Hindawi Publishing Corporation
BioMed Research International

Volume 2015, Article ID 904541, 15 pages
http://dx.doi.org/10.1155/2015/904541

Review Article

Trends in IT Innovation to Build a Next Generation
Bioinformatics Solution to Manage and Analyse Biological Big
Data Produced by NGS Technologies

Alexandre G. de Brevern,">** Jean-Philippe Meyniel,” Cécile Fairhead,®

Cécile Neuvéglise,”® and Alain Malpertuy’

TINSERM, U 1134, DSIMB, 75739 Paris, France

2 University Paris Diderot, Sorbonne Paris Cité, UMR-S 1134, 75739 Paris, France

3Institut National de la Transfusion Sanguine (INTS), 75739 Paris, France

‘Laboratoire d’Excellence GR-Ex, 75739 Paris, France

SIsoﬁ‘, Les Algorithmes, Batiment Euclide, Route de 'Orme, 91190 Saint-Aubin, France

SInstitut de Génétique et Microbiologie, UMR 8621 CNRS-Université Paris Sud, Bat 400, UFR des Sciences,
91405 Orsay Cedex, France

7 INRA, UMR 1319 Micalis, 78352 Jouy-en-Josas, France

8AgroPurisTech, UMR Micalis, 78352 Jouy-en-Josas, France

’ATRAGENE, 33-35 rue Ledru-Rollin, 94200 Ivry-sur-Seine, France

Correspondence should be addressed to Alexandre G. de Brevern; alexandre.debrevern@univ-paris-diderot.fr
and Alain Malpertuy; alain.malpertuy@atragene.com

Received 31 December 2014; Revised 1 April 2015; Accepted 1 April 2015
Academic Editor: Kayvan Najarian

Copyright © 2015 Alexandre G. de Brevern et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Sequencing the human genome began in 1994, and 10 years of work were necessary in order to provide a nearly complete sequence.
Nowadays, NGS technologies allow sequencing of a whole human genome in a few days. This deluge of data challenges scientists
in many ways, as they are faced with data management issues and analysis and visualization drawbacks due to the limitations of
current bioinformatics tools. In this paper, we describe how the NGS Big Data revolution changes the way of managing and analysing
data. We present how biologists are confronted with abundance of methods, tools, and data formats. To overcome these problems,
focus on Big Data Information Technology innovations from web and business intelligence. We underline the interest of NoSQL
databases, which are much more efficient than relational databases. Since Big Data leads to the loss of interactivity with data during
analysis due to high processing time, we describe solutions from the Business Intelligence that allow one to regain interactivity
whatever the volume of data is. We illustrate this point with a focus on the Amadea platform. Finally, we discuss visualization
challenges posed by Big Data and present the latest innovations with JavaScript graphic libraries.

1. Introduction

The revolution that next-generation sequencing (NGS) [1]
brought about in biological sciences includes an enormous
leap in the amount of data generated that needs to be stored
and analysed in new ways. Storage and analysis have become
critical questions. Efficient visualization methods are also
needed so that the human mind can comprehend some
of the rules that apply to “omics” data, be they genomics,

transcriptomics, or other data from high-throughput exper-
iments. In this paper, we aim to describe how the data
have evolved, with a particular focus on DNA and RNA
data and how biologists are confronted with an abundance
of methods, “in-house” software, or community-developed
tools, and with a variety of formats of data and databases.
Many such methods imply that the biologist, to some extent,
becomes proficient in some aspects of computing, and this
has been a hurdle that some cannot bypass. Furthermore,
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some biologists, who have not been trained in informa-
tion technology (IT), underestimate the expertise and time
needed to set up analysis tools, to calculate results, and to
imagine visualization methods that are useful to the biologist.

During the first decade of this century, an early step
in the simplification of the use of bioinformatics was the
development of workflow management software that allows
the integration of multiple bioinformatics tools [2, 3]. Their
implementation made automatization and large-scale han-
dling of data processing possible. Nonetheless, despite their
efficacy, these tools do not provide satisfying solutions for
the avalanche of NGS data now available. Indeed, since
these tools are merely “containers” that standardize access
to bioinformatics software, they cannot surpass the current
limits of these types of software, which are not yet adapted to
Big Data.

There is, therefore, still a need for new, interactive tools
for scientists working in large projects involving different
laboratories. The future, as data will continue to grow in
size and complexity, lies in online analysis and storage for
collaborative work, with methods that allow high interactivity
with data for analysis and visualization. In this review, we
will focus on IT solutions that have emerged for management
and analysis of Big Data from other fields of knowledge, such
as web and Business Intelligence. These have shown their
usefulness in bioinformatics, and, although we are still in the
early stages, they have been used in several projects, as we will
describe in this review. The main points we will develop are,
first, the management of data using NoSQL databases, which
are much more efficient at handling Big Data than traditional
databases. They are also more flexible with regards to the
integration of new data, than data models, which are the basis
of relational databases. The second point we will focus on
concerns the problem of loss of interactivity due to the pro-
cessing time of Big Data analyses. This means that alternative
hypotheses cannot be realistically tested. We will describe the
emergence of answers from the Business Intelligence field that
allow the processing of Big Data in real time. We will also
present the case of the Amadea platform, whose interface
is reminiscent of software for workflow management but is
a high-performance environment for data management and
analysis. Finally, we will discuss visualization tools for NGS
data, and the important constraints due to the sheer size of
the data. Genome Browsers are the current standard, but new
tools are needed in order to be able to create in real-time
graphics with web interfaces. For this, we will describe the
latest innovations in terms of JavaScript graphic libraries, now
largely in use for the visualization of Big Data in other fields of
study. We will not discuss the, nonetheless crucial, problems
of calculation nor cloud computing, as we wish to focus on
new software solutions in bioinformatics. We have added a
glossary for specific terms.

2. Next-Generation Sequencing Technologies
and the Big Data Revolution

In 1994, the sequencing of the human genome began [4]. It
took 10 years to complete it. A first draft of the genome was
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FIGURE 1: Human genome sequencing costs. Evolution of the costs
between mid-2001 and nowadays, the different important technolo-
gies are indicated.

published in 2001 [5], but the final version was only published
in 2004 [6]. This program cost nearly $3 billion and mobilized
thousands of people [7].

In 2001, sequencing technology relied on capillaries, and
reads were 500-600-base long in each of the 96 parallel
reactions [8]. In the end, with this type of device, it was
possible to produce 115 kilo-bases (kb) in 24 hours [1]. This
capillary technology has also enabled the sequencing of other
reference genomes such as the mouse, rat, chicken, dog,
chimpanzee, rhesus macaque, duckbill platypus, and cow [1],
opening new perspectives for comparative genomics.

Around 2005, a new generation of sequencers appeared
that would revolutionize the world of genomics. Sequence
production capacities of these new devices allow considering,
ultimately, the sequencing of entire cohorts of individuals. We
had just entered the era of massive sequencing. From now
on, parallel sequence runs would yield hundreds of gigabases
long instead of hundred kb long. This has led to the rapid
decrease of production costs, which fell much faster than
expected by Moore’s law (see Figure 1). Specifically, these costs
were divided by a factor 0f 10,000 between 2004 and 2014 [9].

Today, these technologies have revolutionized NGS
genomic research and are used for many applications:

(i) whole genome shotgun (WGS) at a population scale
[10,11]: WGS is now increasingly used in translational
research such as forensic genetics [12], agrigenomics
[13, 14], and clinical diagnosis. The GOLD database
shows the dramatic increase in the number of genome
sequences available thanks to these new technologies
(15],

(ii) rare variant discovery by whole genome resequencing
or targeted sequencing,
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(iii) alternative splicing and sequence variation [16],
(iv) ChIP-Seq [17],
(v) transcriptome profiling of cells, tissues or organisms,

(vi) identification of epigenetic markers for disease diag-
nosis,

(vii) many more applications (for a review, see [18]).

Such massive use of NGS technologies now generates
huge amounts of data. This impressive increase of data allows
new questions to be asked but also poses a number of techno-
logical and methodological challenges, as quoted many years
ago in [19]. These are real bioinformatics challenges ranging
from questions dealing with informatics (e.g., data storage) to
experiments (e.g., quality controls), with complex algorithms,
with reconstruction of genomes by mapping or assembly, and
finally with genome annotation.

3. Bioinformatics Drawbacks

Publication in scientific journals is often subjected to the
obligation for the authors to provide the produced data
in a specific form for the scientific community [20]. For
instance, protein structures are deposited in the Protein
DataBank in standardized PDB format [21] and protein
sequences in GenBank [22]. Numerous databases have been
created in relation with the major ones. The fact that classical
formats as pdb, fasta, or others have been created has helped
tremendously the achievement of many studies.

Nonetheless, each new development has generated an
impressive number of formats, without commonly accepted
standards. Available tools are often not compatible and,
thus, data has to undergo numerous transformations. A
very representative example is the evolution of the PDB
format, originally developed in the 1970s [21]; in the 1990s,
crystallographers proposed an “improved” version named
mmCIF [23]. The majority of users considered that it involved
too many major modifications, and, as a result, it was almost
never used, and new developments were done mostly with the
original PDB format. Nonetheless, the original PDB format
is not applicable to large complexes which are composed of
many thousands of residues and base pairs, and new formats
named PDBx/mmCIF will finally replace the old PDB files in
2016.

This is a typical example of how bioinformatics ap-
proaches have not evolved as fast as the technology for
which they are useful. Concerning sequences, in the early
2000s, bioinformatics analyses focused on a gene or a dozen
genes at most, and researchers had 227 databases [24] to
obtain information about their subject of study. For these
analyses, every scientist was developing small scripts and
used a well-known and widespread spreadsheet software to
have an overall view of their data. The scripts were executed in
seconds or even minutes, and processed data volume was not
constrained by the limitations of the spreadsheet software.

The problems started with microarrays. Researchers were
quickly faced with a significant problem: it was no longer
possible to use the spreadsheet software to visualize the data
and they had to ask people with advanced computer skills to

analyse the data and extract relevant information. Moreover,
at that time, most machines were running with a 32-bit
environment and were therefore limited to 3 billion entries in
terms of RAM. With microarray data, this limit was promptly
reached, for example, when a few dozen human samples were
analysed. The advent of 64-bit architectures has overcome this
memory problem, but other obstacles remain.

Faced with the avalanche of new data, the researchers
were required to structure them in order to access and query
them easily. Thus, the tool that was naturally chosen was the
relational database. The major problem with this type of data
structuring is that an a priori model of the data is required,
and this, in effect, freezes them. We will see this in more detail
in Section 5.1.1. In biology, concepts and technologies evolve
very quickly, and new data formats appear frequently, forcing
scientists to reconsider the structure of their data regularly.

Heterogeneity is also characteristic of biological data.
Every institution and every machine manufacturer has devel-
oped its own data format, making unification of data even
harder. This justifies even more that researchers should be
knowledgeable in programming languages, in order to use
existing scripts or create new ones that parse the data and
extract interesting information. Indeed, many data transfor-
mation tools are available on the web. For example, there are
over 200 tools for RNA-Seq ([25], including eight dedicated
to differential expression analysis [26]), written in different
languages and producing heterogeneous file formats, all of
them covering a complete analysis cycle. The difficulties lie at
the level of connecting these tools and organizing them into
a routine analysis workflow and beyond, in the question of
software updates and global maintenance.

Another practical example was our personal research on
the imputation of the missing values in microarrays data
and their influence on clustering [27]. In 2010, we tested 12
different methods implemented in 12 different ways; some
being script (e.g., with R software), some being independent
software, some being part of a commercial suite (e.g., Mat-
Lab), some being usable with Windows, and another only
with Linux, each one with a specific (and different) format
[28]. For some, we were not able to use them, even though we
are proficient in bioinformatics.

In addition, the number of databases available to scien-
tists has increased sharply from 227 databases in 2004 to
1557 in 2014 [29]. Many of these databases are novel; many
have disappeared for different reasons, despite efforts by some
researchers to facilitate archiving of small databases [30].

Here is the current problem which any researcher faces:
how to effectively manage the heterogeneity of formats and
data sources, tools, and how to extract relevant and reliable
information [31].

4. Scientific Workflows:
Advantages and Limitations

4.1. A Brief History of Scientific Workflows. Research has be-
come more data-intensive and needs more computing power
as large volumes of data are available from NGS technologies.
This trend has led to the development of numerous tools
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TaBLE 1: Commonly used scientific Workflow Management software.

Platform name Initial creator License Bioinfo Website
Emory University (USA) and Penn .

Gal Y Y F http://gal t.
alaxy State University (USA) ree ($) +++ p://galaxyproject.org/
KDE Inforsense (UK) Commercial ++ http://www.inforsense.com/

UC Davis, UC San Diego, and UC .
Kepl F - http://kepler- t.
epler Santa Barbara (USA) ree +/ p://kepler-project.org/
Knime University of Konstanz (Germany) Free and commercial ++ https://www.knime.org/
Pipeline Pilot Accelrys (USA) Commercial +++ http://accelrys.com/
Taverna workbench EBI (UK) Free +++ http://www.taverna.org.uk/
VIBE Incogen (USA) Commercial ++ http://www.incogen.com/

Columns “Bioinfo” show the level of use of these tools in bioinformatics. The “+++” indicates that the software is used by many teams, “++” indicates the

software is starting to be used and “+/-" indicates that very few teams use this software in this field, an

« »

—” the software has not been used yet in that field.

The “$” sign indicates that some additional fees are required for access to third parties services such as cloud platform.

dedicated to specific analyses and scientists usually have to
combine several tools to analyse their own data. Researchers
are then faced with various issues such as how to deal with
access to databases, data formats, diversity of software, and
scripts to use. Unfortunately, many biologists do not have
sufficient relevant expertise. Hence, efforts have been made
in the last two decades in order to allow scientists to take
control of their data, by developing tools that facilitate access
to powerful and complex computing resources.

This was initiated with the emergence of whole genome
sequencing projects in the 1990s. Since the publication of
the first eukaryotic chromosome, chromosome III of baker’s
yeast [32], and the first bacterial genome [33], there was a
great need for new bioinformatics tools to access, analyse,
and visualize such amounts of data. Various precursor tools
of workflow management systems emerged. We can cite
LASSAP [34] used in sequencing projects that was both
an integrated tool for bioinformatics and a framework to
integrate and combine new algorithms. This first generation
of tools was primarily used by experts, since they required
knowledge of the UNIX environment and command lines to
perform analyses. However, with the explosion of sequence
analysis needs, it became necessary to provide access to
bioinformatics tools to a larger number of biologists. Many
efforts were done to develop web interface to pilot bioin-
formatics tools and to browse databases. Then, the first
tools combining web interfaces and the ability to automate
treatments emerged, such as (i) The Biology Workbench [35]
and (ii) PISE [36]. However, due to technological limitations,
web interface interaction with the user was limited.

In parallel to the web interface development trends,
standalone workflow management software was being devel-
oped to design and execute bioinformatics workflow. One of
the first of these software solutions was Pipeline pilot [37]
developed in 1999 by SciTegics (now part of Biovia products)
for chemoinformatics and bioinformatics. Soon after, an open
source project delivered the workflow management software
Kepler [38]. The same year the Taverna project [39] led to the
first open source platform available for bioinformaticians.

Nowadays, the typical modern workflow management
software provides an IT infrastructure to easily setup, execute,

and monitor a series of tasks. The aim of modern workflow
management software is to facilitate integration of different
software, scripts, and connection to external data sources,
in order to build a data migration or analysis workflow.
Modern workflow management software is usually designed
to offer a rich graphical easy-to-use user interface, enabling
the construction of the workflow with a “drag and drop”
of the components. Such systems are based on the XML
workflow language to handle complex data transformations
with integration of data resources and external software.

4.2. Quick Overview of Some Scientific Workflow Management
Software for Big Data Analysis. Several workflow manage-
ment types of software are available to design scientific
workflows (see Table 1). We present a summary of some that
have been used to analyse NGS data.

4.2.1. Galaxy. Galaxy [40-42] is an open tool dedicated to
perform complex analyses in a web-oriented collaborative
environment and dedicated to users with no programming
skills. The Galaxy framework encapsulates high-end com-
putational tools and provides intuitive user interface while
hiding the details of computation and storage management
[40]. The three objectives of Galaxy are to facilitate the
accessibility and reproducibility of analysis and to assist the
sharing of developed workflows [41, 42].

Accessibility. Galaxy users do not need to know the imple-
mentation details of the various tools. The principle is that,
from a web page, users can connect to data and perform
advanced genomic analysis, using tools built into the inter-
face. To incorporate a new tool, the user has to write a
configuration file that describes how to launch the tool and
specifications for inputs and outputs. The approach used in
Galaxy is less flexible than a programming language but
it makes computation accessible for biomedical researchers
averse to command lines.

Reproducibility. For each analysis, a number of metadata
types are generated, through which it will be possible to repli-
cate the analysis. These include input and output datasets,
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tools used, and parameter values. Such types of metadata are
sufficient to reproduce the analysis, but, in addition, Galaxy
offers the opportunity for the user to enter annotations that
should make it easier to understand the purpose of the
analysis. The analysis steps are assembled in a history, in
which it is possible to copy or create versions.

Sharing. Galaxy has repositories where users share objects:
datasets, histories, and workflows but also has Pages, elabo-
rated web documents that enable users to communicate in
detail, via texts and graphics, about their analyses.

Galaxy is implemented primarily in the Python pro-
gramming language and is distributed as both a public web
service and a downloadable package that can be deployed in
individual laboratories.

An interesting example of Galaxy is BioBlend, a unified
application programming interface (API) coded in Python
language that wraps the functionality of Galaxy and Cloud-
Man APIs [43]. BioBlend makes it possible to automate large
data analysis within Galaxy using the Cloud environment of
CloudMan [44].

4.2.2. Kepler. We describe Kepler, despite the fact that this
workflow management software has, in fact, rarely been used,
up to now, in bioinformatics and NGS analysis. However, the
capacity of Kepler to deal easily with distributed intensive
computation infrastructures may lead to innovative develop-
ment in Big Data analysis such as NGS data.

Kepler is a powerful desktop workflow management
software developed primarily for ecology and environmental
studies. Kepler includes a graphical user interface (GUI) for
creating workflows. Kepler allows scientists to run workflows
within the GUI and independently with command lines. In
addition, Kepler has powerful distributed computing options
to distribute workflow execution on cluster, grid, or cloud.

Recently, Kepler has been used for bioinformatics pur-
poses. For intensive computing and NGS analysis, the bioKe-
pler project [45] has been initiated. The bioKepler module is
an extension for Kepler that integrates bioinformatics com-
ponents in order to execute bioinformatics tools (e.g., BLAST
[46] and HMMER [47]) and to facilitate the development of
workflows for execution in distributed environments (grid
platforms or cloud).

In addition, Kepler also offers the possibility to integrate
the R statistics suite [48] through the RExpression compo-
nent. This gives access to all R packages dedicated to NGS
analysis.

4.2.3. KNIME. Konstanz information miner (KNIME) is an
open source workflow management software for data mining,
reporting, and integration [49]. KNIME integrates various
components and is used in numerous domains (e.g., Busi-
ness Intelligence, customer relationship management, and
marketing), including life sciences. KNIME was developed
to offer a highly scalable platform. KNIME allows the easy
integration of data sources (databases and files), analysis, and
visualization of data. Using an intuitive graphical interface,
KNIME allows users to create data analysis workflows by

“drag and drop”” To enhance collaboration between research
teams, KNIME allows the creation and sharing of plugins
to extend its capacities. Initially used for chemoinformatics
[50, 51], numerous plugins for life sciences are now available.
Concerning NGS and Big Data, three extensions are pro-
posed.

(i) KNIME extensions for next-generation sequencing
[52] is a set of free components and workflows
dedicated to NGS analysis.

(ii) Knime4Bio [53] is a set of components for the filtering
and manipulation of NGS VCF format files.

(iii) KNIME Big Data extension [54] is dedicated to high
performance access and queries on Big Data. Thisis a
commercial extension that offers a set of components
for accessing Apache Hadoop Mapreduce framework
(distributed storage and distributed processing on
clusters) and Apache Hive (data warehouse software
for querying and managing large datasets residing in
distributed storage).

In addition KNIME integrates the R statistics suite that
gives access to all R packages dedicated to NGS analysis.
A recent application of KNIME and R statistics was built
for proteomics experiments, focusing on the screening for
targets of a miRNA involved in neuroblastoma. This led to the
identification of seven new gene products that were correlated
with the worst clinical outcomes [55].

4.2.4. Pipeline Pilot. Pipeline Pilot (Accelrys, USA) was ini-
tially developed in 1999 by SciTegics (San Diego, USA) a
company that became a subsidiary of Accelrys in 2004.
Professional-oriented software Pipeline Pilot is a produc-
tivity platform dealing with Big Data and one of the most
commonly used workflow management types of software in
pharmaceutical companies. Pipeline Pilot has visualization
possibilities through the reporting component collection [56]
that allow the automation of reports and the publication of
web applications. In addition, Pipeline Pilot has components
for integration with the visualization suite Tibco Spotfire
[57], which provides powerful visualization tools and efficient
interactive dashboard conception.

Pipeline Pilot has its own simple scripting language for
“nonprogrammers.” This gives scientists the opportunity to
build their own functional workflow prototype without need-
ing a computer scientist at every step. Once the prototype is
created, computer scientists can industrialize the workflow
for routine use. This facilitates workflow development process
and productivity.

Several component collections are available in many
domains: biology, chemistry, material sciences, modelling
and simulation, imaging, and so forth. Pipeline Pilot com-
ponent collections for biology include numerous tools for
sequence analysis, sequence search, or alignments such as
BLAST, PSI-BLAST [58] or MegaBLAST [59], and ClustalW
[60]. Specifically for NGS analysis, Accelrys proposes the
next-generation sequencing collection [61] which offers pow-
erful tools to import, analyse, and visualize NGS data. Finally,
as the R statistics package is widely used by scientists,



Accelrys proposes an R statistics component collection [62]
to easily integrate R in the designed workflow.

4.2.5. Taverna. The Taverna Workbench [39] is workflow
management software created by the myGrid project. Taverna
was one of the first open source workflow management
types of software developed for creating scientific workflows.
Taverna allows integration of SOAP and REST web services
giving access to bioinformatics resources, databases, and tools
[63] from numerous academic research institutes. As Taverna
is widely used in academic research, a large number of com-
ponents are available for scientists in various domains such
as bioinformatics, chemoinformatics, medicine, astronomy;,
and social sciences. To enhance collaboration and workflow
sharing, the myGrid consortium delivered the BioCatalogue
[64], a centralized catalogue of life science web services, and
myExperiment [65], a social web site for scientists, where
scientists can share Taverna workflows.

One important point in Taverna is the possibility to not
need to execute workflow within the Taverna Workbench.
Indeed, the workflows can be run by (i) executing a command
line, (ii) a remote execution server, to allow workflow running
on distant machine, and (iii) through the online workflow
designer and enactor OnlineHPC [38] giving access to high
performance computer resources for intensive computation
or Big Data analysis.

A recent example of the use of Taverna was done by the
School of Computer Science at the University of Manchester.
They designed and implemented a Taverna-based data refine-
ment workflow which integrates taxonomic data retrieval,
data cleaning, and data selection to define a semiautomated
workflow [66].

4.3. Limitations. These workflow tools facilitate data analysis
by noncomputer users, allowing them to control bioinformat-
ics tools and easily analysis pipelines. They nevertheless have
some limitations.

Indeed, the functional components encapsulate code
written by someone who has a good knowledge of one or
more programming languages (e.g., Java for KNIME, specific
script for Pipeline Pilot). The different bricks are not neces-
sarily written in the same language, and the workflow may
ultimately be constrained by a brick, written in a language
that is less efficient compared to other bricks. This is not a
problem for ad hoc analyses, but as soon as one user works in
a production environment, with analyses that are performed
routinely, it becomes a problem.

Furthermore, if a brick is needed that does not yet
exist (or a new data analysis method is needed) or if it
does not match exactly the needs of the non-IT Biologist,
he will not be able to intervene and he will have to seek
help from developers. The power of expression of these
workflow tools is more limited than that of programming
languages since they do not allow immediate transcription of
an idea in the environment. Researcher’s exploration capacity
is thus limited by the existence or not of functional bricks
in the environment. The user will then be obliged to make
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guided data analyses and will not be free to have an entirely
exploratory approach.

These environments eliminate the need to write com-
mand lines that seem obscure for noncomputer users, and
they allow scientists to perform treatments, encapsulated in
the different bricks, for which they will know the inputs and
outputs, but ultimately users have no visibility on intermedi-
ate steps performed by the encapsulated scripts.

Furthermore, these tools do not solve one of the main
issues related to NGS, namely, the volume of data that gen-
erate problems of processing. Currently, one of the preferred
solutions is to move to the cloud for storage and processing of
data, but this involves transferring all data to remote servers.
Data transfers and admission processes in queuing can be
long before the data are processed. Thus, this does not solve
the problem of loss of instantaneity in obtaining results,
which was observed since the advent of high dimensional
data in biology.

Although these types of software simplify the use of bioin-
formatics tools for noncomputer scientists, they do not
solve the problem of creating new intermediate components
needed for a given analysis nor of rapidly exploring new
hypotheses that have not previously been covered by existing
encapsulated tools. Next generation bioinformatics tools have
to be invented, developed, and made accessible to experts in
each field of research in biology, as explained below.

5. Trends in IT Technologies for Big Data in
Management and Analysis of NGS Data

5.1. Big Data and the NoSQL Revolution

5.11. Relational Databases and Big Data. In biology, shar-
ing data is an important issue and numerous databases
are available [29]. Usually, relational database management
systems are used to organize and to share biological data.
Relational databases, together with web technologies, spread
quickly in research institutes in the 1990s, for the diffusion
of information through Internet. Relational databases meet
very specific needs and are not designed to fit all scenarios.
Indeed, the use of a relational database may be inappropriate
under the following conditions, especially with constraints of
Big Data management and sharing.

(i) The database cannot adapt to large traffic at an
acceptable cost.

(ii) The number of tables required to maintain the rela-
tional model rises too quickly for the corresponding
amount of stored data.

(iii) The relational model no longer meets the perfor-
mance criteria because the model is no longer adapted
to how the system has evolved.

(iv) The database is subjected to a large number of
temporary tables that store intermediate results.

All these limitations were noticed by major actors of the web
like Amazon Inc. and Google Inc. in the 2000s. Facing the
growing amount of data from the web they have undertaken
to develop new classes of databases.
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5.1.2. NoSQL Database. The term NoSQL (“Not Only SQL”)
database is a class of distributed database management
systems, designed mostly for the purpose of dealing with
large datasets within an acceptable timeframe for the user.
This designation emerged in the second half of the 2000s
with the increasing number of distributed nonrelational
databases [67]. The NoSQL systems were developed in order
to maintain short response time to queries, despite a very high
query throughput. However, their architecture does not offer
the same guarantees as relational databases (including con-
straints to conserve properties that guarantee that database
transactions are processed reliably, namely, ACID for atom-
icity, consistency, isolation, and durability). In particular, the
absence of a structural model for storing heterogeneous data
within the same database and the necessity of rapid treatment
results in the omission of some structural controls (e.g., table
integrity).

Often, the transition from relational database system to a
NoSQL system is motivated by several reasons such as

(i) a very large volume of data to store,

(ii) frequent and massive write entries that have to be fast
and reliable,

(iii) data readings that have to be fast and consistent,

(iv) a data model that can evolve and change on the fly
(e.g., adding new concepts and data),

(v) ease of administration (backups and restoration),

(vi) capability to have parallel data processing.

Existing NoSQL solutions can be grouped into four main
categories.

(i) Key/value. This category can be viewed as a dis-
tributed hashmap. The data are simply represented by
a key/value pair. The value can be a simple string, a
serialized object. The interaction with the database is
simple and limited to “PUT,” “GET,” and “DELETE”
operations, which infers that more effort has to be
put in the construction of the web application to
manage complex querying. The best known solutions
are Redis (Citrusbyte LLC (USA)), Riak (Basho Tech-
nologies Inc. (USA)), and Voldemort [68] created by
LinkedIn.

(ii) Column-oriented. This category can be viewed simply
as a table in a relational database system but with a
NoSQL column-oriented database, where the number
of columns is dynamic. Indeed, in a relational table,
the number of columns is fixed in the model and that
number is the same for all records in the table. On
the contrary, in a NoSQL database, the number of
columns may vary from one record to another, which
avoids columns with NULL values. The column-
oriented NoSQL database solutions are HBase [69] an
open Source implementation of the model published
by Google BigTable [69] and Apache Cassandra [70],
a project that respects the distributed architecture
of Amazon DynamoDB (Amazon Inc. (USA)) and
Google’s BigTable model.

(iii) Oriented document. This category is based on the
key/value paradigm. The value in this case, is a
JSON or XML document type. The advantage is to
be able to quickly recover via a single key, a set of
hierarchically structured types of information. The
most popular solutions are Apache CouchDB [71],
RavenDB (Hibernating Rhinos Ltd, (Israel)), and
MongoDB [72].

(iv) Graph database. This data representation model is
based on graph theory. It is based on the notion of
nodes, relationships, and properties attached to them.
This model facilitates the representation of the real
world, which makes it suitable for processing data in
social networks. The main Graph NoSQL database
solutions are InfiniteGraph (Objectivity, Inc. (USA))
and Neo4j (Neo Technology, Inc. (USA)).

Both “column-oriented” and “oriented document” categories
are based on key/value systems; however the nature and
structure of the value are different.

Despite their increasing deployment in several domains,
the use of NoSQL databases in bioinformatics is an emerging
field. NoSQL databases have caught a lot of attention in
bioinformatics because of their advantages in scalability, but
authors question the timeliness of their use for data organi-
zation in biology. For example, the use of graph databases
was discussed by Have and Jensen [73] who concluded
that “Graph queries, formulated in terms of paths, can be
concise and intuitive compared to equivalent SQL queries
complicated by joins” However, the authors pointed to the
limitation of actual graph query languages to enjoy the full
benefits of using a graph database.

Recent use of NoSQL technologies for NGS data has
been reported. Taylor [74] discussed the application of
Apache Hadoop Mapreduce and the HBase NoSQL system
in bioinformatics for NGS data analysis. He showed that the
scalability of Big Data oriented system Hadoop and HBase
is, as expected, very high. In addition, he noticed that this
architecture allowed the easy integration and analysis of
large and heterogeneous data sources with a small number
of HBase tables. This is an important result, since, in NGS
analysis, the ability to cross data with other databases is a key
for discovery. Another example is the SeqWare Query engine
developed by O’Connor et al. [75]. The authors use the HBase
NoSQL database and deploy their application on a cloud to
offer high performance for access and queries on NGS human
genome data. The HBase database exhibits high performance
for querying the data and, according to the authors, “enables
a faster and more open exploration of results” However, some
authors tried to enhance NoSQL systems, as did Wang et al.,
who designed a key/value data model to support fast query
over large amounts of data with HBase [76]. These authors
obtained a threefold decrease of query time using NoSQL
system compared to classical relational database system like
Oracle.

An interesting example of a successful use of a NoSQL
database is the ncRNA-DB database developed by Bonnici
et al. [77]. The authors created a database to integrate
ncRNA interactions data from 7 of the online data sources.



The data integrated include interactions with RNA, DNA,
protein, and relationship to diseases. NoSQL databases
are suitable for the integration of nonstructured data and
can be easily implemented for Big Data management. The
authors used OrientDB, a distributed graph NoSQL database
(http://www.orientechnologies.com/). Using graph NoSQL
database allowed the authors to easily integrate several
data sources as biological entities (genes, ncRNAs, RNAs,
and diseases) and their relationships (physical interactions,
functional relationships, and so on) can be modeled as a
graph. The resulting graph is composed of nodes (biological
entities) and edges (relations between biological entities). The
ncRNA-DB offers a command line interface. The authors also
developed a web interface for easily querying the database
and exporting data in a text format. In addition, a Cytoscape
[78] dedicated interface called ncINetView was developed
to visualize the interaction graph. In this example we see
that NoSQL databases offer a powerful alternative to SQL
databases for Big Data integration. We further note that
the representation in graph form is particularly suitable for
biological data representation in a database.

Despite its scalability and performance, NoSQL is rarely
used for NGS projects. The few existing examples include
METEOR of INRA, used for the analysis of the impact of
dietary intervention on gut microbial gene diversity [79].
However, their performance must drive scientists to pay
attention to developments of NoSQL systems and to find
suitable applications to overcome the limitations of relational
database systems for NGS data management.

5.2. Innovative Big Data Analysis Technologies for NGS

5.2.1. A Quick Overview of Business Intelligence Solutions.
The Big Data revolution first affected major web companies
(Amazon, Facebook, Google, and so forth) and large compa-
nies involved in banking and insurance, with the increasing
need to extract key information from datasets in order to
help decision-making processes. In IT, it is the domain of
Business Intelligence that addresses the issues of decision-
making. Thus, major BI solution companies offer innovative
solutions to collect, to manage, and to analyse heterogeneous,
large datasets. BI seeks to extend collected data and also
restructure, aggregate, and reformat data in order to present
them in a form that helps decision-making of the end-user.
Different stakeholders are present on the market and have
each developed their decision-making tools for Big Data.
We can cite Cognos Business Intelligence (IBM), Reportive
(CEGEDIM) [80], Oracle Business Intelligence Enterprise
Edition (Oracle Corporation), and QlikView (QlikTech). All
these solutions offer efficient platforms to manage and analyse
Big Data. Despite their advantages, BI platforms have rarely
been used in medical research and a fortiori on massive data
sets from NGS.

However, innovative BI solutions are used by some teams
involved in NGS analysis. These tools perform well and
are highly beneficial to laboratories with NGS Big Data—
especially those with high quality and industrialization
requirements of their processes.
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FIGURE 2: Amadea software interface. Users create workflow by drag
and drop of components on the “working area”

As an example of BI solution benefiting Life scientists, we
focus on the successful use of the Amadea software (Isoft,
France) for NGS data analysis. This is one of the first tools
from Business Intelligence which has been applied in Life
Science [81]. Amadea software is based on the data morphing
technology, a high performance engine for data management
and analysis. Data morphing is similar to image morphing
that changes (or morphs) one image into another through a
seamless transition. Here, data are morphed using successive
processing by graphically assembling components called
operators (see Figure 2). Operators are elements carrying out
elementary operations (add a column to a data table, calculate
the mean value, etc.) or more complex operations (call
another software, compare strings, etc.). The data morphing
engine allows users to access data instantaneously, whatever
their size. This close real-time interaction with data offers
scientist the possibility to quickly test hypotheses and find
the right solution. In addition, although the Amadea software
has a user interface that is similar to a workflow software,
it is a true development platform, such that a scientist
without special computer knowledge can develop advanced
treatments and analyse Big Data sets. Thus, in silico work
becomes highly similar to laboratory work (“wet lab”) where
the results of an experiment raise new hypotheses that can be
tested easily with a new analysis workflow.

The data morphing engine is developed in C++. The
user interface allows the graphic elaboration of analysis
workflows, by the “dragging-and-dropping” of needed com-
ponents. Native components, directly linked to the engine,
perform the basic operations. The combination of native
components allows the creation of more sophisticated and
dedicated components. The development of a new compo-
nent does not require programming language knowledge. In
addition, as the new component is a combination of ele-
mentary components, it takes full advantage of the data
morphing engine performances. Thus, the scientist using
Amadea has the same power of expression as if he was using
a programming language; he has the ability to implement
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Chip Array Data Filtering and Annotation

FIGURE 3: Real-time access to all intermediate results in Amadea. By
clicking, user has instantaneous access to (1) output from the data
source “chip array data,” (2) the output from “Entrez Gene” database,
and (3) results from “Get Gene Info” component.

a missing brick in his analysis flow, without having to rely on
someone else to develop it for him. This is a major difference
with other existing workflow tools. This technology offers
enormous flexibility for analysis. It allows one to circumvent
the question of technological choices for loading and process-
ing of the data. Indeed, in the same environment, it is possible
to import, view, and compare information from relational or
NoSQL database, XML, TXT, CSV, EMBL, GFF, SAM, and so
forth.

Furthermore, data are considered as “data heaps” which
are displayed in tables made of rows and columns (spread-
sheets). The user can use the data as he constructs his analysis
workflow, without a predefined semantic. For example, in a
workflow involving the Refseq databank [82], the user can
select and use information about genes and, further down
in the analysis process, decide to use information about
proteins (see Figure 3). This flexibility is very important
during exploratory phases, when it is necessary to compare
data with information from various sources.

Amadea also allows the sharing, through the internet, of
data as well as workflows. Online users interact with a web
interface, can execute workflows, and modify parameters if
needed as allowed by the programmers.

5.2.2. Annotation Transfer on Yeast Genomes Using Amadea.
Whereas assembly is usually included in sequencing services
by sequencing companies, the structural annotation of genes,
that is, the definition of gene structures including UTRs
or alternatively spliced isoforms, is rarely an option and
therefore remains a challenging task for many researchers.
Therefore, many genomes are deposited in GenBank or
EMBL/ENA without annotation or with a minimalist and
often wrong annotation, which considerably limits their
usefulness to researchers.

Very early in the genomics era, gene predictors were
developed, providing a fast and easy means to identify genes
in assembled DNA sequences from bacterial genomes, such
as the GeneMark programs that have been used since 1995

[33, 71, 83]. This type of ab initio gene predictors uses math-
ematical models to identify genes. These models are specific
to the sequenced genome and cannot be easily applied to
other genomes and even less to eukaryotic genomes.

A next generation of genome annotation tools used EST,
protein and RNA-seq aligners, and assemblers as well as
combiners in addition to predictors, to improve the accuracy
of their predictions (see [84], for a review on annotation
tools). Genome annotation pipelines have been proposed,
such as MAKER [72] or SABIA [85], as well as web prokaryote
annotation servers (RAST server at the National Microbial
Pathogen Data resource [86] and the MicroScope platform
[87]), but this requires intensive computation resources
(indeed, a full run of MAKER can take as long as a few weeks
for a prokaryote genome). Computation time is an even larger
problem for eukaryotic genome annotation.

Today, the typical size of a FastQ file for a yeast genome
(a10-12 Mb-long genome with a coverage of 70x) is around 2
Go. Many laboratories, such as the INRA Micalis laboratory
where one of us works, are sequencing large numbers of
yeast species, leading to many genomes to annotate. Time-
consuming ab initio annotation methods are not suitable and
annotation transfer has become our preferred methodology.
The following existing automatic annotation transfer tools
were tested and deemed inefficient: (i) GATU, dedicated
to viral genomes [88], and (ii) RATT, based on synteny
conservation, which only applies to closely related genomes
[89]. Therefore, the INRA Micalis team chose to use the
Amadea platform for developing their own automatic anno-
tation transfer software, which had to be able to deal with
significant differences between genomes. First developed for
yeast genomes [90, 91], some of which are intron-rich, the
Amadea workflow has been implemented to take into account
the intron pattern [92] of the most closely related species
used as a reference. This particularity increases the accuracy
of exon-intron junction definition, in contrast to other tools,
which only take into account intron-splicing motifs and
overpredict the presence of spliceosomal introns. In addition,
the workflow highlights ambiguous regions to simplify the
final step of manual curation for high quality annotation.
Finally, this annotation workflow allows data exportation in
the EMBL file format, for visualization with third-party tools
such as Artemis [93]. The resulting workflow leads to the
annotation of a yeast genome in 5 to 7 hours compared to the
use of classical annotation tools which take 70 to 80 hours to
annotate such a genome. Thus, the laboratory now has at its
disposal a high-performance tool for the annotation of yeast
genomes, which is of high interest for annotation of genomes
in the coming years, and should be useful to anyone needing
a reliable, fast, and automated annotation process.

5.3. Big Data Visualization

5.3.1. The Visualization Challenge. NGS is a powerful dis-
covery tool for scientists seeking to glean new insights and
concept from their data. However, the large amount of data
leads to difficulties in their analysis and visualization. As visu-
alization, in particular, plays a key role for discovery of new
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TABLE 2: List of free tools for NGS data visualization or including visualization components.

Software Authors Remarks Project website
Software for integrated

Artemis Carver etal. [70]  visualization and http://www.sanger.ac.uk/resources/software/artemis/
computational analysis

g;zazz:me Jiang et al. [94]  Genomic data visualization http://www-personal.umich.edu/~jianghui/browser/
Visualization of genome

Girafe Toed1[19nsg] etal. El;z:;v:;tgvjiﬁ?ed reads. http://www.bioconductor.org/packages/release/bioc/html/girafe.html
R/Bioconductor [96]

IGV Genome browser and

(Integrgtlve Robinson et al. interactive exploration (?f http://www.broadinstitute.org/igv/

Genomics [97] large, integrated genomic

Viewer) datasets

JBrowse WeSte[S;g? etal. Web-based genome browser http://www.github.com/jbrowse/
Assembly visualization and

MagicViewer Houetal. [99]  genetic variation annotation http://bioinformatics.zj.cn/magicviewer/
tool

NGSView ArIEf(; Oe]t al, Sequence alignment editor http://ngsview.sourceforge.net

ngs.plot Shen et al. [101] Mining and visualization of https://code.google.com/p/ngsplot/

) ) NGS data
Fiume et al Software for sequence

Savant [102] ’ annotation, visualization, and http://compbio.cs.toronto.edu/savant
analysis

seqMonk .B.abraharn' Genome Browser http://www.bioinformatics.babraham.ac.uk/projects/seqmonk/

Bioinformatics

Graphical viewer for

Tablet Milne et al. [103]  next-generation sequence http://bioinf.scri.ac.uk/tablet
assemblies and alignments
Method to evaluate genome

TGNet Riba-grognuz  scaffolding. Required https://github.com/ksanao/TGNet

et al. [104] software: Blat [105] and

Cytoscape [78]

patterns and trends in large datasets, the lack of dedicated
visualization tools is a major limitation to the interpretation
of the data. Indeed, without Big Data-dedicated interactive
visualization systems, much of the knowledge from NGS may
go unrecognized.

Thus, data visualization is fundamental to NGS interpre-
tation and several groups involved in NGS data analysis have
developed specific tools for this (see Table 2). We will not
describe these tools in detail, but the majority are limited
to a specific type of visualization (e.g., genome assembling
and browsing) and few allow easy integration of other data
to enhance knowledge about specific genomic regions, for
example. We can mention the efforts of ngs.plot [101] and
Integrative Genome Browser [97] to integrate heterogeneous
data sets such as gene annotation, clinical information, and
phenotypic data to enhance discovery. As R is widely used in
bioinformatics, we can also mention the Girafe package [95]
for R/bioconductor, which is dedicated to NGS data analysis
and offers some functions for data visualization. However,
interactivity with R graphs is limited, despite some extensions
that propose dynamic graphs in web pages [96, 106, 107].

Unfortunately, these extensions are not yet powerful enough
to manage big data dynamic graphs and interactions through
a web page. In addition, some commercial solutions are
available that cover some aspects of visualization needs (e.g.,
Strand NGS [93], BioDT [78]). These tools and solutions
are promising but still too rudimentary to be routinely used
in an intensive NGS data analysis workflow. Few of them
allow drawing a wide range of graphs. In addition, NGS
technology and scientific analysis needs are changing very
quickly. The design of dedicated data visualization interfaces
is an important need for NGS analysis. Therefore, the use of
turn-key solutions is not always appropriate as their capacities
may not cover all the needs and their evolution may be long
and costly.

The main issue of NGS is the huge amount of data leading
to millions of dots to display. NGS and genomic data volumes
are so big that it can be hard to imagine what these data look
like. The size and complexity of so much data can be difficult
to illustrate. In addition, as computer screens are limited to
small resolution compared to the amount of data to display
(common high resolution screens range from 1920 x 1200
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to 2560 x 1440), users have to access tools to explore their
data using many graphs and interact with graphs to speed up
identification of key information.

Indeed, an important technical issue is to dynamically
interact with graphs, for example, to change graph type,
zoom-in and zoom-out, browse and change parameters on
the fly, and instantaneously obtain new graphics. In addition,
the revolution of genomics technologies and the large amount
of available data leads to the increase of collaborative work.
NGS analysis generally involves several scientists of different
teams from different locations. These collaboration needs are
covered by the development of web applications, which have
to support increasing intensive capacities of data exploration.
This induces the need to use web technologies to share data,
analysis tools, and results through web applications available
from the Internet, whether an intranet or an extranet.
However, web applications have some technical limitations
linked to current web browsers. Indeed, numerous challenges
arise when creating a web application that includes interactive
visualization for Big Data analysis. For example, web browsers
cannot natively support huge interactive graphs and tables
with thousands of pieces of data. Thus, the developers of
web applications for NGS data analysis and visualization have
to create applications supporting Big Data and scientists’
increasing interactivity needs with their data, combined
with the limitation and diversity of web browsers. With the
increasing use of Big Data on the web, various technological
solutions have emerged, including efficient, interactive visu-
alization solutions. This is what we will illustrate in the next
section.

5.3.2. Overview of Some Visualization Solutions for NGS Big
Data. As visualization helps decision-making and becomes
an increasingly important component of analysis, the IT
companies from the Business Intelligence (BI) domain have
developed innovative solutions to deal with the Big Data
visualization issue. These visualization solutions have become
progressively more powerful and less expensive over the last
decade. Software vendors involved in BI from other markets
have solutions to visualize big data. We can cite Tibco Spotfire
[68] or SAS [90], both of which are indeed used in life sciences
and can significantly help scientists to visualize and explore
their NGS data. The main advantage of these solutions is to
offer powerful visualization with numerous types of graph
for data representation and allow high interactivity with these
data for changing parameters or zooming.

When developing web application with graphics, JavaS-
cript graphic libraries are commonly used to display inter-
active graphics. Numerous developments have been under-
taken to enhance the performance of such libraries. Using
JavaScript libraries, users can easily interact with graphs
by removing/adding or modifying series and points at any
time. Among available JavaScript graphic libraries, some are
widely used in Business Intelligence and Big Data visual-
ization. Although recent efforts have been made to provide
specific JavaScript graphic library for bioinformatics such as
Bio]S [108], we present in this review two relevant general
JavaScript graphic libraries that can provide researchers with

1

efficient solutions for the visualization and exploration of
their NGS data.

Highcharts [92] is one of the most efficient JavaScript
charting libraries that allows the inclusion of interactive
charts in web interfaces. A free version is available for
personal, school, and nonprofit organization use. Highcharts
offers a large panel of charts such as line, area, bubble, box
plot, error bars, spline, areaspline, column, bar, and pie.
The graphics are rendered using SVG, VML, or the Canvas
tag from HTML5 standard which is supported by modern
web browsers such as Chrome 38+, Firefox 33+, or Internet
Explorer 10+. Highcharts graphics are also supported by
mobile devices such as iPhone/iPad or android smartphones
and tablets. Highcharts is widely used in several industry
domains to display interactive graphics included into web
dashboards. Highcharts is also used for Big Data visualization
and the authors present an example dealing with 1.7 million
dots into a single figure including zooming capacities [96]. In
addition, in combination with Asynchronous JavaScript and
XML (AJAX) technology, the graphics can be updated in real
time with data from the server or users.

A second impressive professional JavaScript graphic
library is D3 Data-Driven Documents [109] also called D3.js.
This graphic web library takes advantage of the capacities of
modern browsers to allow powerful interactive visualization.
D3.js is freely available under the terms of the BSD 3
license [75]. D3.js’s growing popularity has led to numerous
documented examples. To deal with large data, D3.js is usu-
ally combined with other tools such as Crossfilter [89], a
JavaScript library that can explore large multivariate datasets
in a web browser, or Zoomdata platform [110], a solution
for fast analysis and visualization of Big Data. In addi-
tion, some Bio]S components (Biojs. DNAContentViewer,
Biojs.HeatmapViewer) include D3.js for advanced graphics
and interactivity. Another use of D3.js is Circster [111], which
adds circular genome drawing capacities to Galaxy.

These JavaScript graphics technologies allow efficient
human-data interaction through a web browser. Scientists
who want to explore their data and results should consider
using them, since these technologies are now widely used in
Big Data analysis and Business Intelligence fields and offer
cost-effective solutions for interactive graphics.

6. Conclusion

The development of next-generation sequencing-based stud-
ies and the abundance of available data is a true revolution
for public and private laboratories. Several actors are involved
in NGS data acquisitions, management, and analysis. It is
crucial to access, share, and analyse these data with ease, in
order to identify key information. This necessitates setting
up consistent discipline-specific informatics platforms, which
improve decision-making. These platforms are essential for
NGS projects: they have to allow fast data access and easy
workflow edition and sharing but also have to enable the
integration of an increasing amount of data, through work-
flow editing and efficient visualization tools. They also have
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to facilitate collaborative work and to improve the analysis
and quality of results in order to enhance discovery.

Today, numerous teams, private or academic, are working
on improving NGS data analysis. Biomedical research and
NGS data management analysis follow a similar evolution
as other industries before. Indeed, since the end of the
1990s, the difficulty of access, manipulation, and analysis of
large amount of heterogeneous data has been addressed by
different IT companies from the web and Bl fields, developing
NoSQL databases, high performance analysis tools and Big
Data visualization solutions. That is the reason why all
NGS research actors have to take these IT developments
into account. They have proven their efficiency and demon-
strated their efficacy in solving the problems that biomedical
research is facing (integration of data, sharing of data, etc.),
since these problems have been already solved in other fields.

A next-generation sequencing solution to manage NGS
data would have to meet the following requirements: (i) fast
access to data through database systems such as NoSQL, (ii)
a high performance analysis tool for instantaneous access
to results, such as real-time data analysis solutions, and
(iii) efficient and interactive Big Data-oriented visualization
capacities through web interfaces, such as JavaScript graphic
libraries recently developed for web and BI. An illustration of
the interest that Life scientists should pay to solutions from
major IT companies, is the recent proposal by Google to
provide access to a beta version of an “API to store, process,
explore, and share DNA sequence reads,” called Google
Genomics [112]. It seems obvious that, in future years, this
type of solutions will be a core component for bioinformatics
analysis of NGS and Life Science Big Data.

Glossary

Data Warehouse. A data warehouse refers to a database used
to integrate data from several sources. In a company, data
warehouses are usually used to create reports for decision
making process.

Datamart. A data mart is a subset database of a data
warehouse that is usually used for a specific need.

Hashmap. In computing, a hash map (hash table) is a data
structure used to implement an associative array, a structure
that can map keys to values.

NGS. Next-generation sequencing; this term has been used
for the last 10 years to refer to the current methods of sequenc-
ing by synthesis: Solid, Illumina/Solexa, and Pyrosequencing.
It is also used to refer to the methods in development: PacBio,
Nanopore, and so forth.

Relational Databases. A relational database is a structured
database according a relational model [113] to establish
relationships between different data it contains. In a rela-
tional database, the data are organized into tables (rows and
columns) with a unique key for each row.
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Scientific Workflow. In computing, a scientific workflow
consists of an orchestrated execution of operations (data
access, format conversion, and algorithm treatment) to anal-
yse data. Scientific workflows are built by using Workflow
Management software.

Temporary Table (in DB Querying). In a database, a temporary
table is created to temporarily store the results. Temporary
tables are usually used to simplify a complex query which is
decomposed into several simplified queries.

WGS (Whole Genome Sequencing). Sequencing of a complete
genome [114] is of particular interest when analysing varia-
tions in a population.
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