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Cancer recurrence remains a great fear for many cancer survivors following their initial,
apparently successful, therapy. Despite significant improvement in the overall survival of
many types of cancer, metastasis accounts for ~90% of all cancer mortality. There is a
growing understanding that future therapeutic practices must accommodate this unmet
medical need in preventing metastatic recurrence. Accumulating evidence supports
dormant disseminated tumor cells (DTCs) as a source of cancer recurrence and
recognizes the need for novel strategies to target these tumor cells. This review
presents strategies to target dormant quiescent DTCs that reside at secondary sites.
These strategies aim to prevent recurrence by maintaining dormant DTCs at bay, or
eradicating them. Various approaches are presented, including: reinforcing the niche
where dormant DTCs reside in order to keep dormant DTCs at bay; promoting cell intrinsic
mechanisms to induce dormancy; preventing the engagement of dormant DTCs with their
supportive niche in order to prevent their reactivation; targeting cell-intrinsic mechanisms
mediating long-term survival of dormant DTCs; sensitizing dormant DTCs to
chemotherapy treatments; and, inhibiting the immune evasion of dormant DTCs,
leading to their demise. Various therapeutic approaches, some of which utilize drugs
that are already approved, or have been tested in clinical trials and may be considered for
repurposing, will be discussed. In addition, clinical evidence for the presence of dormant
DTCs will be reviewed, along with potential prognostic biomarkers to enable the
identification and stratification of patients who are at high risk of recurrence, and who
could benefit from novel dormant DTCs targeting therapies. Finally, we will address the
shortcomings of current trial designs for determining activity against dormant DTCs and
provide novel approaches.

Keywords: tumor dormancy, metastasis, disseminated tumor cells, cancer recurrence, tumor microenvironment,
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INTRODUCTION

Recent years have seen great strides in the treatment of primary
tumors, as well as in treating overt metastatic tumors.
Nonetheless, the main cause of mortality of cancer patients
remains metastasis and recurrence. Metastasis, the spread of
tumor cells from the primary site to secondary organs accounts
for 67-90% of all cancer mortality (1, 2). Despite significant
improvement in the overall survival of many types of cancer due
to earlier detection and newer therapies, recurrence years and
decades after curative surgery and standard of care
chemotherapy and targeted therapy (3–5) still looms as the
major unmet medical need.

Some cancers are more notorious than others for delayed
recurrence. These highly recurrent tumors include kidney
cancer, acute myeloid leukemia (AML), non-small cell lung
cancer (NSCLC), melanoma, prostate cancer, ovarian cancer,
breast cancer and osteosarcoma. Kidney cancer and AML exhibit
low single/double-digit recurrence rate (6–8), while many other
cancers have a very high rate of locoregional and distant
recurrence despite treatment with standard of care (Table 1).

Lung cancer is the leading cause of cancer-related death with
NSCLC accounting for ~90% of new cases (21). Even when
curative surgery is performed, 30-50% of NSCLC patients
develop locoregional or distant recurrence (22, 23). Melanoma
can recur in 50% of the patients (20) sometimes a decade or more
following removal of the primary tumor (24). Prostate cancer,
which is a slow growing tumor, nonetheless shows biochemical
recurrence (increasing PSA) even in low risk patients beginning
some 4 years following therapy with curative intent in some 25%
of patients (12). In ovarian cancer, an estimated 85% of patients
who achieve full remission after initial treatment (surgery and
adjuvant chemotherapy) have a recurrence, with median survival
between 12-24 months after recurrence (17, 25). Breast cancer is
the most common form of cancer in US women after skin cancer,
with over 275,000 cases estimated for 2020. Much progress has
been made in the treatment of primary breast cancer, particularly
when there is a known mutation or overexpression that can be
directly targeted (e.g. PI3K, CDK4/6, PARP, PD-L1) or with
hormone receptor-positive disease (e.g. ER+, PR+, HER2+) (26).
Even with the wealth of treatment options, around 30% of all
breast cancer patients with no detectable disease post-treatment
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present with recurrence on follow-up (9). Osteosarcoma (OS) is
the most common type of primary bone tumor accounting for
30-80% of skeletal sarcomas, and it occurs primarily in
adolescence (27). Even with aggressive treatment including
limb-salvage surgery and chemotherapy, the rate of recurrence
in patients presenting with non-metastatic OS is 30-40% (15, 16).
Taken together, despite major advances in the treatment of
primary tumors, almost all cancer-related mortality is due to
recurrence and metastasis and many of the most common
cancers have a significant propensity for delayed recurrence (28).

While metastasis and recurrence are the main cause of
mortality in cancer patients, the mechanisms underlying
metastatic recurrence years and decades after initial treatments
are just beginning to unravel. Recurrence due to metastatic
spread begins as a multi-step process that can take months or
years until it becomes detectable. Recent studies have shown that
although the probability of metastasis increases with the size of
the primary tumor, cancer cells nonetheless leave primary
tumors early (29–32) and settle in distant tissues to become
disseminated tumor cells (DTCs).

Once cancer cells arrive at their new and foreign
microenvironment (‘non-permissive soil’) they face several fates.
The majority of them will undergo apoptosis and thus will meet
their demise. Those that successfully launch adaptive and survival
programs will enter a dormant state. Some dormant DTCs may
reside as single solitary quiescent cells (cellular dormancy) and/or as
small clusters of quiescent cells. Others may reside as small indolent
micrometastases where cellular proliferation is balanced by
apoptosis (33–36). These indolent micrometastases remain
dormant due to either lack of angiogenic signals (angiogenic
dormancy) that promote recruitment of the vasculature needed to
nourish the micrometastatic tumor (35, 36) and/or involvement of
the adaptive immune system (immune-mediated dormancy) (37).
To date, there are no imaging moieties to detect dormant quiescent
and indolent micrometastases in patients. Furthermore, due to their
quiescence, these dormant DTCs are resistant to classical anticancer
therapy that relies on rapidly dividing cells to exert their effect.
Therefore, dormant DTCs linger in the body as ticking time bombs
and eliminating or keeping such cells at bay may prevent deadly
metastatic relapse.

Cell-intrinsic mechanisms governing DTC dormancy and
escape from dormancy are influenced by signals arising at their
TABLE 1 | Estimated Recurrence Rate of Various Cancers.

Cancer Recurrence Rate

Breast 30% distant recurrence (9, 10)
Glioblastoma ~100% (11)
Prostate 20-30% (12)
Leukemia,
childhood AML

9-29% (6)

NSCLC 30-50% locoregional or distant recurrence (13, 14)
Osteosarcoma 30-40% (15, 16)
Ovarian 85% (17)
Pancreatic 36% within 1 year of curative surgery

38% local recurrence & 46% distant metastasis after adjuvant chemotherapy (18, 19).
Melanoma 50% of all patients treated for melanoma will have a recurrence. Of these recurrences, ~50% will be in the regional lymph nodes, 20% will be local

recurrences, and 30% will arise at distant sites (20)
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foreign niche. Accumulating evidence in the literature attributes
dormancy and survival of residing DTCs and their reactivation
to the intricate cross- talk with their ‘non-permissive’ or their
‘permissive’ niche, respectively (38–43). Hence, we can postulate
that by manipulating the microenvironment and/or cell-intrinsic
mechanisms we may either be able to eradicate dormant DTCs,
maintain dormant DTCs at bay, or prevent their transition to
overt metastases.

This review will focus on potential strategies, mechanisms
and drugs to be considered for targeting quiescent dormant
DTCs by manipulating their microenvironment and or their cell-
intrinsic mechanisms. We will initially present clinical evidence
for the presence of dormant DTCs. Potential biomarkers to
enable the identification and stratification of patients who are
at high risk of recurrence will also be discussed. Finally, we will
address the shortcoming of current clinical trial designs for
demonstrating activity against dormant DTCs, either quiescent
or indolent, and provide novel trial designs.
CLINICAL EVIDENCE OF TUMOR
DORMANCY AND RECURRENCE

Demonstrating the presence of dormant DTCs and their
subsequent progression in clinical settings has been
challenging. However, advances in detection have provided
new information and a growing body of evidence in the clinic
to support the idea of early dissemination of tumor cells from the
primary site, followed by subsequent dormancy and
late recurrence.

One clinical example that supports tumor dormancy is late-
stage recurrence. Recurrence of a tumor after more than 5-years
remission is in line with an initial dormancy period followed by
reactivation and outgrowth. In support of this idea, it was found
that breast cancer patients who do not have detectable disease can
have circulating tumor cells (CTCs) found in their blood 20+ years
after initial treatment (44). The inability of tumor cells to survive
decades in the blood supports the hypothesis that these cells are
being shed from undetectable DTC populations that have
remained dormant for years. Minimal residual disease, or tumor
cells that remain in the body after initial treatment, is typically
undetectable at the primary site but can be found in the
circulation, bone marrow or other organs prone to recurrence
(e.g. lungs, liver) (45). Even before late-stage recurrence, these cells
can be identified and characterized from blood or bone marrow
and have been found to upregulate programs that promote
dormancy, survival and progression. One feature observed in
bone marrow-resident DTCs is a decrease in proliferation
markers Ki67 and proliferating cell nuclear antigen (PCNA),
which support the idea that these cells are quiescent and thus
less susceptible to cytotoxic chemotherapies (29, 45). Additionally,
multiple pathways implicated in dormancy and recurrence in
laboratory models are overexpressed in recurrent tumors. In
stomach cancer, urokinase-type plasminogen activator receptor
(uPAR) was upregulated in patients whose cancer recurred, while
low levels of uPAR correlated with longer disease-free periods and
Frontiers in Oncology | www.frontiersin.org 3
survival (46). This same trend was observed with HER2/ERBB2
overexpression in disseminated breast cancer tissue correlating
with worse outcomes (47).

Another clinical observation in support of early metastasis
and subsequent dormancy can be found in cases of unknown-
primary carcinoma (UPC). UPC accounts for ~5% of metastatic
cancer cases, and while some cases are later identified after more
thorough evaluation, 30% of patients never have a primary site
identified (48). These unexplained cases of UPC are believed to
have formed from DTCs from a primary tumor that regressed
and could no longer be observed (Riethmüller and Klein 2001).
Detection of UPC in cases where the primary site is never
determined highlight the lack of clinical understanding for
tumor cell dissemination.

One of the best pieces of evidence for dormant DTCs that can
recur after a long period of quiescence is seen in cases where
patients develop tumors after organ transplantation. Accidental
transmission of tumors from tissue transplants derived from
seemingly cancer-free cadavers was first reported in the case of
kidney transplants (48). In one of the earliest reported instances,
metastatic squamous cell carcinoma occurred in a patient 8
months after a kidney transplant from a donor later found to
have larynx carcinoma (Tissue Transplantation Still Vexes 1965).
Another instance of kidney transplant-related cancer saw the
patient remain disease-free for 3 years before being diagnosed
with metastatic liver cancer. Surprisingly, one study found that of
164 patients receiving organ donations from donors eventually
diagnosed with cancer, 44% developed tumors with the majority
of those cases related to the tumors of the original donors (49). In
a later study, a heart donor was diagnosed with prostate cancer
post-mortem, and 10 months after transplant the recipient was
diagnosed with multiple metastatic lesions in the spine, sacrum
and ribs. Genetic analysis of the lesions indisputably matched
with the donor’s prostate and kidney, providing evidence at the
molecular level that the tumor was derived from quiescent
prostate DTCs in the donor’s heart (50). All of this clinical
evidence provides direct support that tumor dissemination can
be an early event and tumor dormancy allows these cells to evade
therapy and the immune system and detection for many years,
even decades, before leading to recurrence.
PUTTING DTCs UNDER THE
DORMANCY SPELL

Clinical data demonstrate the presence and persistence of
dormant DTCs years and even decades after treatment. In
some cases, these DTCs will remain dormant without
relapsing. Hence, unraveling the mechanisms responsible for
their long term ‘hibernation’ may set the premise to develop
novel therapeutic strategies to prevent cancer from recurring by
keeping them dormant indefinitely.

Reinforcing the Dormant Niche
Several restrictive signals have been described in the bone
marrow (BM) and lung that maintain DTCs originating from
April 2021 | Volume 11 | Article 659963
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breast, prostate, head and neck squamous carcinoma and
multiple myeloma cells in their quiescent state (Figure 1).
Therefore, the BM is seen as a sanctuary site for DTCs.
Growth arrest-specific 6 (GAS6) (51), Wnt5a (52), leukemia
inhibitory factor (LIF) (53) and TGF-b family members such as
bone morphogenic protein 7 (BMP7) (54) and transforming
growth factor beta 2 (TGFb2) (55, 56) were shown to exert
quiescence of DTCs at the BM niche, whereas, bone
morphogenic protein 4 (BMP4) was shown to promote tumor
dormancy in the lung (57). Hence, theoretically we can postulate
that DTCs can be maintained quiescent for prolonged periods of
time by introducing the restrictive mediators that constitute the
dormant niche (42).

SPARC, also known as osteonectin, was shown to regulate
tumor dormancy of prostate cancer cells by promoting the
expression of BMP7 in BM stromal cells. SPARC was shown to
be epigenetically silenced in aggressive cells by promoter
methylation whereas treatment of prostate cancer cells with the
DNA demethylating agent 5-azacytidine (5-AZA) or with the
COX2 inhibitor NS398 could restore SPARC expression in
malignant prostate cancer cells. This in turn promoted BMP7
expression in BM stromal cells leading to dormancy of prostate
cancer cells (58). Hence, reinstating SPARC expression in bone
DTCs by treatment with either 5-AZA or with COX2 inhibitor
NS398 may offer a therapeutic window to treat recurrent prostate
cancer disease (Figure 1).

Another component that may be re inforced i s
thrombospondin-1 (TSP1), which is found in the suppressive
BM and the lung niches . TSP1 secreted by stable
microvasculature or by recruited BM-derived myeloid cells was
shown to induce tumor dormancy of breast cancer cells at the
perivascular niche (PVN) in the BM (59) and prevent metastatic
outgrowth of breast and prostate cancer cells in the lungs (60).
Frontiers in Oncology | www.frontiersin.org 4
Given that TSP1 is a large protein, it is not feasible to consider it
as a potential treatment. However, TSP1 can be induced by
prosaposin. Indeed, administration of the TSP1 mimetic peptide
prosaposin (DWLPK) was shown previously to induce TSP1 in
BM-derived myeloid cells recruited to the lungs. The latter in
turn assembled a metastasis-suppressive microenvironment (60)
(Figure 1).

Hence, the approach of inducing natural factors of the
suppressive niche such as TSP1 and or SPARC is very
appealing. However, this approach will require continuous
treatment to ensure indefinite quiescence of the residing
dormant DTCs and thus may lead to potential toxicities.
Furthermore, TSP1 has been also reported to exert opposing
effects which can be also attributed to multiple receptors that
mediate TSP1 signaling (61). Likewise, SPARC was reported to
have context and tumor dependent impacts on tumor
progression (62). Therefore, we must consider TSP1/SPARC’s
multiple effects along with the type of tumor and stage of the
disease if we want to consider it as a future preventive treatment
for cancer recurrence. Another important aspect that should be
taken into account when striving to reinforce the dormant niche
with TSP1 or other suppressive constituents such as TGFb family
members, is the role they also play in the immune evasion of
DTCs (61, 63).

Therefore, it may be more practical to induce common cell-
intrinsic mechanisms converging from the different
microenvironmental cues comprising the dormant niches.

Promoting Cell-Intrinsic Mechanisms to
Induce Tumor Dormancy
Pioneering work by Aguirre-Ghiso and colleagues identified p38-
MAPK (mitogen-activated protein kinase) induction vs.
reduction in ERK (extracellular signal-regulated kinase)-MAPK
FIGURE 1 | Keeping dormant DTCs from causing recurrence. The following scheme illustrates the different sites where dormant DTCs reside and potential factors,
signaling axis or targets that can be manipulated by the indicated drugs to maintain their long-term quiescence by either reinstating the dormant niche, inducing cell-
intrinsic dormancy mechanisms and/or preventing dormant DTCs engagement with their ‘permissive niche’.
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signaling (p38high–ERKlow signaling axis) as hallmark of tumor
dormancy in several types of tumors (35, 64–66). Interestingly,
Debio-0719, an inhibitor of lysophosphatidic acid receptor 1
(LPA1), was shown to induce tumor dormancy of triple-negative
breast cancer (TNBC) cells at distant organs by inducing the
p38high–ERKlow signaling axis (67). Though this inhibitor is still
at the preclinical stage, some other inhibitors of LPA1 are
currently being tested in clinical trials for fibrosis. These
inhibitors include LPA1 inhibitor BMS986202 (previously
AM152) and BMS-986020 [reviewed in (68)]. Therefore,
potential use of these inhibitors in TNBCs patients as means to
maintain residual disease at halt should be considered for future
investigations (Figure 1).

Orphan nuclear receptor NR2F1 was shown to be a critical
node for dormancy induction in head and neck squamous cell
carcinoma (HNSCC) and in DTCs of prostate cancer patients
(69). NR2F1 was found to control tumor cell dormancy via SOX9
and RARb-driven quiescence programs (70). Furthermore,
combining 5-AZA with trans-retinoic acid (ATRA), reinstated
in part the NR2F1-induced dormancy program in HNSCC (70)
and induced TGFb2. TGFb2 is a BM-derived factor shown
previously to impose dormancy in HNSCC and in prostate
cancer cells (55, 56). Hence, this combination can induce both
dormancy programs and may also contribute to the formation of
dormant niche (Figure 1).

Preventing the Reawakening of Dormant
DTCs by Targeting Their Crosstalk With
Their Supportive Niche
The microenvironment of the metastatic niche (34, 36, 40, 71)
and its remodeling (35, 38) plays a fundamental role in dictating
the fate of residing dormant DTCs by inducing cell-intrinsic
mechanisms culminating in the escape from tumor dormancy
(39) (Figure 1).

Several reports implicated the role of chronic inflammation
(72–74) and/or fibrosis (75, 76) as instigators of DTCs
awakening. Fibrosis occurs due to a dysregulated wound
healing response. Formation of a fibrotic-like milieu in the
lung enriched with type I collagen (Col-I) and fibronectin was
part of the tumor ‘permissive’ microenvironment to support
dormant mammary DTCs outgrowth (75). Utilizing a 3D model
system to study tumor dormancy (77, 78) it was demonstrated
that fibronectin and Col-I induced beta 1 integrin (Intb1)
downstream signaling in dormant mammary cells via
activation of focal adhesion kinase (FAK) by Src. This
activation resulted in downstream activation of ERK, which in
turn induced phosphorylation of myosin light chain (MLC) by
myosin light chain kinase (MLCK), culminating in F-actin stress
fiber organization and transition from quiescence to
proliferation. Inhibition of MLCK activation (75, 77) and or
Intb1 expression (75) prevented dormant DTCs outgrowth in
vitro and in vivo. Similarly, sustained lung inflammation caused
by tobacco smoke exposure or nasal insti l lation of
lipopolysaccharide (LPS) induced the outgrowth of dormant
DTCs in the lungs by formation of neutrophil extracellular
traps (NETs), which in turn lead to cleavage of laminin-111 by
Frontiers in Oncology | www.frontiersin.org 5
NET-derived elastase and MMP-9 and induction of the Intb1/
Src/FAK/MLCK axis (79). In addition, prostate cancer patient-
derived xenograft lines were shown to transition from their
dormant state once they engaged with the BM stoma by
constitutively activating MLCK (80). Hence, MLCK may serve
as potential target to prevent awakening of the dormant DTCs.
However, given that MLCK is widely expressed in many normal
tissues and in smooth muscle cells, presents a clinical challenge
that may require the exploration of other avenues to inhibit
MLCK activation in dormant DTCs. One such indirect approach
to consider is inhibiting Intb1 activation.

Notably, several studies highlighted the potential role of Intb1
activation in regulating the dormant to proliferative switch (81,
82). Previous work reported how the cross talk between Intb1
and the urokinase receptor can dictate the fate of dormant breast
and head and neck cancer cells (83, 84). Intb1 partners with a
subunits to form 12 potential integrin receptors, which bind to
extracellular matrix (ECM) molecules such as collagens, laminin,
and fibronectin (85).

Indeed, several pre-clinical studies successfully inhibited Intb1
activity, including a5b1 [reviewed in (86)] which binds the ECM
protein fibronectin. In the clinical settings, the anti-a5b1 integrin
antibody, volociximab, in combination with carboplatin and
paclitaxel demonstrated some encouraging preliminary results in
a Phase Ib clinical trial in advanced non-small-cell lung carcinoma
(87). Interestingly, JSM6427 a small molecule inhibitor of a5b1
integrin was evaluated in a Phase I clinical trial for the treatment
of age-related macular degeneration. It warrants further
investigation whether JSM6427 could also be effective in
preventing the awakening of dormant DTCs given its mode of
action (http://clinicaltrials.gov/ct2/show/NCT00536016) (Figure 1).
JSM6427 was shown to inhibit attachment of human retinal
pigment epithelium cell (RPE) to fibronectin. This in turn
promoted quiescence and cortical organization of the cytoskeleton
of RPE. Similarly, inhibition of Intb1 binding to fibronectin
prevented the awakening of dormant mammary cancer cells
resulting in their cortical F-actin organization reminiscent of the
cytoskeletal organization of dormant DTCs (75, 77).

Therefore, if repurposing JSM6427 to treat cancer patients is
being considered, the clinical regimen by which this drug will be
administered must also be considered. In light of initial studies
demonstrating Intb1 plays a perquisite role in the reactivation of
dormant DTCs [reviewed in (88)] while having no significant
impact on actively proliferating metastases (75). Hence, these
findings should be considered when designing future clinical
trials with a5b1 integrin inhibitors. Changing the therapeutic
paradigm of cancer therapy to a preventive treatment targeting
early dormant DTCs rather than the current strategies aimed at
treating patients with already advanced disease should be
considered. Moreover, given that fibronectin and Col-I are part
of the fibrotic milieu, preventing engagement of residual cells
with such a supportive milieu after local surgery seems crucial.

Indeed, surgical trauma induces local and systemic
inflammatory responses that can also contribute to the
accelerated growth of residual and micrometastatic disease
(89–91). Hence, intervention with inhibitors for a5b1 integrin
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should be pre-operative and immediately after surgery
(post-operative).

Another receptor shown to interact with Col-I at the
permissive site is DDR1. Col-I was shown to boost the
association of DDR1 with TM4SF1, which, in turn, induced
non-canonical signalling through the JAK2/STAT3 axis in
dormant breast cancer cells leading to their outgrowth at
multiple organ sites (92). Given that development of DDR1
inhibitors are at their infancy, a selective oral JAK2 inhibitor
such as fedratinib (Inrebic®), recently approved by the FDA for
the treatment of myeloproliferative neoplasm-associated
myelofibrosis (93) may be considered as a potential drug to be
tested in a preclinical setting (Figure 1).

In addition to preventing the engagement of dormant DTCs
with their permissive niche and inhibiting cell-intrinsic
mechanisms induced by signals arising at this niche, inhibiting
the formation of such a permissive niche could represent a viable
approach. For instance, inhibiting the cross-linking of Col-I by
either lysyl oxidase (LOX) or lysyl oxidase like 2 (LOXL2), could
prevent formation of the fibrotic milieu. Indeed, it was shown
that LOX and/or LOXL2 inhibition significantly decreased
pulmonary metastatic burden (94, 95). Furthermore, LOXL2
was shown recently to exert a cell autonomous role in the
emergence of dormant DTCs. A study by Weidenfeld and
colleagues demonstrated that LOXL2 expression induced by
hypoxia in dormant breast DTCs promoted their epithelial to
mesenchymal transition (EMT). This in turn endowed the cells
with stem-like properties leading to their escape from tumor
dormancy both in vitro and in vivo, while inhibiting LOXL2
expression prevented their outgrowth (96, 97). Overall, these
studies suggest that LOX/LOXL2 may serve as a therapeutic
target to prevent the emergence from tumor dormancy to overt
metastases (Figure 1).

Interestingly, a recent report demonstrated how a systemic
inflammatory response induced after surgery promotes the
emergence of dormant immunogenic DTCs at distant
anatomic sites while, preoperative anti-inflammatory
treatment with meloxicam, a nonsteroidal anti-inflammatory
drug (NSAID), prevented the outgrowth of DTCs in the lungs
(74). Notably, these finding are in line with a retrospective
analysis carried out on breast cancer patients who received
anti-inflammatory analgesics prior to surgery. These patients
exhibited reduced incidence of early metastatic relapse
(98, 99).

Overall, the studies presented here emphasize the important
role of inflammation and/or fibrosis in dormant DTCs
outgrowth and also reinforce the notion that intervention in
the perioperative stage and immediately after re-section may be
critical to prevent local and/or distant recurrences.
ERADICATING DORMANT DTCs BEFORE
THEY AWAKEN

Once DTCs anchor in their new and “non-permissive niche”
adaptive cell-intrinsic mechanisms ensure their long-term
Frontiers in Oncology | www.frontiersin.org 6
survival and escape from immune surveillance (41, 42, 100).
These hibernating cells resist most traditional and newer targeted
agents given their quiescent state and/or their induced
senescence–like state (101) or as recently suggested due to the
BM perivascular niche (100). Hence, unraveling cell-intrinsic
mechanisms responsible for long-term survival of DTCs along
with the mechanisms that enable their chemoresistance and
immune evasion may open up new approaches to eradicate
these dormant DTCs.

Targeting Cell-Intrinsic Mechanisms
Mediating Long-Term Survival of DTCs
at the Foreign Niche
The mechanisms responsible for the long-term survival of DTCs
are just beginning to emerge.

Previously, Src and ERK1/2 activation were shown to be
essential for the survival and outgrowth of dormant breast
DTCs. By utilizing a 3D model system and in vivo model
system to study tumor dormancy (75, 77, 78) it was shown
that only combined inhibition of ERK1/2 and Src in dormant
breast cells culminated in their eradication (102). These findings
suggest that combining a Src inhibitor such as saracatinib
(AZD0530) with the FDA-approved MEK1/2 inhibitor
trametinib may eradicate dormant breast tumor cells before
they awaken (Figure 2).

The activation of the transcription factor ATF6a was shown
to regulate the survival of quiescent squamous carcinoma cells.
ATF6a activation induced survival through the up-regulation of
Rheb and activation of Akt-independent mTOR signaling (103).
Of note, two mTOR inhibitors have been approved by the FDA
to treat cancer and several are under clinical investigation as a
combination or monotherapy. However, these clinical trials to
date are designed to test the drug efficacy in advanced cancer or
recurring cancer patients but not as a monotherapy to target
dormant DTCs (104) (Figure 2).

Another intrinsic mechanism shown to regulate DTCs
survival is autophagy (71, 105, 106) (Figure 2). Inhibition of
autophagy in dormant breast and osteosarcoma cells by
hydroxychloroquine promoted apoptosis of the dormant breast
DTCs that have colonized the lungs and sensitized dormant
osteosarcoma cells to cytotoxic anticancer agents (106, 107).
Interestingly, autophagy was recently shown to restrict the
outgrowth of micrometastases of several murine models of
breast cancer while inhibition of autophagy lead to their
outgrowth (108). Hence, inhibition of autophagy might
differentially impact quiescent solitary dormant DTCs
vs. micrometastases.

Notably, hydroxychloroquine is being widely used in cancer
clinical trials in order to re-sensitize cancer cells to conventional
therapies. Potential use of this drug as a preventive treatment to
eradicate early DTCs may warrant further investigation (109).
Currently, a Phase II trial of hydroxychloroquine with
everolimus for prevention of recurrent breast cancer is
ongoing, as well as an ongoing Phase Ib/II trial of gedatolisib
(inhibitor of PI3K/mTOR pathway), hydroxychloroquine or
combination of both [reviewed in (110)].
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Aberrant expression of vascular cell adhesion molecule-1
(VCAM-1) on dormant breast DTCs was also found to ensure
their survival once they colonize the lungs (Figure 2). Specifically,
VCAM-1 promoted PI3K/Akt activation and cancer cell survival
by its engagement with the counter-receptor a4 integrins
expressed on leukocytes. Furthermore, antibodies against a4
integrins blocked pro-survival signals induced by VCAM-1
(111). Therefore, disrupting the interaction between VCAM-1
and a4 integrins may potentially serve as a therapeutic target to
promote dormant DTC eradication (112). Such drugs are already
in clinical trials for the treatment of relapsing multiple sclerosis
(MS) and inflammatory bowel disease (IBD). Currently, an orally
active a4 integrin antagonist, AJM300, is under clinical trials in
IBD patient [reviewed in (112)].

Notably, senescence of tumor cells that have escaped
cytotoxic therapy has been proposed by several groups as
another form of cell-intrinsic mechanisms that confer tumor
dormancy and survival of circulating tumor cells (CTCs) and/or
DTCs residing at the perivascular niche [reviewed in (101)]. This
emerging concept warrants further exploration as it may open up
an interesting opportunity to target these senescent-like cells
with senolytics (small molecule drugs with selective killing of
senescent cells) (113, 114) (Figure 2). Indeed, several recent
papers have demonstrated how senolytic drugs caused cell death
of senescence induced cancer cells (115–118).

Overall, these promising studies highlight the importance in
further investigating the cell- intrinsic mechanisms governing
survival of dormant DTCs.

Sensitizing Dormant DTCs to
Chemotherapy Treatments
Signals arising at their foreign niche can induce cell-intrinsic
mechanisms governing the survival of dormant DTCs and their
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escape from cytotoxic therapies. C-X-C motif chemokine ligand
12 (CXCL12) has been reported to constitute aspects of the
dormant niche and act as a survival factor. CXCL12 secreted by
osteoblasts was shown to induce the survival of disseminated
breast tumor cells expressing the CXCR4 receptor by
upregulating the Akt pathway via c-Src activation (119).
Furthermore, the CXCL12/CXCR4 axis was shown also to
mediate the localizing and tethering of prostate cancer cells
and of breast cancer cells to the BM (120–122) and regulate
their growth. Therefore, disrupting the CXCL12/CXCR4 axis
may impinge on the survival of dormant breast tumor cells or
induce the outgrowth of prostate tumor cells (123). Plerixafor
(AMD3100), a CXCR4 antagonist approved by the FDA, was
shown in a subcutaneous xenograft mouse model of human
prostate carcinoma to dissociate the prostate cancer cells from
their sanctuary site (the BM) and thus sensitize them to
chemotherapy treatment (124) . This approach was
demonstrated to be effective also for other cancers, such as
leukemia (125–127). Thus, dormant DTCs may be sensitized
to chemotherapy by promoting their proliferation making them
vulnerable to chemotherapy treatment (Figure 2).

F-box/WD repeat-containing protein 7 (FBXW7) was shown
to promote quiescence by ubiquitylation and proteasomal
degradation of cell cycle promoters. Ablation of FBXW7 in
dormant breast cancer cells caused DTCs to exit their
quiescent state, which sensitized the cells to paclitaxel
treatments in mouse xenograft and allograft models (128).

Recently, the TGFb2/GAS6-Axl axis (56) was shown to be
necessary for the induction of dormancy of prostate cancer cells
in the BM. Treatment of dormant multiple myeloma cells with
inhibitors to Axl such as BMS-777607 or cabozantinib released
the cells from the endosteal niche in the BM, causing their
reactivation, thus suggesting these cells could be susceptible to
FIGURE 2 | Targeting dormant DTCs for eradication. The following scheme illustrates the different strategies and corresponding drugs that we may utilize to
eradicate dormant DTCs. These strategies include inhibiting cell-intrinsic mechanisms of dormant DTCs long-term survival, sensitizing dormant DTCs to
chemotherapy treatment and/or preventing dormant DTCs immune evasion. Red line denotes inhibition and green arrow denotes activation.
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chemotherapy treatment (129). Indeed, in previous studies in
solid tumors, combining chemotherapy treatment with inhibitor
of Axl reduced tumor burden (130).

Another protein mediating the engagement of cancer cells to
the BM niche is osteopontin. Osteopontin is an ECM protein
secreted by osteoblasts in the BM niche and was shown to anchor
acute lymphoblastic leukemia (ALL) cells to the BM culminating
in their dormancy. Whereas, inhibition of osteopontin promoted
ALL escape from tumor dormancy and sensitized them to cell-
cycle–dependent Ara-C chemotherapy (131).

Overall, these studies suggest thatdissociatingdormantDTCs from
their ‘safe haven’ niche can promote the cells to exit their quiescent
state and potentially sensitize them to chemotherapy treatments.

Importantly, there are striking similarities between dormant
DTCs and quiescent normal hematopoietic stem cells (HSCs),
which reside in the BM. These similarities are exhibited by
intrinsic mechanisms for survival, quiescence and their
mobilization to the BM [reviewed in (43, 132)]. Therefore,
when considering a strategy to dissociate dormant DTCs from
their sanctuary site in order to sensitize DTCs to cytotoxic
chemotherapy treatment it is critical to be sure that this will
not facilitate depletion of HSC or cause reawakening of
chemoresistant DTCs.

A recent report by Ghajar and his colleagues (100)
demonstrated that disrupting the interaction between
chemoresistant DTCs with the perivascular niche (PVN) by
inhibiting Intb1 and/or integrin avb3 sensitized DTCs to
chemotherapy without inducing DTC proliferation (Figure 2).
However, 22% of mice still succumbed to bone metastases upon
combining integrin b1 inhibition with adjuvant therapy in
this study.

Hence, there exists a risk of DTCs mobilization from their
dormant niche. Therefore, another strategy that we may
contemplate to eradicate dormant DTCs is by preventing their
immune evasion.

Breaking Off Immune Evasion of
Dormant DTCs
A recent report by Malladie and colleagues demonstrated that
cancer cells selected from lung and breast cancer cell lines for
their competence to establish latent metastasis (dubbed LCC),
acquired quiescence with stem-like characteristics by expressing
the Wnt inhibitor DKK1. The authors demonstrated that
autocrine DKK1 helps disseminated LCC cells enter
quiescence. Furthermore, these quiescent cells downregulated
natural killer (NK) cell ligands leading to evasion of immune
surveillance. Specifically, quiescent LCCs downregulated cell
surface UL16-binding protein (ULBP) activators of NK cell-
mediated cytotoxicity, as well as receptors for cell death signals.
Therefore, quiescent (dormant) LCCs escaped cytotoxic killing
by NK cells whereas proliferating LCCs were eradicated by
activated NK cells (133). Of note, this study was conducted in
immune-compromised mice and hence the role of NK cells in
fully immune-competent animals remains to be determined.

Overall, these initial findings may open up in the future a
novel therapeutic approach to selectively eradicate dormant
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DTCs by inhibiting their immune evasion. This will require re-
expression of NK ligands in dormant DTCs. Interestingly, the
inhibitor of histone deacetylases (HDACs) trichostatin A (TSA)
was shown to induce ULBP expression in epithelial cancers
(134). Whether TSA can inhibit the immune escape of
dormant DTCs remains to be explored (Figure 2).

Notably, several studies demonstrated how autophagy in
cancer cells can impair the susceptibility of the cancer cells to
NK-mediated killing (135). Given that autophagy was shown
previously to be launched in dormant DTCs (71, 106), it will be
worth exploring whether inhibiting autophagy of dormant DTCs
will not only impinge on their direct survival but may also enable
cytotoxic killing by NK cells (Figure 2).

Another mechanism by which DTCs were shown to evade the
immune system is by downregulation of the expression of major
histocompatibility complex class I protein (MHC-I), thus
evading CD8+ T cell recognition (136). Furthermore, the
MHC-I negative phenotype of DTCs in the BM was shown to
be associated with poor survival in curatively resected breast
cancer patients without distant metastases (137). Similarly, single
quiescent DTCs colonizing livers from patients and mice with
pancreatic ductal adenocarcinoma (PDAC) were MHC-I-
negative and exhibited unresolved endoplasmic reticulum (ER)
stress. Notably, once these quiescent DTCs were resolved from
their ER stress the cells emerged from their dormant state but
also regained their MHC-I expression. Therefore, outgrowth of
these cells occurred only when these quiescent DTCs were
resolved from their ER stress and the T cell response was
disrupted (138).

Hence, upregulating MHC-I may be an attractive approach to
reinstate DTCs vulnerability to immune surveillance (Figure 2).
Notably, epigenetic control mechanisms regulating MHC-I
expression have been frequently detected [reviewed in (139)].
Furthermore, interferon g (IFNg) was shown by several studies
to act as an epigenetic modifier upregulating the expression of
antigen-presenting machinery genes such as MHC-I (140). Future
studies should be pursued in order to study whether treatment of
dormant quiescent PDAC/breast DTCs with IFNg will induce
MHC-I antigen expression and eradication by CD8+ T cells. This
kind of approach needs to take into account: i) whether the
dormant DTCs with MHC-I downregulation can be sensitized
to IFN-g treatment. Given that approximately 30% of human
tumor cells exhibit reduced IFN-g sensitivity as a result of an
impaired expression in the different components of the IFN-g
signaling (139) and ii) the clinical stage and context by which this
treatment will be applied. Considering that IFN-g has pleotropic
effects on different stages in tumor progression (141). In addition,
IFN-g also is toxic given systemically, so inducing expression
locally is likely to be more successful than systemic administration.

Overexpression of immune checkpoint proteins on dormant
tumor cells was also shown to facilitate their immune escape.
Dormant tumor cells in the DA1-3b/C3H mouse model of AML
evade cytotoxic T-lymphocyte (CTL)-mediated killing because
they overexpress PD-L1 (B7-H1) and CD80 (B7-1) (142). PD-L1
binds to receptors on CTLs (PD-1) and thus promotes CTL
death and exhaustion. Importantly, this immune evasion was
April 2021 | Volume 11 | Article 659963

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Sauer et al. Novel Strategies to Combat Dormant DTCs
overridden by activating NK cells with CXCL10 (143). Overall,
these findings suggest that reinstating either MHC-I and/or NK
cell ligands, as well as inhibiting immune checkpoints proteins
on dormant DTCs, may re-sensitize them to cytotoxic killing by
T cells and/or NK cells (Figure 2).

Myeloid–derived suppressor cells (MDSCs) may also
indirectly regulate the survival of dormant DTCs. MDSCs
represent a population of special cells of the immune system,
which consist of immature macrophages, immature
granulocytes, and immature dendritic cells. MDSCs suppress
activation of T and NK cells through the production of reactive
oxygen species (ROS) and arginase 1 (Arg-1), along with
recruitment of other immune suppressive cells such as
regulatory T cells [reviewed in (144)]. Accumulating evidence
suggests that enrichment and activation of MDSCs correlates
with cancer recurrence and poor clinical outcome.

Hence, modulating MDSC immunosuppressive activity may
in turn prevent immune evasion of dormant DTCs. Inhibitors of
phosphodiesterase-5, sildenafil and tadalafil, were shown to
inhibit the immunosuppressive activity of MDSCs in
preclinical and clinical studies by the downregulation of
inducible nitric oxide synthase (iNOS) and Arg-1 activities
(144). Promising results with tadalafil have been reported for
head and neck squamous cell carcinoma and melanoma patients
(145–147). Entinostat, a class I histone deacetylase inhibitor, was
also shown to inhibit the immune suppressive activity of MDSCs
[reviewed in (144)]. Importantly, entinostat has been evaluated
in Phase I and II trials in patients with advanced malignancies,
with a favorable risk–benefit profile [reviewed in (148)].

Overall, several drugs that have already been tested in the
clinical setting may be considered for inhibiting the immune
evasion of dormant DTCs thus potentially leading to their
demise (Figure 2).
TARGETING POTENTIAL GATEKEEPERS
IN REGULATION OF DORMANT DTCs
AND THEIR SUPPORTIVE
MICROENVIRONMENT

Current studies which are just beginning to unravel the intricate
crosstalk between the residing dormant DTCs and their niche,
highlight the complexity and the need to rethink the design of
future therapeutic strategies to prevent dormant DTCs from ever
emerging. If a common multi-faceted target that will both inhibit
dormant DTCs and their niche can be identified, the cross-talk
between them could be affected leading to their long-term
hibernation or their demise.

Potential Gatekeepers That We May
Consider Inhibiting Based on Current
Studies Are STAT3 and Reinstating
NR2F1 Expression
A potential multifaceted target that has been demonstrated to be
a molecular hub in mediating tumor escape from immune
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surveillance (149) and regulate the outgrowth of dormant
DTCs is STAT3. Expansion and immunosuppression of
MDSCs is mediated by activation of STAT3 [reviewed in
(149)]. Anti-inflammatory M2-like macrophages which also
play an important role in metastasis at distant organs
[reviewed in (150)] are polarized to the M2 phenotype by
STAT3 activation [reviewed in (149)]. Furthermore, in
addition to STAT3’s role in immune suppression, STAT3
activation was recently shown to also directly mediate dormant
DTC outgrowth. DDR1 interaction with Col-I at the permissive
niche induced non-canonical signaling converging on activation
of STAT3 in dormant breast DTCs, which culminated in their
outgrowth at multiple organ sites (92). Notably, in paraffin-
embedded tissue microarray sections of human breast cancers
there was a significant increase in the expression of
phosphorylated STAT3 (pSTAT3) in lung metastases
compared to their matched primary tumors and the highest
levels of pSTAT3 were present in those that had recurred after a
short disease-free interval (92). These results suggest a role of
activated STAT3 in metastatic outgrowth of dormant breast
DTCs in the lungs. Therefore, targeting STAT3 may prevent
both dormant breast DTCs outgrowth at the permissive site in
the lungs and the formation of an immune suppressive niche.

Hence, STAT3 may serve as an attractive clinical target given
that inhibitors of STAT3 have already entered clinical trials along
with newer inhibitors at the preclinical stage [reviewed in (151)].
Moreover, several FDA-approved drugs were shown already to
inhibit STAT3 signaling and thus may be repurposed to
potentially prevent the outgrowth of dormant breast DTCs
(152). However, it is important to keep in mind STAT3’s
central role in signaling networks and therefore targeting it
may lead to toxicity.

Of note, STAT3’s role in cancer recurrence is just beginning to
unravel, and a recent study in contrast demonstrated that dormant
breast DTCs residing in the BM niche remain dormant upon
activation of STAT3 via the activation of leukemia inhibitory
factor (LIF) receptor (53). Furthermore, inhibition of STAT3 led
to bone osteolysis resulting in the outgrowth of dormant DTCs
(53). Hence, LIFR : STAT3 signaling appears to confer a dormancy
phenotype in breast cancer cells disseminated to bone. In addition,
STAT3 was shown to be part of a pro-dormancy gene signature for
estrogen receptor positive breast tumors (153)

Therefore, further research needs to be conducted in order to
clarify the role of STAT3 in dormancy and outgrowth. It may be
that the outcome of targeting STAT3 may depend on breast
cancer subtype, the site of hibernation of the dormant DTCs and
the precise timing of such intervention.

Another gatekeeper that holds great promise is NR2F1.
Reinstating NR2F1 expression in the BM may prevent
dormant DTCs from awakening by promoting cell-intrinsic
dormancy programs in prostate and/or HNSCC cells while also
reinstating the dormancy niche in the BM by secretion of BMP7
and TGFb2 (69, 70). Furthermore, SPARC, which is a target of
NR2F1 (58), was shown to regulate tumor dormancy of prostate
cancer cells by promoting the expression of BMP7 in BM
stromal cells.
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Indeed, recent studies demonstrated that combining the
epigenetic regulating drug 5-AZA with the differentiation agent
trans-retinoic acid (ATRA), reinstated in part NR2F1 expression
(70), while 5-AZA by itself reinstated SPARC expression in bone
DTCs (58). This combination is now part of an ongoing Phase II
clinical trial (https://clinicaltrials.gov/ct2/show/NCT03572387)
to study combined 5-AZA and ATRA treatment on top of
standard of care in recurrent prostate cancer patients based on
rising prostate-specific antigen (PSA) only.

Overall, these studies may open up novel avenues to maintain
DTCs dormancy.
POTENTIAL MARKERS THAT WILL
ENABLE STRATIFICATION OF PATIENTS
AT HIGH RISK FOR RECURRENCE

Once a therapy is developed to either target dormant DTCs for
destruction or prevent their emergence from dormancy, the
question arises as to which patients are at sufficient risk to
warrant a therapy in the absence of overt disease. The
decisions by clinicians to treat patients using such therapies
will largely depend on the risk/benefit potential for such
therapies, as well as healthcare-associated costs. Assuming that
novel treatments to prevent recurrence will involve risks and
substantial costs, the ability to stratify patients and determine for
which patients the treatment is likely to provide benefit would be
extremely valuable. This is true for clinical trials and
post approval.

Patient prognosis and stratification in order to inform
treatment decisions is far from being a simple endeavor.
Dormancy and emergence from dormancy are presumably
determined by properties of individual dormant DTCs and of
the milieu in which they have lodged, as well as other factors such
as the patient’s immune system. These properties may determine
the risk/timing of relapse. Currently, detecting dormant DTCs
through tissue biopsy is limited to BM. Furthermore, it is difficult
to find biomarkers related to dormant DTCs, or provide
prognosis predictions via imaging. Fortunately, using
innovative approaches, it seems like we are gaining ground.
Various technologies that utilized liquid biopsies enable
collection of surrogate markers. In addition, it may be possible
to predict recurrence based on properties of cells in the primary
tumor. Hence, identifying biomarkers in liquid biopsies and in
primary tumors that will enable stratification of patients that are
at high risk for recurrence, while remaining a great challenge,
offers great hope.

Current literature provides evidence for the identification of
such markers specifically in breast cancer patients. A recent
retrospective cohort study in breast cancer patients with a five-
year follow-up after diagnosis found differential expression
within the recurring tumors. The differential expression of the
proteins was also related to breast cancer subtype. For instance,
TNBC patients who recurred had significantly higher expression
of Snail protein in their primary tumors compared to those
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without recurrence, whereas Twist expression was significantly
higher in primary tumors of estrogen receptor and progesterone
receptor positive breast cancer patients who recurred compared
to those without recurrence (154). Notably, both Snail and Twist
are transcription factors modulating the epithelial to
mesenchymal transition (EMT). Similarly, an increase in
mRNA levels of LOXL2, shown previously to induce EMT of
dormant DTCs (96, 97) was shown to be associated with a
significant decrease in the relapse free survival (RFS) of patients
with lymph node-negative breast cancers. Hence, patients with
increased levels of LOXL2 mRNA have a higher risk recurrence
(96). Whether LOXL2 protein expression in primary breast
cancer biopsies can serve as a predictive marker for cancer
recurrence and whether it is subtype dependent warrants
further investigation. Furthermore, future studies may
determine whether combining several EMT markers as
predictors of breast cancer recurrence might yield more
definitive stratification of patients who are at high risk
of recurrence.

Importantly, a 21-gene recurrence-score assay (Oncotype DX,
Genomic Health) provides prognostic value. This gene-
expression assay is used to assess risk of disease recurrence in
hormone receptor-positive, HER2-negative breast cancer
patients and to guide decisions regarding adjuvant
chemotherapy (155). The assay provides a Recurrence Score
(RS), ranging from 0 to 100, indicating low risk (RS < 18),
intermediate risk (RS 18–30), or high risk (RS ≥ 31) of disease
recurrence. Intermediate risk patients were recently shown by
the large prospective TAILORx trial to receive little benefit from
chemotherapy in regard to recurrence, with a notable exception
for younger patients (156). Hence, early breast cancer patients
who are hormone receptor-positive (ER+), HER2-negative with
either high or intermediate RS score may benefit in the future
from treatments designed to target dormant DTCs.

Indeed, a recent study demonstrated stratification of dormant
DTCs in the BM of breast cancer patients based on their NR2F1
expression (157). Importantly, the presence of DTCs in the BM
of breast cancer patients was also evaluated previously as
potential prognostic marker for breast cancer recurrence (158–
160). Bjorn Naume and his colleagues also demonstrated that
DTCs status in the BM can identify breast cancer patients who
are at high risk of recurrence after receiving adjuvant
chemotherapy (161). In addition, a recent study demonstrated
that the presence of DTCs in the BM of patients prior to surgery
is a significant predictor of late recurrences, particularly for
reduced survival in postmenopausal women patients with ER+
disease, lymph node involvement, and large tumors (162).
Hence, it warrants further investigation whether DTCs
assessment in the BM of breast cancer patients could
supplement primary tumor diagnostics such as Oncotype DX
and thus may yield more definitive stratification of breast cancer
patients who could benefit from preventive treatment.

Importantly, although some gene expression assays of the
primary tumor can be used to determine both early and later
recurrence and the efficacy of extended adjuvant endocrine
therapy in ER+ breast cancer patients, the use of such assays is
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not recommended for guiding therapy beyond 5 years (163, 164).
Hence, other approaches such as liquid biopsies are emerging as
potential prognostic markers to enable stratification of patients
who are at high risk for recurrence.

Liquid biopsies, which includes circulating tumor cells
(CTCs), circulating cell-free tumor DNA (ctDNA) and
extracellular vesicles (EVs), may hold great promise in clinical
diagnosis. The presence of CTCs in the peripheral blood of
patients after tumor resection denote the existence of minimal
residual disease and may provide insight into the process of
metastatic spread and enable real-time monitoring of disease
progression and therapeutic response [reviewed in (165)].
Several meta-analyses have highlighted the prognostic value of
CTCs in various cancers, including breast (166), pancreatic
(167), lung (168), colorectal (169) and prostate cancer (170).

A recent study by Sparano and colleagues demonstrated the
prognostic value of CTCs in predicting late recurrence of breast
cancer patients. The presence of CTCs in peripheral blood
samples of hormone receptor–positive breast cancer patients
obtained approximately 5 years after diagnosis provided
independent prognostic information for late clinical recurrence
(171). CTCs positivity was associated with a 13.1-fold higher risk
of recurrence. These findings may provide in the near future the
premise to stratify patients who may benefit from treatment
aimed to target dormant breast DTCs.

The prognostic value of CTCs was also illustrated in prostate
cancer patients. A recent study demonstrated CTCs detection in
patients who had undetectable PSA levels following radical
prostatectomy. Furthermore, these patients with CTCs had an
increased risk of biochemical recurrence (defined by an increase
of PSA levels) (172). Hence, CTCs may provide future prognostic
value to help identify patients after radicalprostatectomy who are
at high risk for recurrence. Overall, CTCs are emerging as a
potential prognostic marker that may help stratify patients at
high risk for cancer recurrence. Whether CTCs are dormant and/
or are shed from indolent micrometastases is yet to be explored.

ctDNA is an emerging exciting novel technology in
monitoring cancer progression and may guide treatment.
ctDNA was shown to be present in plasma samples of many
types of tumors that had not apparently metastasized or released
CTCs to the circulation (173). Importantly, the total amount of
ctDNA at the early stage of cancer patients might be <0.01% of
the total circulating cell-free DNA concentration. In a healthy
person, the latter is mainly derived from apoptotic leukocytes
(165). These extremely low concentrations of ctDNA are
approached by several methodologies that rely on a single
tumor-specific mutation or a limited panel of mutations
known a priori to be present in the primary tumor based on
previous genomic analysis of the primary tumor. Using this
approach Garcia-Murillas and his colleagues performed
mutation tracking in plasma DNA of early breast cancer
patients receiving neoadjuvant chemotherapy. Detection of
ctDNA and mutation tracking of several plasma samples after
completion of apparently curative treatment predicted metastatic
relapse with a median lead time of 7.9 months over clinical
relapse (174). This preliminary study suggests that ctDNA
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detection may provide prognostic information. Hence, the
potential use of CTCs and ctDNA as predictors of late
recurrence warrants further investigation. Of note, CTCs and
ctDNA are extremely rare. In contrast, extracellular vesicles
(EVs) derived from tumor cells are very abundant in blood,
are highly stable, and could be used as a source of new
biomarkers for personalized diagnosis and prognosis (175).
EVs is a global term referring to several different classes of
secreted vesicles and includes exosomes, microvesicles,
ectosomes, large oncosomes, exosome-like vesicles, and
apoptotic vesicles (176). EVs content varies with the type and
includes proteins, mRNA, miRNA, long noncoding RNA,
circular RNA and DNA, which play a crucial role in regulating
tumor growth, metastasis, and angiogenesis. EVs content has
been reported to predict recurrence of head and neck and colon
cancer after chemotherapy treatment [reviewed in (177)].

Notably, Lev and her colleagues conducted proteomic
analysis by reverse phase protein array on EVs content derived
from plasma of breast cancer patients. They identified potential
markers that can predict the risk of breast cancer recurrence
(178). One such marker was HSP70, shown previously to be
associated with tumor recurrence (179).

Overall, these exciting emerging technologies such as liquid
biopsies hold great promise in developing non-invasive
approaches to monitor cancer progression and predict
cancer recurrence.
OVERCOMING THE CHALLENGES OF
METASTASIS DRUG DEVELOPMENT-
DESIGNING TRIALS TO MEASURE
CLINICALLY MEANINGFUL EFFECTS
DRIVEN BY TARGETING DORMANT DTCs

The end goal for dormant DTC targeting agents is to prevent,
delay or minimize recurrence in patients who present with a
primary tumor. Another major goal is to prevent, delay or
minimize further progression in patients who present with a
recurrence. For example, preventing additional recurrences in a
patient who has a resectable metastatic lesion at a distant site.

As outlined herein, metastases may arise from dormant DTCs
which persist at distant sites, have bidirectional interactions with
their microenvironment, avoid the immune system and are
undetected by current diagnostic procedures. While the
primary unmet need for most cancer patients is preventing
metastatic recurrence at secondary sites, the progress made in
this area is still limited. Most drug development efforts focus on
shrinking existing primary or metastatic tumors in preclinical
models, and later in the clinic, and most small molecule and
monoclonal antibody drugs are advanced based on their ability
to target rapidly dividing cells. The clinical expectation is that
overt metastatic tumors will respond and demonstrate a
regression of a measurable lesion, with a direct correlation
with improved survival and quality of life. Agents that target
only dormant DTCs are predicted to have no measurable activity
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against proliferating metastatic lesions or primary tumors.
Traditional trial metrics of event free survival (EFS),
progression free survival (PFS) and overall survival (OS)
identify only agents able to control dormant DTCs when this
effect also controls other malignant cell growth of a measurable
lesion. It is possible that drugs that are effective in current clinical
trial designs also have an activity against outbreaking dormant
DTCs. Therefore, a new approach that better aligns unmet
therapeutic needs with drug development efforts is required.

Practically, upfront trials, where patients who present with a
primary tumor are treated with standard of care plus drug/s that
can target dormant DTCs are more challenging than trials with
patients that already have had metastatic recurrence. This is due
to the fact that only a percentage of patient who present with a
primary tumor will recur, and due to the fact that the time for a
first recurrence can be anywhere from months to many years. As
an example, if a trial design is based on EFS at two years, where
about 40% of the patients are expected to have an event, the trials
must be sufficiently powered to detect improved EFS in the
subset of patients who entered the trial. These trials require larger
number of patients and they require a longer time of treatment
and observation compared to trials in patients who already had
relapse. Furthermore, unless agents given to such patients have
been specifically shown to eliminate DTCs, they will need to be
continuously administered potentially for many years, which is
often a challenge, especially when therapies given in conjunction
with standard of care that includes chemotherapy. Therefore, it is
also less likely that an open label study would be pursued; it is
much more likely that a controlled study with a new agent on top
of standard of care would be compared to standard of care alone.
Implications for time to recruit patients and overall costs is very
substantial compared to the option of an open label study. This is
especially true given the challenges of identifying the dose that
would be optimal for Phase II and III trials. Briefly, since a trial
design that utilizes maximum tolerated dose to seek an effect on
lesion size is not possible when targeting microscopic dormant
DTCs, establishing a selected dose is quite challenging. This is
described at more length in the study by Steward et al. (16).

Alternatively, trials in patients that already had a relapse are
expected in many cancers to require fewer patients, be shorter in
duration of treatment and recruitment time, and importantly be
suitable for open label study designs versus controlled studies. As an
example, if patients with a certain cancer with well documented
historical data have an EFS of 20% at 8 months post-surgical
removal (resulting in no measurable disease), a study of a novel
agent targeting dormant DTCs with an objective of doubling EFS to
40% at 8 months would require several dozen patients only. An
alternate approach could be to target cancers that have a high
prevalence of delayed metastasis but that occurs over a manageable
time frame. Examples include osteosarcoma, TNBC andmelanoma,
although the latter also can recur a decade or more later.

Therefore, a development plan in which efficacy of dormant
DTCs targeting agents can be determined in smaller trials in
patients that have already recurred followed by larger trials in
upfront settings is more likely to have support by clinicians,
advocates and industry. Drugs that demonstrate efficacy in
Frontiers in Oncology | www.frontiersin.org 12
patients that already recurred can then be tested in the upfront
trial scenario, informed by safety, efficacy and PK/PD data from
the previous trials.

Novel Trial Endpoints
As noted herein, dormant DTCs are undetectable at distant sites
and reside as single/small cellular quiescent cells and or as small
indolent micrometastases. Until it becomes possible to directly
(e.g., via imaging or biopsy), or indirectly (e.g., via a biomarker)
detect and follow such dormant DTCs and indolent
micrometastases, we must rely on traditional clinical end
points to assess the activity of drugs that may target and
eliminate or control dormant DTCs. Unfortunately, there is no
established trial design that completely accomplishes this task.

This is because clinical trials have several flawed assumptions
in the context of examining effects on minor populations (180).
The first is that clinical trials consider a cancer to be a single
entity. Growth of existing lesions or development of new lesions
is unequivocally considered progressive disease and thus failure.
The second assumption that limits detection of effects on minor
populations such as DTCs follows: trial endpoints are indifferent
to whether failure (new lesion growth) was due to the outgrowth
of dormant DTCs or outgrowth of small tumors below the
detection limits of modern imaging. Finally, there is currently
no method in clinical trials to distinguish between preventing the
outgrowth of small tumor populations associated with dormant
DTCs vs eradicating dormant DTCs, since both of these
phenotypes would be considered a complete response if
accomplished for a long enough duration of follow up.

Herein lies the opportunity for novel trial endpoints to assess
agents that affect dormant DTCs and contribute to improved
outcomes. Osteosarcoma (OS) provides an excellent disease
model for this discussion. OS recurrence is observed in about
40% of patients presenting with localized disease who are treated
with standard of care, most commonly to the lungs within a few
years of completing therapy (181). About 80% of patients
presenting with metastatic disease and who achieve a second
complete remission by surgical resection will have further
additional recurrences in the lungs. It is unclear if systemic
therapy provides benefit when recurrent disease is amenable to
resection and thus there is not a standard of care for systemic
therapy either before or after surgical resection of lung metastases
(181, 182). Thus, the clinical trial community has adopted
historically controlled trial designs for this population whereby
the null hypothesis is that 20% of patients after resection of the lung
lesion will remain without disease at 12 months and an active agent
being defined by doubling this to 40% of patients remaining
without detectable lung lesions at 12 months (183). (Figure 3).
Controlled trials in which a therapeutic agent is compared to
clinical choice can also be utilized in Phase II or in pivotal or
post approval studies with the above time lines informed by
historical data. While this trial design captures failure of both
growth of subclinical cancer populations and recurrence from
DTCs, it is unable to distinguish between these modes of failure.

The hypothesis that we believe needs to be tested clinically
involving dormant DTCs posits a limited number of dormant
April 2021 | Volume 11 | Article 659963
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DTCs and/or dormant indolent tumors either residing alone or in
the presence of undetectablemicrometastases. Thus, in the presence
ofundetectablemicrometastases evena100%effective agent at either
eliminating dormant DTCs or preventing their outgrowth may fail
since the preformedmicrometastases may progress clinically. Thus,
in order to demonstrate the effectiveness of dormantDTCs targeting
therapies in OS, novel trial designs are required. This study design
wouldbebasedon thehypothesis that someundetectable tumors are
too advanced to be affected by drugs that target dormant DTCs. In
other words, if microscopic micrometastases resulting from
outbreaking dormant DTCs are already present at the time of
initial recurrence, they will emerge as additional lesions with or
without DTCs treatment. Such a recurrence could be considered an
“early failure” and its presence will not truly reflect the efficacy of an
agent preventing the outgrowth of dormant DTCs or eliminating
dormant DTCs (Figure 4). We thus propose an innovative trial
design, namely, adding a primary aim of improving disease
remission at a later time point (e.g., 2 years following first
recurrence in addition to the initial EFS at 12 months post-surgery
per point 2 above). This could be an open label study informed by
historicaldataora controlled study inosteosarcoma. In this scenario,
an agent controlling or eliminatingdormantDTCs,whichwould fail
by anycurrent trialmethodology that removespatients fromstudyat
first progression (if any non-dormant cells are present), will have a
chance to demonstrate important longer term disease control and
clinical benefit missed by current trials.
FUTURE DIRECTIONS

Metastatic recurrence is the major cause of mortality of cancer
patients and poses a major unmet clinical therapeutic challenge.
Unraveling the mechanisms underlying recurrence which arises
Frontiers in Oncology | www.frontiersin.org 13
years and decades following a protracted period of tumor
dormancy may open up novel avenues to prevent disease from
recurring. Being able to prevent delayed metastasis, either by
specifically targeting dormant DTCs for destruction or
maintaining them in the dormant state forever would represent
a significant step forward and could save many lives. In this
review, we introduced several potential strategies and drugs,
some that can be repurposed and may prevent the outbreak of
the hibernating DTCs based on growing studies in the field.
These strategies aim to maintain the DTCs in indefinite
dormancy and/or eradicate them. We also proposed to identify
potential gatekeepers in regulation of dormant DTCs and their
supportive microenvironment. These strategies could also
potentially be complementary to each other. We have also
provided various mechanisms and drugs, including some that
may be repurposed with a shorter path to treating patients
compared to novel compounds in preclinical stages. Notably,
each strategy presented here has its complexities and must take
into consideration the therapeutic window for treatment and
patient stratification that would benefit from such treatment.
Ideally, a preventive treatment should be started at the
neoadjuvant/adjuvant setting to prevent the disease from ever
emerging and/or prevent, delay, or minimize further progression
in patients who present with a recurrence.

In order to increase the ability to observe clinical impacts of
novel dormant DTC targeting drugs, novel trial endpoints may
be required. Since novel dormant DTC targeting drugs are
designed to target such DTCs before they exit dormancy, non-
dormant cells are likely to progress during treatment and
therefore a clinical benefit may only be evident at a later time
point (i.e., following the initial “failure” to achieve a clinical
outcome). However, later outcomes that would be expected by
controlling the dormant DTCs with novel drugs may be expected
FIGURE 3 | High level clinical trial design. In order to increase the ability to observe clinical impacts of novel dormant DTCs-targeting drugs, novel trial endpoints may be
required. We propose an innovative trial design, namely, improving EFS at a later time point, e.g. 6-12 months following the initial EFS at 12 months post-surgery.
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and could have meaningful impacts on disease progression
and survival.

Overall, these strategies could potentially open up novel
avenues in the battle against cancer recurrence and may
develop a strong foundation for developing drugs that would
ensure that cancer will never recur.
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