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Abstract
Novel molecular signatures are needed to improve the early and accurate diagnosis of autism spectrum disorder (ASD), and indicate
physicians to provide timely intervention. This study aimed to identify a robust blood non-coding RNA (ncRNA) signature in
diagnosing ASD. One hundred eighty six blood samples in themicroarray dataset were randomly divided into the training set (n=112)
and validation set (n=72). Then, the microarray probe expression profile was re-annotated into the expression profile of 4143
ncRNAs though probe sequence mapping. In the training set, least absolute shrinkage and selection operator (LASSO) penalized
generalized linear model was adopted to identify the 20-ncRNA signature, and a diagnostic score was calculated for each sample
according to the ncRNA expression levels and the model coefficients. The score demonstrated an excellent diagnostic ability for ASD
in the training set (area under receiver operating characteristic curve [AUC]=0.96), validation set (AUC=0.97) and the overall (AUC=
0.96). Moreover, the blood samples of 23 ASD patients and 23 age- and gender-matched controls were collected as the external
validation set, in which the signature also showed a good diagnostic ability for ASD (AUC=0.96). In subgroup analysis, the signature
was also robust when considering the potential confounders of sex, age, and disease subtypes. In comparison with a 55-gene
signature deriving from the same dataset, the ncRNA signature showed an obviously better diagnostic ability (AUC: 0.96 vs 0.68,
P< .001). In conclusion, this study identified a robust blood ncRNA signature in diagnosing ASD, which might help improve the
diagnostic accuracy for ASD in clinical practice.

Abbreviations: ASD = autism spectrum disorder, AUC = area under ROC curve, GEO = Gene Expression Omnibus, HC =
healthy control, ncRNAs = non-coding RNAs, PDD-NOS = pervasive developmental disorder-not otherwise specified, ROC =
receiver operating characteristic, SE = standard error.
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subtypes of autistic disorder, Asperger disorder and pervasive
1. Introduction

Autism spectrum disorder (ASD) is a heterogeneous set of
neurodevelopmental diseases, characterized by deficits in social
communication and verbal/nonverbal interaction, as well as
restricted and repetitive patterns of interests and behaviors. It has
a high prevalence of approximately 0.3% to 1.2%, with 3 main
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developmental disorder-not otherwise specified (PDD-NOS).[1]

Despite of onsite before 3 years old, most children are diagnosed
with ASD after 4 years old.[2] Early intensive behavioral
interventions could improve the outcomes (e.g., language skills,
cognitive performance, and adaptive behavior skills) in some
young children with ASD.[3] Thus, it has a critical need in clinical
practice to increase the diagnostic accuracy for ASD.
As functional RNA molecules, non-coding RNAs (ncRNAs)

are transcribed from DNA but not translated into proteins,
including the types of long non-coding RNA (lncRNA),
pseudogene, small nuclear RNA (snRNA), small nucleolar
RNA (snoRNA), ribosomal RNA (rRNA), miscellaneous RNA
(miscRNA), and so on. ncRNAs have been reported in the
pathogenesis of ASD, and aberrant expression of ncRNAs was
detected in peripheral blood of ASD patients.[4,5] With great
advances in genetic detection, gene expression profiles are
available to identify novel and robust biomarkers. In this study,
we obtain the ncRNA expression profiles through microarray
probe re-annotation, and identify and validate a blood ncRNA
signature for the diagnosis of ASD.
2. Methods

2.1. Data preparation

The database of Gene Expression Omnibus (GEO) (http://www.
ncbi.nlm.nih.gov/geo/) was a public functional genomics data
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repository of array- and sequence-based data, and users could
query and download experiments and curated gene expression
profiles. In this database, we searched ASD-related datasets of
gene expression profiles from inception to June 2019, using
the key words including: (“autism spectrum disorder” OR
“Asperger” OR “autis∗” OR “pervasive developmental disor-
der” OR “childhood disintegrative disorder”). Datasets were
included if meeting the following criteria: detected blood gene
expression profiles (probe-tabulated) of both ASD cases and
healthy controls (HC); availability of clinical data and corre-
sponding sequences of themicroarray probes; the sample size was
large enough. Then, the tab-delimited expression value-matrix
table was downloaded and log2-transformed. This study was
approved by the ethnic committee of Puren Hospital Affiliated to
Wuhan University of Science and Technology.

2.2. Probe re-annotation

First, we obtained the microarray probe sequences from the
Affymetrix product website (http://www.affymetrix.com), as well
as the human genome sequences (GRCh38.p12) and comprehen-
sive gene annotation from the GENCODE database (https://www.
gencodegenes.org).[6] Then, the probe sequences were aligned to
the human genome sequences, using the software of hierarchical
indexing for spliced alignment of transcripts (HISAT). No
mismatches between probe sequence and reference sequence were
allowed. Alignments were stored in SAM format where all
alternative best hits were included. Among the successful align-
ments to the reference genome, we only included the transcripts
with at least 1 alignment, each ofwhichwas alsomatched to only 1
transcript.Whenmultiple probesmatched to an identical gene, the
average expression value across these probes was calculated to
represent the corresponded gene. ncRNA expression profiles were
extracted after excluding protein-coding RNAs (protein-coding
and nonsense mediated decay) according to the RNA types.
2.3. ncRNA signature construction, evaluation, and validation

The samples were randomly divided into the training set and
validation set according to the ratio of 6:4. In the training set, a
least absolute shrinkage and selection operator (LASSO)
penalized generalized linear model was adopted to identify
significant ncRNAs.[7,8] The penalty parameter was estimated by
10-fold cross-validation at 1 standard error (SE) beyond the
minimum partial likelihood deviance. Then, the coefficients of
significant ncRNAs in the model were extracted to calculate a
diagnostic score for each sample in the training set, validation set,
and the overall. In receiver operating characteristic (ROC) curve
analysis, area under ROC curve (AUC) was calculated to evaluate
the diagnostic ability of the signature. Moreover, subgroup
analysis was conducted on sex, age, and disease subtypes to assess
the diagnostic stability of the signature, and DeLong test for 2
ROC curves was performed to investigate the difference between
subgroups. Finally, we also compared the ncRNA signature with
a 55-gene signature which derived from the same dataset.[9]

2.4. External validation

The blood samples of 23 ASD and 23 age- and sex-matched
controls were obtained in Puren Hospital from September 2015
to July 2017. Written informed consent was provided before
sample collection, and the present study protocol was approved
by the ethnic committee of Puren Hospital. Then, total RNA was
2

extracted using TRIzol reagent (Invitrogen,Waltham,MA, USA),
and stored at �80°C. The RNA concentration and purity were
measured by the NanoDrop spectrophotometer (Thermo Fisher,
Waltham, MA, USA). Total RNA was synthesized into first-
strand cDNA using fluorescent-labeled dNTPs (Thermo Fisher,
Waltham, MA, USA), before hybridization with a customized
microarray which tailed and fixed 20 ncRNA probes (CapitalBio,
China). The probe sequences were as follows:

RNU1-16P: GGGACTATGTTCGTGTTCTCTCCTG
RNU6-258P: AAGTCGTGAAATAGTCCATATGTTA
RNU6-485P: CCCTGTGCAAGGATGATATGCAAAT
RNU6-549P: GCTCACTTCAGTGGTACATATACTA
RNVU1-15: GAACTCGACTGCATAACTTGTGATA
RNA5SP160: CTATGGCCATAAAACCCTGAACTTG
IGHV3-47: TCTCCAGAGACAACGCCAAGAAGTC
TUBB2BP1: CATGCCCTCACCCAAGGTGTCAGAC
CHST9-AS1: GGAAGTCTTCAGTATCTGTACAACT
AC074183.2: TGCCCAGGAGAAAGGCTGAAGGACA
AC136940.3: TTAGATTACGCTTGGCTTCTTTTGA
RP4-646B12.2: GAAAAAAGTGTGAATCAGTCACTAC
RP11-90M2.3: ATTGGTGGGTTTTGATGCCCAGTGA
RN7SL132P: AGCCCAGGAGCTCATAGTGCGCTAT
AC074117.12: CTGGCGTGGCAGAATACCTCTTTGA
AC069513.3: GCAGCGCCTCTTCCGACAGCCCCCA
RNY1P11: AAAGGGAGTGAGTTATCTCATTTGA
RP11-162A23.5: CCCACCTCCCCTACCAAAGCCCATA
MYCL2: GACCGCGACTCGTACCATCACTATT
RNU105B: AGGTCACTCTCTCCCCAGGCTGTGT

Finally, the ncRNA expression levels were detected by the
GenePix microarray scanner (Axon Instrument, Union City, CA,
USA), and a diagnostic score was calculated for each sample
according to the signature formula.

2.5. Statistical analysis

All statistical analyses were conducted using R 3.6.0 software
(The R Foundation,MA, USA). The generalized linear model was
constructed with glmnet 2.0–18 package, and ROC curve
analysis was performed with ROCR 1.0–7 package. A 2-sided
P value< .05 was considered statistically significant.
3. Results

3.1. Characteristic of included dataset

The included microarray dataset of GSE18123 was based on the
platform of GPL6244 (Affymetrix Human Gene 1.0 ST Array
[HuGene-1_0-st]), with a total of 104 ASD (80 men [76.9%] and
average age 8.1 years [2–21]) and 82 controls (48 men [58.3%]
and average age 8.0 years [2–22]). The subtypes of autistic
disorder, Asperger disorder, and PDD-NOS accounted for
39.4% (n=41), 14.4% (n=15), and 46.2% (n=48) respectively.
Then, 186 samples were randomly divided into the training set
(n=112) and validation set (n=74).

3.2. Data preprocessing and sample clustering

The GPL6244 platform contained 861,493 sequences (25 bases)
aligned to 33,297 probes. After probe re-annotation, a total of
8089 RNAs (32 types) were identified with 18,329 specific
probes, among which there were 4143 ncRNAs mapped to
10,258 probes.
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https://www.gencodegenes.org/


Table 1

Twenty non-coding RNAs in the blood diagnostic signature of autism spectrum disorder.

Gene symbol Gene type Gene name Genomic location Size (bases) Probe ID Ensembl ID

AQP4-AS1 Antisense AQP4 Antisense RNA 1 chr18:26,655,742–27,190,698 534,957 8020717 ENSG00000260372
FTH1P2 Processed pseudogene Ferritin Heavy Chain 1 Pseudogene 2 chr1:228,687,415–228,687,879 465 7910385 ENSG00000234975
FTH1P3 Processed pseudogene Ferritin Heavy Chain 1 Pseudogene 3 chr2:27,392,623–27,393,576 954 8051133 ENSG00000213453
GMCL2 Processed pseudogene Germ Cell-Less 2, Spermatogenesis Associated chr5:178,184,503–178,187,432 2,930 8116174 ENSG00000244234
HMGN2P11 Processed pseudogene HMGN2 Pseudogene 11 chr7:84,876,484–84,877,824 1,341 8133900 ENSG00000232605
IGHV3-47 IG-V pseudogene Immunoglobulin Heavy Variable 3-47 Pseudogene chr14:106,518,579–106,519,034 456 7981726 ENSG00000229092
MUC20-OT1 lncRNA MUC20 Overlapping Transcript chr3:195,658,062–195,739,964 81,903 8084917 ENSG00000242086
MYCLP1 Processed pseudogene MYCL Pseudogene 1 chrX:107,272,464–107,276,559 4,096 8169231 ENSG00000204053
POLR2KP2 Processed pseudogene RNA Polymerase II Subunit K Pseudogene 2 chr13:48,133,956–48,134,553 598 7971561 ENSG00000224510
RN7SL132P miscRNA RNA, 7SL, Cytoplasmic 132, Pseudogene chr7:34,753,424–34,753,719 296 8132286 ENSG00000242653
RNA5SP160 rRNA RNA, 5S Ribosomal Pseudogene 160 chr4:40,990,154–40,990,273 120 8094772 ENSG00000201736
RNU105B snoRNA RNA, U105B Small Nucleolar chr20:8,831,185–8,831,393 209 8060895 ENSG00000201348
RNU1–16P snRNA U1 Small Nuclear 16 chr13:113,478,915–113,479,078 164 7972921 ENSG00000202347
RNU6–258P snRNA U6 Small Nuclear 258 chr17:20,126,388–20,126,488 101 8013448 ENSG00000212186
RNU6–485P snRNA U6 Small Nuclear 485 chr12:7,118,785–7,118,891 107 7953620 ENSG00000200345
RNU6–549P snRNA U6 Small Nuclear 549 chr15:64,671,263–64,671,369 107 7984215 ENSG00000207162
RNVU1-15 snRNA Variant U1 Small Nuclear 15 chr1:144,412,576–144,412,740 165 7919556;

7919560
ENSG00000207205

RNY1P11 miscRNA RNY1 Pseudogene 11 chr7:129,164,849–129,164,961 113 8136078 ENSG00000200629
RPS26P39 Processed pseudogene Ribosomal Protein S26 Pseudogene 39 chr10:123,171,458–123,171,898 441 7936833 ENSG00000227586
TUBB2BP1 Unprocessed pseudogene Tubulin Beta 2B Class IIb Pseudogene 1 chr6:3,177,039–3,179,764 2,726 8116651 ENSG00000216819

Cheng et al. Medicine (2020) 99:11 www.md-journal.com
Then, samples were clustered according to the distance in
Pearson correlation matrices. When adopted the expression
profiles of probes or genes, no outliers were detected (height<
0.2).
3.3. Signature construction, evaluation, and validation

One hundred eighty six blood samples in the microarray dataset
were randomly divided into the training set (n=112) and
validation set (n=72) according to the ratio of 6:4. In the
training set, the LASSO penalized generalized linear model
identified 20 significant ncRNAs, which demonstrated an
obvious discrepancy betweenASDand control samples (Table 1).
A diagnostic score was calculated for each sample according to
the ncRNA expression levels weighted by their coefficients in the
LASSO model.
Figure 1. Receiver operating characteristic (ROC) curve analysi
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Diagnostic score=AQP4-AS1∗(–0.169)+FTH1P2∗(–0.070)+
FTH1P3∗0.261+GMCL2∗(–0.097) +HMGN2P11∗(–0.212)+
IGHV3-47∗(–0.024) +MUC20-OT1∗(–0.143) +MYCLP1
∗(–0.105) + POLR2KP2∗(–0.272) + RN7SL132P∗0.044 +
RNA5SP160∗(–0.184)+RNU105B∗0.200+RNU1-16P∗0.040
+ RNU6-258P∗0.080 + RNU6-485P∗(–0.078) + RNU6-
549P∗0.119 + RNVU1-15∗0.114 + RNY1P11∗(–0.160) +
RPS26P39∗(–0.083)+TUBB2BP1∗(–0.075)
The score displayed an excellent diagnostic ability for ASD in

the training set (AUC=0.96), validation set (AUC=0.97), and
the overall (AUC=0.96) (Fig. 1). No significant difference was
detected between the women and men in the training set (AUC:
0.96 vs 0.97, P= .890), validation set (AUC: 0.96 vs 1.00,
P= .205), and the overall (AUC: 0.95 vs 0.98, P= .231) (Fig. 2). It
was also insignificant between the older and younger cases in the
training set (AUC: 0.93 vs 0.99, P= .088), validation set (AUC:
s of the diagnostic signature. AUC=area under ROC curve.

http://www.md-journal.com


Figure 2. Receiver operating characteristic (ROC) curve analysis of the diagnostic signature in the subgroups of different sexes. AUC=area under ROC curve.

Figure 3. Receiver operating characteristic (ROC) curve analysis of the diagnostic signature in the subgroups of different ages. AUC=area under ROC curve.
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Figure 4. Receiver operating characteristic (ROC) curve analysis of the diagnostic signature in the subgroups of different disease subtypes. AUC=area under ROCcurve.
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0.99 vs 0.95, P= .366), and the overall (AUC: 0.95 vs 0.97,
P= .337) (Fig. 3).
As for disease subtypes, the score had a good power in

diagnosing autistic disorder (AUC=0.97 in training set, 0.98 in
validation set, and 0.97 in the overall), PDD-NOS (AUC=0.96 in
training set, 0.96 in validation set, and 0.95 in the overall), and
Asperger disorder (AUC=0.87 in training set, 0.96 in validation
set, and 0.91 in the overall) (Fig. 4). No significant difference was
detected between the subtypes (P> .05).

3.4. External validation

The blood samples were collected from 23 ASD patients (14 men
[60.9%] and average age 8.0 years [2–16]), and 23 age- and sex-
matched controls. According to the signature formula, the score
displayed a good diagnostic ability for ASD (AUC=0.96) (Fig. 5).

3.5. Comparison with a 55-gene signature

The previously published 55-gene signature derived from the
same dataset.[9] In the training set, the 55-gene signature showed
5

no obvious difference than the ncRNA signature (AUC: 0.96 vs
0.96, P=1.000) (Fig. 6). In the validation set, the 55-gene
signature displayed a poorer performance than the ncRNA
signature (AUC: 0.71 vs 0.97, P< .001). In general, the ncRNA
signature showed a better diagnostic ability than the 55-gene
signature (AUC: 0.96 vs 0.68, P< .001).

4. Discussion

In this study, we adopted the methods of probe re-annotation and
penalized generalized linear model to identify a novel and robust
blood ncRNA signature in diagnosing ASD. The signature
showed an excellent stability in the subgroup analyses of age, sex,
and disease subtypes. It also displayed a higher diagnostic
efficiency than the 55-gene signature.
The ncRNA signature consisted of 20 genes, covering 5 kinds

of ncRNAs (lncRNA, pseudogene, miscRNA, rRNA, snoRNA,
and snRNA). lncRNAs are untranslated RNA molecules with
>200 nucleotides in length, which perform a wide variety of
functions and play an important role in the development of

http://www.md-journal.com


Figure 5. Receiver operating characteristic (ROC) curve analysis of the
diagnostic signature in the external validation set. AUC=area under ROC
curve.
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mental discords.[10] AQP4-AS1 had a moderate to high
expression in nervous system (brain, cortex, and cerebellum)
(based on the GTEx database). In GWAS Catalog, AQP4-AS1
was associated with the human phenotypes of blood protein
measurement, lobe attachment, breast carcinoma, hair color, and
glomerular filtration rate. MUC20-OT1 was involved into the
phenotypes of mean corpuscular hemoglobin, mean corpuscular
volume, mean corpuscular hemoglobin concentration, eosinophil
count, iron biomarker measurement, and transferrin measure-
ment.
Pseudogenes are gene copies that have lost the original coding

ability, and they have been reported in the pathogenesis of
ASD.[11] IGHV3-47 was associated with the phenotype of blood
protein measurement. FTH1P3was involved into the progression
and prognosis of multiple cancers.[12,13] GMCL2 was related
with protein binding (GO:0005515). MYCLP1 was associated
Figure 6. Receiver operating characteristic (ROC) curve analysis of
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with the phenotype of alcoholic pancreatitis. POLR2KP2 had a
moderate to high expression in nervous system (brain, cortex,
and cerebellum). RPS26P39 was associated with the phenotypes
of sleep duration, age at menopause, and neutropenia, response
to gemcitabine, pancreatic carcinoma. TUBB2BP1 had a
moderate to high expression in nervous system (brain, cortex,
and cerebellum), which was related with the phenotypes of red
blood cell distribution width, mean corpuscular hemoglobin, and
Crohn disease.
Small ncRNAs are regarded as new class of biomarkers and

potential therapeutic targets in neurodegenerative diseases.[14] In
the signature, snRNAs are most frequent. As the components of
spliceosome, snRNAs are fairly conserved with a uridine-rich
non-coding sequence of<200nt, and involved into the splicing of
precursor mRNA. RNU1-16P had a moderate to high expression
in nervous system (brain, cortex, and cerebellum) and whole
blood. RNU6-258P was related with intelligence.[15] Compared
with normally developed children, the intelligence development
in ASD children was significantly delayed.[16,17] There were
positive correlations between age and mean corpuscular volume,
and red cell distribution width in ASD children, and 24.1% cases
had iron deficiency and 15.5% had anemia.[18] RNU6-549P was
associated with the GWAS phenotypes of mathematical ability,
self reported educational attainment, coronary artery disease,
and factor VII activating protease measurement. Previous studies
suggested impaired metacognitive monitoring, mathematics
under-achievement, and educational needs in ASD.[19–21]

RNVU1-15 had a moderate to high expression in nervous
system and whole blood. It was associated with U1 snRNP
(GO:0005685), mRNA 50-splice site recognition (GO:0000395),
pre-mRNA 50-splice site binding (GO:0030627). A growing
number of alternative splicing regulators have been reported in
relation with ASD.[22,23]

The limitations in this study should be also acknowledged.
First, the sample size is not as large as we expected. Second, the
method of probe re-annotation could not cover all ncRNAs. In
the future, a large-scale prospective designed study was needed to
validate this ncRNA signature.
In conclusion, through probe re-annotation and penalized

generalized linear model, we identified a novel and robust blood
ncRNA signature in diagnosing ASD, which might help improve
the diagnostic accuracy for ASD in clinical practice.
the 55-gene diagnostic signature. AUC=area under ROC curve.
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