naked-mole rat vs. mouse 32, 3.5 yrs 135, 180 Liver mitochondria Lower [84]

Idaho, Majuro and wild-type mice 3.9, 3.5, 3.3 yrs 172, 178, 190 Liver Lower [85]
Idaho, Majuro and wild-type mice 3.9, 3.5, 3.3 yrs 213, 263, 274 Skeletal muscle Lower [85]

12 mammals and 9 birds From 120 to 3.5 yrs From 130 to 350 Skeletal muscle Lower [67]
10 mammals and 8 birds From 120 to 3.5 yrs From 45 to 250 Liver mitochondria Lower [67]

Queen honey bees vs. workers >5 yrs, 75–135 days 15, 45 Head, thorax, abdomen Lower [86]
42 mammals From 70 to 2 yrs From 10 to 42 (4) Skeletal muscle Lower (3) [87]

13 bird species
(9 petrels vs. 4 fowl)

41, 9 yrs 100, 160 Heart Lower [88]

Echidna vs. mammals (5) 54, 4 yrs 121, 350 Skeletal muscle Lower [89]
Echidna vs. mammals (5) 54, 4 yrs 100, 160 Liver Lower [89]
Echidna vs. mammals (5) 54, 4 yrs 79, 150 Liver mitochondria Lower [89]

Humans (nonagenarian offspring vs. matched control) 67, 68 yrs 63, 84 Erythrocytes Lower [90]
D. melanogaster (long-lived mutant strains) 87, 71 days 9, 13 Whole fly and mitochondria Lower [91]



Molecules 2020, 25, 4343 6 of 21

Table 1. Cont.

Animal Species Longevity PI * Values
Tissue (or Subcellular

Organelle)
PI in Long-

Lived Species Ref

C. elegans
(long-lived mutant strains)

From 170 to 18 days From 81 to 140 Whole worm Lower [92]

Pigeon vs. rat 35, 4 yrs 160, 210 Heart Lower [93]
Pigeon vs. rat 35, 4 yrs 130, 160 Heart mitochondria Lower [93]
Pigeon vs. rat 35, 4 yrs 150, 200 Pectoral muscle Lower [93]
Pigeon vs. rat 35, 4 yrs 130, 200 Pect. Muscle mitochondria Lower [93]
Pigeon vs. rat 35, 4 yrs 120, 180 Liver Lower [93]
Pigeon vs. rat 35, 4 yrs 110, 180 Liver mitochondria Lower [93]
Pigeon vs. rat 35, 4 yrs 140, 220 Leg muscle Lower [93]
Pigeon vs. rat 35, 4 yrs 120, 170 Kidney Lower [93]
Pigeon vs. rat 35, 4 yrs 80, 150 Erythrocytes Lower [93]
Pigeon vs. rat 35, 4 yrs 190, 170 Whole Brain Unchanged [93]

5 bivalve species From 507 to 28 yrs From 175 to 268 Gill mitochondria Lower [3]
5 bivalve species From 507 to 28 yrs From 172 to 222 Gill cell debris Lower [3]

5 birds (3 long-lived parrots vs. 2 short-lived quails) 27, 5.5 yrs 150, 150 (6) Heart Unchanged [94]
5 birds (3 long-lived parrots vs. 2 short-lived quails) 27, 5.5 yrs 160, 160 (6) Leg muscle Unchanged [94]
5 birds (3 long-lived parrots vs. 2 short-lived quails) 27, 5.5 yrs 140, 140 (6) Kidney Unchanged [94]
5 birds (3 long-lived parrots vs. 2 short-lived quails) 27, 5.5 yrs 190, 190 (6) brain Unchanged [94]
5 birds (3 long-lived parrots vs. 2 short-lived quails) 27, 5.5 yrs 100, 100 (6) Erythrocytes Unchanged [94]
5 birds (3 long-lived parrots vs. 2 short-lived quails) 27, 5.5 yrs 160, 160 (6) Pectoral muscle Unchanged [94]
5 birds (3 long-lived parrots vs. 2 short-lived quails) 27, 5.5 yrs 130, 130 (6) Liver Unchanged [94]

Exceptionally old, old, and adult mice 128, 76, 28 weeks 171, 199, 190 (for brain) 181, 197,
169 (for spleen)

Brain, spleen Lower [95]

Exceptionally old, old, and adult mice 128, 76, 28 weeks 171, 199, 190 (for brain) 181, 197,
169 (for spleen)

Brain, spleen Lower [95]

Humans (nonagenarian offspring vs. matched control) 59, 58 yrs n.a. Plasma Lower (7) [96]
Long-lived vs. short-live mouse (P. leucopus vs. M. musculus) 8, 3.5 yrs n.a. Skeletal muscle mitochondria Lower (8) [97]

Long-lived Ames dwarf mice vs. normal-sized littermates 4.9, 3.5 yrs 235, 284 Skeletal muscle Lower [98]
Long-lived Ames dwarf mice vs. normal-sized littermates 4.9, 3.5 yrs 266, 331 Heart Lower [98]
Long-lived Ames dwarf mice vs. normal-sized littermates 4.9, 3.5 yrs 175, 210 Liver Lower [98]
Long-lived Ames dwarf mice vs. normal-sized littermates 4.9, 3.5 yrs 185, 243 Liver mitochondria Lower [98]
Long-lived Ames dwarf mice vs. normal-sized littermates 4.9, 3.5 yrs 180, 171 Whole Brain Unchanged [98]

11 mammals, including humans From 120 to 3.5 yrs n.a. Plasma Lower (9) [35]
107 bird species From 45 to 5 yrs From 80 to 50 Liver Higher (10) [99]

Human, pig, mouse 120, 27, 3.5 yrs 70, 80, 225 Skeletal muscle Lower (11) [41]
Human, pig, mouse 120, 27, 3.5 yrs 100, 125, 130 Liver Lower (11) [41]
Human, pig, mouse 120, 27, 3.5 yrs 130, 160, 165 Brain Lower (11) [41]

Centenarians, octogenarians, and adults 100, 75, 30 yrs 64, 72, 66 Plasma Lower [48]
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Table 1. Cont.

Animal Species Longevity PI * Values
Tissue (or Subcellular

Organelle)
PI in Long-

Lived Species Ref

35 mammals (primates, rodents and bats) From 120 to 4 yrs n.a. 6 tissues (liver, muscle, kidney,
heart, cortex, cerebellum)

Lower (12) [43]

D. melanogaster strains (Long-lived Oregon R vs. short-lived
Dahomey flies)

74, 49 days 10, 17 Whole fly Lower [100]

Honey bees (long-lived queens vs. short-lived worker bees) >5 yrs, 75–135 days 12, 27 Whole honey bee Lower [101]
4 fish species (long-lived Aphyosemion australe vs. short-lived

Nothobranchius korthausae, N. rachobii and N. guentheri)
3 yrs, and 80, 63, and 53

weeks
400, 419, 437, 429 (for PE); 268,

286, 289, 306 (for PS)
Whole fish Lower [102]

* The peroxidizability index was calculated as PI = [(% monoenoic × 0.025) + (% dienoic × 1) + (% trienoic × 2) + (% tetraenoic × 4) + (% pentaenoic × 6) + (% hexaenoic × 8)]. Abbreviations:
n.a., not available; PC, phosphatidylcholine; PE, phosphatidylethanolamine; PS, phosphatidylserine; CL, cardiolipin. (1) Data available as “lipid peroxidation”. (2) Data available
as double bond index (DBI). The density of double bonds in the membrane is calculated with the double bond index, DBI = [(1 × Σmol% monoenoic) + (2 × Σmol% dienoic) + (3 ×
Σmol% trienoic) + (4 × Σmol% tetraenoic) + (5 × Σmol% pentaenoic) + (6 × Σmol% hexaenoic)]. (3) Results obtained after correction for body weight and phylogeny showed that
longevity decreases as the ratio of n-3 to n-6 PUFAs increases. No relation between longevity and PI was found. (4) Interspecies range for PUFA n3 content (%) is indicated. (5) Only
PI value for rat is indicated. (6) Average values from 3 parrot species (long-lived) and from 2 quail species (short lived). (7) Based on a MUFA/PUFA ratio significantly higher in
offspring group. (8) From isoprotane concentration (as measurement of lipid peroxidation). (9) From plasma concentration of lipid peroxidation products. (10) Long-lived bird species
are associated with a lower both PUFA and PUFAn6 content, and a higher MUFA content, DBI and PI. (11) PI is calculated from fatty acid composition of 3 phospholipid fractions
(phosphatidylcholine+phosphatidylethanolamine+phosphatidylserine). (12) Based on the average of the number of double bonds for specific lipids categories.
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While longevity can significantly differ within and between mammals and birds, there can also be
important longevity differences within a particular species, as is the case, for instance, within both
the wild-derived or the senescence-accelerated mouse (SAM) strains of mice. In both comparisons,
the PI of the mouse strain displaying extended longevity was significantly lower that than of the
short-lived strain [73,85,103]. Identical results were obtained when membrane unsaturation and PI was
evaluated in exceptionally long-lived specimens of mice [95]. Additionally, the comparison between
closely-related species with divergent longevity, such as the long-lived white-footed mouse P. leucopus
and the short-lived M. musculus, also displayed a lower PI for the long-lived mouse when compared
to the common laboratory mouse [97]. More importantly, two exceptionally long-living mammalian
species (naked mole-rats and echidnas) also have membrane fatty acid profiles that are resistant to
peroxidative damage as would be predicted from their longevities [32,84,89,104].

Honeybees (A. mellifera), flies (D. melanogaster), and worms (C. elegans) offer new examples of
variations in longevity within species that expand previous observations in vertebrates to invertebrates.
In honeybees, queens have a longevity that is an order-of-magnitude greater than that of workers [105].
In flies, a comparison is possible between long-living mutants [91] and wild type strains, differing in
their longevities [100]. In worms, mutant strains of C. elegans that differ 10-fold in their longevities can
be compared [92]. The results from all these approaches show that long-lived animals possess a lipid
profile of their membranes that is more resistant to oxidation. Thereby, the greater the longevity of the
honeybee (the queen), the mutant and strain of fly, and the mutant worm, the lower the membrane
unsaturation and more protected are the other cellular components [86,91,92,100], supporting again
the idea that membrane composition is an important feature in the determination of longevity.

Different works have shown that bivalves are also excellent models for longevity research [106–108]
because they are genetically intermediate to conventional invertebrate models of longevity (e.g., flies
and worms) and mammalian species, providing a unique window to study the evolution of membrane
lipid unsaturation and animal longevity. This taxonomic group both includes the longest-living
non-colonial metazoan (the Iceland clam Arctica islandica, longevity = 507 years [109]), and the surf
clams with animal species of no more than one-year longevity. In this context, the results of a recent
work analyzing the membrane fatty acid composition at tissue and mitochondrial level confirmed that
long-lived marine bivalves’ mollusks possess peroxidation-resistant membrane lipids [3], analogous to
the described findings for mammals, birds, and fishes.

Humans are an exceptionally long-lived species. While the comparison of humans with other
animal species reaffirms the relationship between membrane unsaturation and longevity, it should also
be interesting to evaluate variations within species by considering centenarians as models of human
extreme longevity. If this is the case, the outcomes from two recent studies centered in offspring of
long-lived individuals, as well as another specifically focused on centenarians, reinforce the association
between membrane lipid unsaturation and human longevity. Thus, the lipid composition of the
erythrocytes [90] and plasma [96] of nonagenarian offspring were more resistant than that of matched
controls. More interestingly, centenarians possess a plasma lipid composition more resistant to lipid
peroxidation than octogenarians and at an adult-like level [48].

Comparative studies have clearly shown that membrane unsaturation is associated with animal
longevity. In agreement with this, it was also demonstrated that membrane unsaturation of both
total tissue and mitochondrial fractions of long-lived animal species, including long-lived humans,
was linked to a lower sensitivity to in vitro and in vivo lipid peroxidation, a lower content of lipid
peroxidation-derived products, and a lower concentration of lipoxidation-derived adducts in proteins
from tissues such as brain, heart, liver, plasma, and skeletal muscle [5,37,48,66,69]. Reinforcing the
idea of attenuated lipoxidation-derived damage in long-lived species, it was also observed that both
the accumulation rate of lipofuscin [110], as well as the sensitivity to lipid autoxidation of mammalian
tissue homogenates [111], was negatively correlated with the animal longevity.

Therefore, the findings from the comparative approach support a role for membrane unsaturation
in the determination of longevity, which seems may be extended to all of the animal kingdom (Figure 2).
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Reinforcing this concept, studies using exceptionally long-lived animal species do not refute, but
instead confirm, the connection between membrane lipid unsaturation and longevity, and support the
concept that membrane composition is regulated in a species-specific way. For the particular case of
humans, a long-life must be associated with a membrane composition resistant to oxidation.
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3.3. Longevity Extension by Dietary Interventions are Accompanied by Attenuations of
Membrane Unsaturation

Since correlation does not necessarily mean causation, it is important to know whether cellular
components are protected in front of lipid oxidation when membrane unsaturation is modified. With
this goal, different experimental studies, based on dietary interventions, were designed to force
alterations in membrane lipid composition and to evaluate the changes in both PI and lipoxidative
damage of proteins [112–114]. The results demonstrate that a low degree of lipid unsaturation of
cellular membranes protects the membrane itself and other molecular components against lipid
peroxidation-derived products and lipoxidation-derived damage. Importantly, the magnitude of the
change in membrane unsaturation is tissue-dependent, and the magnitude of the lipoxidation-derived
molecular damage is not proportional to the membrane unsaturation change [112–114].

Additional evidence that supports a relationship between membrane unsaturation and longevity
comes from dietary interventions that extend longevity in experimental models. Thus, diverse dietary
restrictions, such as caloric-, protein-, and methionine restrictions (CR, PR and MetR, respectively), were
applied in different animal species (essentially rodents) inducing decreases in the degree of membrane
unsaturation, the in vivo and in vitro lipid peroxidation, and the level of lipoxidation products in a
diversity of tissues such as liver, heart, kidney and brain [115–130]. In this line, decreases in the levels
of lipofuscin in tissues of C. elegans and rodents have also been reported after CR diets [110,131–134].

From these studies, all of them performed on healthy young experimental animals, it can be also
inferred that the magnitude of the change in membrane unsaturation is modest (around 2.5–10%),
as would be expected for a highly regulated homeostatic system [59]. In contrast, the effect on
lipoxidation-derived protein damage is much higher (about 20–40%), surely due to the additive
effect induced by the dietary intervention on mitochondrial free radical generation, which is lowered.
Importantly, the changes induced by the dietary manipulations are closely related to the duration and
intensity of the applied restriction, with both PR and MetR being more effective than CR.

Additional valuable information was also obtained from long-term interventions throughout the
whole animal life designed to chronically modify the lipid profile in order to increase membrane PI
and to evaluate its impact in animal longevity. Essentially, two studies can be highlighted, one of
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them being performed on mice [135], and the other on the worm C. elegans [92]. The outcomes from
both works demonstrate that the increase in membrane unsaturation is associated with a higher lipid
peroxidation, and a significant reduction in animal longevity.

3.4. The Potential Mechanistic Basis for the Longevity-Related Differences in Membrane Unsaturation

The molecular basis of the low PI presented by long-lived species is in the redefinition of the
lipid profile that conforms membrane composition, with this redefinition being independent of the
diet and according to a genotypic pattern [4,5,37,66]. Thereby, there is a general switch affecting the
content and nature of unsaturated fatty acids present, from highly unsaturated fatty acids such as
docosahexaenoic- (DHA, 22:6n-3), eicosapentaenoic- (EPA, 20:5n-3), and arachidonic (AA, 20:4n-6)
acids in short-lived animals to the less unsaturated alpha-linolenic (ALA, 18:3n-3), linoleic (LA, 18:2n-6),
and oleic (OA, 18:1n-9) acids in the long-lived ones. Remarkably, the shift produced between fatty
acids in the membrane composition is carried out strictly by combining types of unsaturated fatty
acids, and not by increasing the content of saturated fatty acids. The result is that the relationship
between saturated and unsaturated fatty acids remains stable, the physical-chemical properties of the
membrane are not affected, but its susceptibility to oxidation is clearly modified.

From these findings, it can be inferred that the support for the longevity-related differences in
fatty acid profiles necessarily implies the unsaturated fatty acid biosynthesis pathways including
desaturases, elongases, and peroxisomal beta-oxidation, as well as the diacylation–reacylation cycle.
The estimation of elongase and desaturase (delta-5 and delta-6) activities from specific product/substrate
ratios indicate that there is a substantial decrease in long-lived species when compared with short-lived
ones [4,5,37,66,92]. This can explain why, for instance, LA and ALA decreases and DHA and
AA increases from long- to short-lived animals. Therefore, elongation–desaturation pathways are
responsible for the availability of unsaturated fatty acids for the de novo synthesis of lipids and later
diacylation–reacylation cycle which, in turn, are responsible for the remodeling of glycerophospholipid
acyl groups and, consequently, the determination of the lipid profile for a given membrane. In agreement
with the proposed mechanism, the study from [21] using a phylogenomic approach certified that, at least
in mammals, genes involved in fatty acid biosynthesis (lipoxidation repair, elongases, desaturases,
and fatty acid synthase) have collectively undergone, in a specific and significant way, increased
selective pressure in long-lived species. These findings were later confirmed [43].

Functional assays, using mutant strains and RNAi to attenuate gene expression, can provide
evidence that such genes (for instance, for desaturase or elongases or detoxifying enzymes of reactive
compounds derived from lipid peroxidation) are involved in longevity extension. In this context, some
studies that observed C. elegans deserve a special mention. For instance, it was observed that two
long-lived mutant strains of C. elegans, daf-2 and age-1, both linked to an attenuation of the insulin-like
signaling pathway, showed increased content of monounsaturated fatty acids along with a decreased
content in highly unsaturated fatty acids, all leading to the presence of a low PI when compared with
the short-lived ones [92]. In another approach, C. elegans extended longevity by RNAi suppression of
genes encoding either a delta-5 desaturase, fat-4, or two elongases, whereas knockdowns of delta-9
desaturase genes induced a reduction in longevity [92]. In addition, the interference in the expression
of genes related to the detoxification of reactive carbonyl species derived from lipid peroxidation
(glutathione-S-transferases (GSTs)) induced a significant increase in lipoxidative protein damage
concomitantly with a shortening of the worm longevity [136], whereas the overexpression of these
enzymes induced a longevity extension [137]. Taken together, these functional findings suggest that
reactive carbonyl species derived from lipid peroxidation are causally involved in limiting longevity,
and that the modulation of membrane lipid profile to increase resistance to oxidation is one of the
mechanisms for longevity extension.

All of these findings have relevance for humans. Humans are a long-lived animal species.
Therefore, a trait of its lipidome is the resistance to oxidation. Consequently, human diet should be
designed to support and to reinforce this resistance to oxidation, without inducing deficits in essential
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fatty acids or excess in saturated fatty acids. Surprisingly, the opposite is the case. A trait of the modern
human diet is the excess in PUFA consumption, with an additional imbalance between n3 and n6
PUFA due to the increased content of the latter, which favor pro-inflammatory conditions that are
the basis of diseases such as insulin resistance, obesity, cancer and neurodegenerative diseases [28].
Humans possess the metabolic machinery to synthesize PUFA when needed. Thus, the key is to offer
balanced n3 and n6 substrates (the essential fatty acids, which have low unsaturation degree and are
resistant to oxidation) instead of the products (PUFA) that are highly susceptible to oxidation. It is
imperative to improve people’s diet and to define both the optimal fatty acid amount and type to
enhance the membrane fatty acid profile for a long life.

3.5. The Lipid Bilayer as Dynamic Structural Adaptive System

Long-lived animal species (and humans) possess a low degree of membrane unsaturation based
on the redefinition of the unsaturated fatty acid profile. This elegant evolutionary strategy allows
decrease in the sensitivity to lipid peroxidation without altering fluidity, a basic property of cellular
membranes. This occurs because membrane fluidity significantly increases with the incorporation of
the first (usually around the center of the fatty acid) and less with the second double bond, whereas
additional double bonds (usually toward the extreme of the acyl chain) cause few further variations in
fluidity [138]. In contrast, peroxidation index increases with the number of double bonds, irrespective
of its location [65]. Thus, the switch in the fatty acid profile from short- to long-lived animal achieves a
lesser sensitivity to lipid peroxidation at the same time as maintaining the membrane fluidity. This idea,
evocative of membrane acclimation to different environments at unsaturated fatty acid level in bacteria
and poikilotherm animals, was defined as the homeoviscous longevity adaptation theory [66] and
confirms the biological membranes as a dynamic structural adaptive system.

4. Lipidomics of Longevity

Fatty acids are essential components of the structural diversity of lipids of all cell membranes.
Indeed, by permuting headgroups and fatty acids, more than 10,000 lipid molecular species can be
built [139]. Recent developments in mass spectrometry- (MS)-based lipidomics offer the means to
unambiguously and accurately detect, identify and quantify a huge number of lipid molecular species,
as well as to profile large-scale changes in lipid composition. Current data also suggest that the
lipidomic profile is an optimized trait associated with longevity.

The comprehensive lipidomic profiles and lipid concentrations identify the animal species, i.e.,
the lipidome is species-specific (see Figure 1), as well as the long-lived animal species [35,41,43,140].
These comparative studies were carried out in a diversity of tissues such as cerebellum, cortex, heart,
kidney, liver, muscle, and plasma, and exclusively in mammalian species including exceptionally
long-lived animal species such as the naked mole-rat, bats and humans. Lipidomics studies also define
exceptionally long-lived humans (centenarians) [48,96,141,142].

The findings from these studies reveal the presence of common lipidomic features, which accurately
predict animal longevity, and the centenarian condition. More specifically, the relationship between
lipids and longevity were ascribed to lower or higher lipid concentrations in species of specific lipid
categories such as glycerolipids (diacylglycerols, DAGs), glycerophospholipids (GPs) (particularly
ether lipids), sphingolipids (SPs), and long chain free fatty acids (LC-FFAs) [35,43,140]. Although the
functional significance of most of these changes remains to be elucidated, some considerations can
be exposed.

DAGs are precursors for the de novo GP biosynthesis, one of the main components of cell
membranes. A recent study [140] revealed that DAGs negatively correlate with animal longevity,
suggesting that long-lived species (including humans) possess a lower rate of GP biosynthesis through
the de novo pathway, likely due to a lower rate of membrane lipid exchange.

Ether lipids are a subclass of GPs, mostly present as phosphatidylcholine (PC) and
phosphatidylethanolamine (PE) species [143]. Ether lipids have an alkyl chain attached by an
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ether bond at the sn-1 position of the glycerol backbone. The sn-2 position of ether lipids has
an ester-linked acyl chain, as in diacyl phospholipids. Some ether-linked phospholipids, called
alkenyl-acylphospholipids, contain a cis or Z double bond adjacent to the ether linkage and are
commonly referred to as plasmalogens [143]. Ether lipids represent about 20% of the total GP pool in
mammals and have a tissue-dependent distribution [144]. Findings from studies in animal models of
exceptional longevity such as A. islandica [3] and the naked mole-rat [32], as well as C. elegans [145],
suggest an association between plasmalogen content and animal longevity. For instance, the naked
mole-rat had no DHA-containing plasmalogens but had much higher levels of total PC plasmalogens.
For bivalves, no correlation between plasmalogens content and longevity comparing five different
bivalves’ species was found. For worms, C. elegans strains carrying loss-of-function mutations in genes
encoding protein required for ether lipid biosynthesis demonstrated a shorter lifespan, and a decreased
resistance to oxidative stress. In humans, lipidomic studies describe different plasma concentration
of ether lipid species in centenarian [48,142] and in middle-aged offspring of nonagenarians [96],
suggesting an ether lipid signature in long-lived humans. This signature is featured by higher level
of alkyl forms derived from PC and decreased content in alkenyl forms from PE [142]. Remarkably,
the compositional pattern in fatty acids of these ether lipids is specific, resulting in an ether lipid
profile in centenarians that is more resistant to lipid peroxidation [142]. The physiological role of ether
lipids, and specially plasmalogens, is associated with their function as membrane components [143].
However, interestingly, an antioxidant role has also been attributed to plasmalogens, which, similar to
a scavenger, protects membrane unsaturation against oxidation [146]. Therefore, it was proposed that
the ether lipid signature is a specific trait of long-lived humans.

Another important category of lipids highly conserved in all eukaryotic cells is sphingolipids
(SPs). SPs possess a natural predisposition to the formation of lipid domains [147]. In the metabolism
of sphingolipid, ceramide plays the role of a central metabolic hub [148] from which a wide diversity
of structural and bioactive SP species is synthesized. Sphingolipids regulate a number of functions at
membrane and cellular level. Its relationship with longevity proceeds from studies in model organisms
such as yeast and flies. In these animal species, deletions or mutations of genes affecting ceramide
biosynthesis or metabolism were able to significantly modify longevity [149–151]. Lipidomic studies in
animal models, such as S. cerevisiae [152], C. elegans [153], the naked mole-rat [154], and mammals [35,43],
also suggest an association between sphingolipid content and animal longevity. Specifically, a low
sphingolipid content, particularly for sulfatides, ceramides and glycosphingolipids, seems to be a
feature of long-lived animal species. Lipidomic studies in long-lived humans are limited and results
are not conclusive [48,96,141,155–157].

Finally, the importance of lipid metabolism in determining longevity was also verified with
respect to the plasma concentrations of LC-FFAs in different mammals, including humans [35].
The results reveal that long-lived species present lower plasma LC-FFA concentration, PI, and lipid
peroxidation-derived products content, conferring to plasma, analogous to cell membranes, superior
resistance to oxidation. Additionally, LC-FFAs are also essential by covering mammalian energy
needs [158]. Interestingly, adipose tissue is the main source for the liberation of FFA into plasma.
Consequently, the obtained results from the comparative approach suggest an evolutionary adaptation
for adipose tissue regulating the kind of fatty acids stored and released to plasma. The result would be an
adipose tissue with a composition and activity that is species-specific and designed to maintain a lower
degree of unsaturation in long-lived species. Another important consequence derives from the fact that
LC-FFAs also have signaling properties in several physiological processes [159–161]. Among them,
a particularly relevant property is their direct effect on insulin secretion. Thus, it is plausible to
hypothesize that long-lived mammals and human exhibit a lower LC-FFA concentration to maintain
an attenuated activity of the insulin signaling pathway, which is in agreement with the consideration
of insulin signaling pathway as an evolutionary conserved mechanism involved in the determination
of animal longevity [162,163]. In this context, the lower concentration of LC-FFAs observed in humans
could be considered an evolutionary adaptive response that could explain pathological processes like
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insulin resistance, which is linked to an increased LC-FFA plasma concentration [158] and, in turn, to a
shortened longevity.

5. Conclusions

The emergence of lipids in the biosphere was key for the origin and evolution of life because
of their capacity to generate membranes. Membrane composition contributed and participated in
the acquisition of different longevities of animal species, which was translated in the generation of
membranes with a particular lipid composition in long-lived animal species. In particular, membranes
from longevous animal species and humans are featured by a low degree of unsaturation due to a shift
in the fatty acid profile from highly unsaturated to fatty acids with a low number of double bonds
leading to membranes resistant to oxidation, as well as a lipidomic signature species-specific affecting
particular lipid molecular species. Membrane unsaturation and lipidomic signatures of longevity are
conserved mechanisms during evolution for longevity determination. Therefore, there is a lipidome
profile of long life.
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