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Sequencing an Ashkenazi reference panel supports
population-targeted personal genomics and
illuminates Jewish and European origins
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The Ashkenazi Jewish (AJ) population is a genetic isolate close to European and Middle Eastern
groups, with genetic diversity patterns conducive to disease mapping. Here we report high-depth
sequencing of 128 complete genomes of AJ controls. Compared with European samples, our AJ
panel has 47% more novel variants per genome and is eightfold more effective at filtering benign
variants out of AJ clinical genomes. Our panel improves imputation accuracy for AJ SNP arrays
by 28%, and covers at least one haplotype in ~67% of any AJ genome with long, identical-by-
descent segments. Reconstruction of recent AJ history from such segments confirms a recent
bottleneck of merely ~350 individuals. Modelling of ancient histories for AJ and European
populations using their joint allele frequency spectrum determines AJ to be an even admixture of
European and likely Middle Eastern origins. We date the split between the two ancestral
populations to &12-25 Kyr, suggesting a predominantly Near Eastern source for the repopula-
tion of Europe after the Last Glacial Maximum.
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shkenazi Jews (AJ]), identified as Jewish individuals of

Central- and Eastern European ancestry, form the largest

genetic isolate in the United States. AJ demonstrate
distinctive genetic characteristics!?, including high prevalence of
autosomal recessive diseases and relatively high frequency of
alleles that confer a strong risk of common diseases, such as
Parkinson’s disease® and breast and ovarian cancer?. Several
recent studies have employed common polymorphisms>~'® to
characterize AJ as a genetically distinct population, close to other
Jewish populations as well as to present-day Middle Eastern
and European populations. Previous analyses of recent AJ
history highlighted a narrow population bottleneck of only
hundreds of individuals in late medieval times, followed by rapid
expansionlz’M.

The AJ population is much larger and/or experienced a more
severe bottleneck than other founder populations, such as Amish,
Hutterites or Icelanders'®>, whose demographic histories
facilitated a steady stream of genetic discoveries. This suggests
the potential for cataloguing nearly all founder variants in a
large extant population by sequencing a limited number of
samples, who represent the diversity in the founding group
(for example, ref. 16). Such a catalogue of variants can make a
threefold contribution: First, it will enable clinical interpretation
of personal genomes in the sizeable AJ population by
distinguishing between background variation and recent,
potentially more deleterious mutations. Second, it will improve
disease mapping in AJ by increasing the accuracy of imputation.
Third, the ability to extensively sample a population with ancient
roots in the Levant is expected to provide insights regarding the
histories of both Middle Eastern and European populations.

Here we report a catalogue of 128 high coverage, whole-
genome A] sequences. Compared with a European reference
panel, the AJ panel has more novel and population-specific
variants, and we demonstrate that the AJ panel is necessary for
interpretation and imputation of AJ personal genomes. Analysis
of long shared segments, which are abundant in AJ, confirms a
recent severe bottleneck and potential utility in future sequencing
studies. The joint AJ-European allele frequency spectrum
suggests that the AJ population is an even mix of European
and Middle Eastern ancestral populations and quantifies ancient
bottlenecks and population splits. Finally, we report the
deleterious mutation load in AJ to be slightly higher than in
Europeans.

Results

We sequenced a panel (n=128) of controls of self-reported and
empirically validated AJ ancestry (Supplementary Note 1;
Supplementary Table 1; Supplementary Fig. 1). The high coverage
sequence (> 50 x ), generated by Complete Genomics'’, showed
multiple quality control (QC) indicators supporting both high
quality and completeness of the single-nucleotide variant (SNV)
data: 97% coverage of the genome (Supplementary Note 2;
Supplementary Table 2), inferred discordance of 0.047% to high
quality genotypes in SNP arrays (Supplementary Note 2;
Supplementary Data 1), transition/transversion ratio of 2.14,
and consistency of QC measures across potential sources of
bias (Supplementary Note 2; Supplementary Data 2;
Supplementary Figs 1 and 2). The average raw number of non-
reference SNVs called per individual was 3.412M, including
10.5K coding synonymous changes and 9.7K non-synonymous
ones (Supplementary Data 2). An additional 538K
multinucleotide variants, 4.1K mobile element insertions, and
302 copy number variants (spanning 6.7 Mbp) were observed, on
average, in each sample (Supplementary Data 2). However,
inspection of novel non-SNVs demonstrated high false-positive
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rates (Supplementary Note 2), and we thus focused on autosomal,
bi-allelic SNVs for all subsequent analyses. We applied strict
multisample filters (Supplementary Note 2) to generate a working
set of 12,326,197 high quality SNVs, of which 2,891,414 were
novel (23.5%; dbSNP135). Quality was gauged by a sequenced
duplicate as well as runs-of-homozygosity, which are sufficiently
frequent in AJ for this purpose, providing estimates of & 6,000
8,000 false positives genome wide (Supplementary Note 2), in line
with previous benchmarks of this technology!’. Principal
component analysis of common variants in the sequenced AJ
samples confirmed previous observations>®*1%, namely, that AJ
form a distinct cluster with proximity to other Jewish, European
and Middle Eastern populations (Supplementary Fig. 1).

Our reference panel is expected to improve the ability to
catalogue variants and haplotypes in the Ashkenazi population,
beyond what is possible with non-ancestry-matched reference
samples. A natural panel for comparison would be the European
samples from the 1000 Genomes Project!8, However, to match
the high depth of our data and the sequencing platform used to
obtain it, we chose as our primary comparison data set a cohort of
Flemish (FL) personal genomes (n=26) from Belgium
(Supplementary Note 2). We merged our first batch of AJ
genomes (n=>57) with the FL data, applying a QC pipeline
attempting to remove all potentially artifactual population-
specific variants (Supplementary Note 2). The merged, post-QC
data set included 10,499,312 SNVs for comparative analysis.

Comparison of tallies of variants between AJ and FL genomes
(Fig. 1a; Supplementary Table 3) suggested that AJ have slightly
but significantly more overall variants (4 1.5%), mostly as
heterozygotes. The increased AJ heterozygosity ( + 2.4%), in spite
of the recent bottleneck, confirms previous observations
(Supplementary Note 3)%71%1° More pertinently to the utility
of a population sequencing endeavour, AJ samples have a much
higher fraction (+47%) of novel variants (dbSNP135; Fig. 1a).
Clinical A] genomes will thus be screened more efficiently against
the AJ reference panel. For example, an A] genome has, on
average, 36,995 novel variants (160 of which are also non-
synonymous). Only 4.0% of them (3.2% for novel and non-
synonymous) will be filtered out against the FL panel, whereas an
AJ panel of the same size filters out 32.6% of variants (22.4%), 8.2
(7.0) times more. Using the entire AJ panel allows filtering of
=~ 65% of all novel variants (48%). The number of novel and non-
synonymous, never-seen variants in an AJ personal genome is
therefore only 83.3, making the clinical analysis of such a genome
more feasible (Fig. 1b). The number of new variants discovered
when sequencing each additional genome is slightly larger in our
A] cohort than in FL (Fig. 1c). However, extrapolation predicts
the converse trend already for cohorts larger than n =49 samples
(Fig. 1c; Supplementary Note 3; Supplementary Fig. 3), suggesting
higher efficiency of the AJ cohort in cataloguing population
variation.

The effective coverage of variation can also be demonstrated
using identical-by-descent (IBD) segments. We detected IBD
segments by using the Germline software?®, with additional
filtering adapted to sequencing data (Supplementary Note 4;
Supplementary Fig. 4). Sharing in AJ was >7.9-fold more
abundant than in FL or between the populations (Fig. 2a). Using
the AJ panel, one can cover at least one haplotype in & 67% of the
genome of any other AJ individual with long (>3 cM) IBD
segments (x46% using segments>5cM), compared with much
poorer efficiency in Europeans (Fig. 2b; here we used the CEU
panel from the 1000 Genomes project; Supplementary Note 4).
These results imply that any additional, sparsely genotyped AJ
sample can be effectively imputed, at least partially, along
haplotypes shared with a small sequenced reference panel. Co-
ancestry of copies of IBD segments is expected to be extremely
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Figure 1| Novel variants discovered in Ashkenazi Jewish and Flemish
genomes. (a) Variant counts (all and heterozygous; left) and fraction novel
(right) per genome in the Ashkenazi Jewish (AJ) and Flemish (FL) cohorts
(corresponding to about ~80% of the raw variants remaining after QC and
cohort merging; Supplementary Note 2; error bars represent s.d.).

(b) Efficiency of filtering all novel variants detected in an AJ personal
genome, measured by counting those that remain new after filtering such a
genome against either FL or AJ panels of a matched size (n=26) or our
complete AJ panel (n=127). Left: all novel variants; right: non-synonymous
novel variants. Error bars represent s.d. (¢) The number of newly discovered
segregating sites in AJ and FL versus the number of already sequenced
individuals in each cohort (markers). Dashed and solid lines are
expectations based on either a constant size or a bottleneck and growth
model (bn/growth), respectively, fitted to each population separately
(Supplementary Note 3). The inset magnifies the region (0, 10).
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Figure 2 | Utility of the AJ reference panel in IBD-based and traditional
imputation. (a) The distribution, over all pairs of individuals, of the fraction
of the genome shared IBD (segment lengths >3 cM) either within AJ,
within FL or between AJ and FL. (b) The average fraction of a genome
(in AJ and CEU) where at least one haplotype is covered by segments
shared with a population-matched panel. Data points (markers) were fit to
c=1-[1—cpax(1— e’”/"o)]2 (lines), where c is the average coverage
and n is the number of individuals in the panel (Supplementary Note 4).
(€) The aggregate r? (over the AJ study genomes) between the true and the
imputed dosages versus the minor allele frequency, when imputing an AJ
genome using a reference panel consisting of either AJ or CEU genomes.

recent (typically 30 or fewer generations), thus allowing only very
recent mutations to be missed at the imputed genome?!?.
Whether this strategy will scale for the accurate imputation of the
entire genome of an AJ proband will be resolved with the
sequencing of additional genomes.
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Our sequencing panel is also expected to improve the
performance of traditional imputation approaches, which are
known to be more accurate when the ancestries of the reference
and target populations are matched?3. To evaluate the quality of
imputation, we divided our sequencing cohort into ‘reference’
and ‘study’ panels; in the latter, we masked all variants not
genotyped on a typical SNP array. We then imputed®* the ‘study’
panel using either our ‘reference’ panel (n=50) or the larger
(n=87) 1000 Genomes CEU panel'® (Supplementary Note 5;
Supplementary Fig. 5). As expected, using an AJ reference panel
was more accurate than using a European one, with the number
of discordant genotypes 28% lower and the correlation between
true and imputed dosages, r?, increasing from 97.4% to 98.2%
(Supplementary Note 5; Supplementary Table 4). Using the AJ
panel reduced mostly the number of false negatives (with respect
to the reference genome; Supplementary Table 4); it lowered the
number of wrongly imputed non-reference variants with minor
allele frequency <1% by 2.7-fold, with the improvement
remaining at 1.5-2-fold at higher frequencies (Fig. 2c¢
Supplementary Fig. 6). This improvement in imputation quality
likely reflects both the increased segmental sharing in AJ as well
as the large number of AJ-specific alleles. These results motivate
using a population-matched, rather than a merely continent-
matched, reference panel, even for the closely related AJ and
European populations.

Our sequencing data also enables detailed reconstruction of AJ
and European population histories. Allele frequency spectra
(AFS) are attractive conduits for such an analysis, especially in
deeply sequenced cohorts. The AFS of both AJ and FL (Fig. 3a)
reject a constant-size population model, which has previously
been ruled out across multiple human populations?>. The two
spectra are similar, with AJ showing a slight excess of doubletons.
These spectra each fit well to similar models of ancient history,
comprising an ancient bottleneck (= 60-86 Kyr) followed by slow
exponential growth (Supplementary Note 6; Supplementary
Table 5; Supplementary Fig. 7; Supplementary Fig. 8). The joint
(AJ-FL) AFS reveals correlated allele counts (Fig. 3b), indicating
gene flow between the populations or very recent divergence
(Supplementary Note 6). Yet, correlation is not as strong as it
would have been had the AJ-FL combined sample been panmictic
(Fig. 3b; Fgr=0.016; Supplementary Note 6). The normalized
AFS of population-specific variants (Fig. 3a, inset) is noticeably
different between AJ and FL, with higher allele frequencies in AJ.
There were overall 14% more population-specific variants
in A] (Supplementary Note 6; Supplementary Figs 9 and 10),
pointing to asymmetric gene flow from Europeans into the
ancestral population of AJ.

We next turned to inferring an explicit model for the
demographic history of AJ and Europeans. Since the allele
frequency spectrum, in particular for our sample size, may not be
sensitive to recent demographic events, we first reconstructed the

Figure 3 | The AFS and the lengths of shared segments. (a) The
(normalized) minor allele frequency spectrum in AJ and FL, shown as
counts in subsets of n=25 genomes in each cohort. The green line
corresponds to the expectation in a constant-size population (Wright-
Fisher), and bars represent deviations in AJ and FL. The inset shows the
spectra of alleles private to each population. (b) A heat map of the joint
(minor) allele frequency spectrum of AJ and FL (lower left triangle)
compared with the expected joint AFS, had population labels been random
(upper right triangle)33. (¢) The average fraction of the genome found in
shared segments versus the segment length (AJ only; circles), along with
the best fit to a recent bottleneck and growth model (solid blue line; Fig. 4)
and the expectation in a constant-size population with the same total
sharing (dashed green line).

4

very recent AJ history by examining long IBD segments>!>1421,

which carry information on recent co-ancestry (last =~50
generations). We used the lengths of shared segments (Fig. 3c)
to infer the parameters of a recent AJ bottleneck (effective size
250-420; 25-32 generations ago) followed by rapid exponential
expansion (rate per generation 16-53%; Fig. 4, bottom),
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Figure 4 | A reconstruction of the AJ and FL demographic history. The
upper part of the diagram shows the reconstruction of the ancient
history by fitting the joint AFS (Fig. 3b) using 9adi%® and using a mutation
rate of 1.44 x 10 8 per generation per bp. The lower diagram shows the
recent AJ history, reconstructed by fitting the IBD length decay pattern
(Fig. 3c). The wide arrow represents an admixture event; all effective
population sizes (horizontal arrows) are in number of diploid individuals;
all times were computed assuming 25 years per generation. Confidence
intervals are provided in Supplementary Tables 6 and 7.

confirming previous analyses conducted on lower throughput
data (Supplementary Note 4; Supplementary Table 6;
Supplementary Fig. 11)!214,

Given the model for the recent AJ history, we inferred the
parameters of a model for the ancient history of AJ and FL using
an existing method (0adi*®) based on the joint frequency
spectrum (Supplementary Note 6; Supplementary Data 3).
Confidence intervals were computed using parametric
bootstrap?® (Supplementary Note 6), but we did not integrate
over the uncertainty in the mutation rate (see the next
paragraph). According to the resulting model (Fig. 4, top;
Supplementary Table 7; Supplementary Fig. 12), contemporary
A]J formed 600-800 years (close to the time of the AJ bottleneck)
as the fusion of two ancestral populations. One ancestral
population, consistent with being the ancestors of the FL
samples, contributed 46-50% of the AJ gene pool. We call that
population ancestral European and the other ancestral Middle
Eastern. The ancestral European population went through a
founding bottleneck (effective size 3,500-3,900) when diverging
from ancestral Middle Easterners. We date this event to 20.4—
22.1Kyr, at around the time of the Last Glacial Maximum and
preceding the Neolithic revolution (*’; see Supplementary Note 6
and below for discussion). The ancestors of both populations
underwent a bottleneck (3,600-4,100 founders) at 85-94 Kyr,
likely corresponding to an Out-of-Africa event?®,

The confidence intervals around our inferred parameters were
remarkably small (Supplementary Table 7; coefficient of variation
typically ~2-5% and no more than ~8%). However, any
sampling noise in our historical reconstruction is negligible
compared with possible inaccuracies in the human mutation rate

or potentially oversimplified model assumptions. We verified that
our main conclusions were robust to variations in the model’s
fine details (Supplementary Note 6). Conversely, all inferred times
and population sizes depend inversely on the mutation rate, y,
and are thus highly sensitive to its precise value. The recent
debate over the human mutation rate?®? has converged to
estimates of u ranging between 1.0-1.5- 10~ (per generation per
bp; obtained using next-generation sequencing of de novo
mutations), compared with the traditional estimates (using the
human-chimpanzee divergence) around pphyio~2.5 - 10 8. The
mutation rate that we used was p=1.44-10"8, estimated by
Gravel et al.>® by matching the relatively well-known time of the
population of the Americas with the time of a bottleneck inferred
from Native American whole-genome sequences. This estimate is
relevant to our evolutionary time scale of interest, and is close to
the ‘de novo’ estimates®! (see ref. 32 for a very recent review).

Previous explicit demographic models using genome-wide SNP
arrays or low-pass sequencing data time-stamped a European
bottleneck at x~40-80 Kyr (recalibrated to the lower mutation
rate estimate; Supplementary Note 6), with even the lowest
estimates?®3334 being higher than our point estimate of ~21 Kyr.
However, no previous study has employed deeply sequenced
genomes of (partial) Middle Eastern ancestry; in addition,
previous studies usually modelled the European founder event
simultaneously with the divergence from East Asian populations.
As modern humans had colonized Europe already by
A 40-45Kyr®, our results (across all estimates of the mutation
rate) support genetic discontinuity between that (hunter-
gatherer) population and contemporary Europeans. A Middle
Eastern European divergence time around =21 Kyr would also
suggest (i) a near Eastern source for the repopulation of Europe at
the end of the Last Glacial Maximum?”-*® and (ii) that migration
from the Middle East to Europe largely preceded the Neolithic
revolution, suggesting that Neolithic population movements
were largely within Europe’” ™2, These interpretations,
however, strongly depend on the mutation rate: taking into
account the uncertainty in the mutation rate, our divergence
time estimate is between & 12-25XKyr, which can be reconciled
with Neolithic migrations originating in the Middle East
(Supplementary Note 6).

We finally turned to the analysis of the functional elements of
the genome. Historically, mapping disease mutations in the AJ
population enabled the development of diagnostic panels. Here,
our sequencing data allowed us to generate an extensive listing of
variants in such genes (Supplementary Data 4, which also
demonstrates the detection of carriers for 35 known disease
mutations; Supplementary Note 7).

Recently, it was suggested that relaxation of negative selection
constraints in bottlenecked populations increases their deleterious
mutational burden***>. We therefore looked for patterns of
selective constraints at likely functional sites, taking advantage of
the availability of non-coding regions as a control. We used again
the platform-matched FL samples as a comparison cohort. As
expected due to purifying (negative) selection, variants of
increasing functional importance appear in lower frequencies in
both AJ and FL, but not significantly differently between the
populations (Supplementary Note 7; Supplementary Figs 13 and
14). A comparison of the functional mutation load showed slightly
increased load in AJ compared with FL (Supplementary Note 7;
Supplementary Table 8), consistently with the bottleneck hypo-
thesis. Specifically, the observed number of non-reference, non-
synonymous variants in AJ was 0.50% higher than expected based
on population differences in neutral variation (P=0.006;
Supplementary Note 7; see also Supplementary Fig. 15). We
note, however, that the effect is weak and the significance is
sensitive to the precise definition of deleterious variation
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(Supplementary Note 7). A genome-wide GERP analysis similarly
showed that AJ variants overlap with slightly more conserved sites
(P=0.01; Supplementary Note 7). In conclusion, we observed
increased deleterious mutation load in AJ, but the effect is ve?r
limited, compared, for example, with French Canadians®.
Ongoing progress in theory (for example, ref. 46) and data
analysis methods is expected to elucidate this difference as well as
lead to more decisive results for the AJ load.

Finally, as a number of diseases show higher prevalence in AJ!,
we sought to determine whether there are specific disease
categories  overabundantly affected by non-synonymous
variation®’ (Supplementary Note 7). While a few categories
showed higher mutational load than others (Supplementary
Table 9), none reached false discovery rate <0.05 (at least in our
relatively small sample size).

The AJ population has so far played an important role in
human genetics, with notable successes in gene mapping*®*° as
well as prenatal and cancer screening. We have demonstrated that
the narrow A] bottleneck, of just a few hundred individuals,
facilitates cost-effective cataloguing of the vast majority of
(prebottleneck) AJ variation, even considering the currently
large size of this population. It also suggests an increased power to
detect rare alleles of large effect that drifted to higher frequencies
during the bottleneck (Supplementary Note 8). This is in line with
the recent success of detecting such alleles in other isolated
populations'®>%3! and motivates continued studies focusing on
such cohorts.

Methods

Sample selection and sequencing. Samples were selected among controls of a
longevity study”? (Albert Einstein College of Medicine; n = 74) and a Parkinson’s
study®>>* (Columbia University Medical Center; n=54). The average age was 69
years. Some medically relevant phenotypes are given in Supplementary Table 1.
Genotype data were used to validate Ashkenazi ancestry and the absence of cryptic
relatedness. Informed consent was obtained in accordance with institutional
policies and the study was approved by the corresponding institutional review
boards. Sequencing was carried out by Complete Genomics, to average coverage
>50 X, in three batches (Supplementary Note 1).

QC and processing pipeline. Raw sequencing summary statistics are reported per
sample and per batch in Supplementary Data 2. Copy number variants and mobile
element insertions were also reported; however, the false-positive rate was high (see
below and Supplementary Note 2). All samples were previously genotyped on SNP
arrays; concordance was measured using CGA tools and averaged 99.67% over all
samples. The discordance was correlated with the array missingness, but not with
sequencing metrics; extrapolating to the limit of no array missingness, the dis-
cordance approached 0.047% (Supplementary Note 2).

Genotypes calls across individuals were merged using CGA tools and converted
to VCF or Plink> formats. Some of the analyses were carried out on 57 genomes
sequenced in the first batch. Otherwise, we used the entire cohort (n=128). The
merged genotypes were filtered by removing low quality and half-called variants,
multiallelic and multinucleotide variants, variants not called as non-reference in
any genome, variants with a no-call rate >10% (6% for the first batch), variants
not in Hardy-Weinberg equilibrium (P<10~°), and variants outside the
autosomes. For some analyses, we excluded a single genome containing an
exceptional amount (& 200 MB) of runs-of-homozygosity. We validated that
monomorphic non-reference variants that we observed were monomorphic (or
high frequency) in Complete Genomics’ and 1000 Genomes’ public sequencing
data sets (Supplementary Note 2).

To validate the Ashkenazi ancestry of our samples, we merged the AJ data set
with Middle Eastern and European individuals from HGDP>® and with the Jewish
HapMap project®. After pruning SNPs in LD (leaving ~48K SNPs), we ran
smartPCA®7. The PCA plot (Supplementary Fig. 1) demonstrates the absence of
either outliers or any batch effect (Supplementary Note 2). We also verified the
absence of cryptic relatedness (maximum pairwise 7 (Plink) was x5.5%).

We estimated the false-positive rate using runs-of-homozygosity (inside which
almost all heterozygous sites are due to errors), which we detected using Plink, after
removing low frequency variants and LD pruning. We used high- and low-
confidence sets of runs-of-homozygosity to obtain a lower and an upper bound,
respectively, for the false-positive rate. After trimming each segment, we estimated
the false-positive rate using the number of heterozygote sites along the segment
(all variants or SNVs only, and in the original genotype calls or in the cleaned data
set). There were overall ~300-600 MB found in autozygous segments, harbouring
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a few thousands of heterozygous sites. Cleaning reduced the SNV false-positive rate
by x3-4 fold to an extrapolated ~6-8K per genome. The false-positive rate for
non-SNVs was X6 times that of SNVs. We obtained an independent estimate of
the error rate using a pair of duplicate genomes, reaching qualitatively similar
conclusions (Supplementary Note 2).

The FL samples were mixed controls and cases from VIB in Ghent, Belgium.
They were sequenced to coverage ~70 X by Complete Genomics, albeit using an
earlier pipeline compared with the AJ genomes. PCA validated the FL ancestry
(Supplementary Note 2; Supplementary Fig. 1). The FL genomes (n = 26) were
merged and cleaned using a pipeline similar to that of the AJ genomes. We merged
the cleaned FL genotypes with the cleaned genotypes of the 57 AJ genomes
sequenced in the first batch. We removed any variants that appeared in the cleaned
genotypes in one population, but were removed during QC in the other population
(Supplementary Note 2), to avoid spurious population-specific variants. We phased
the merged data set using SHAPEIT®S, with parameters as recommended by the
authors, and with the 1000 Genomes reference panel. We used the molecular
phasing information (that is, linked heterozygotes calls) to estimate the switch
error rate at ~0.95% (=~ 0.3% for non-singletons). The merged and phased AJ-FL
data set was used for most population comparisons.

Annotations. dbSNP annotations were from the UCSC Genome Browser™.

Functional annotation for Fig. 1b was generated using ANNOVAR®. In Fig. 1b, the
reported counts are means and s.d. over all AJ individuals. For each individual,
we randomly selected a set of n =26 or n =127 other AJ individuals to serve

as the reference panel.

Rate of variant discovery. The empirical rate of discovery of segregating sites in
Fig. 1c is the average over 50 random orderings of the individuals in each cohort.
The theoretical number of segregating sites for the Wright-Fisher model used an
estimate of 0 based on the average heterozygosity and standard coalescent theory®!.
For variable size populations, we used equations from®? (Supplementary Note 3).
The demographic model we used (for each population separately) is a bottleneck
followed by an exponential expansion. The parameters were inferred by fitting the
allele frequency spectrum using dadi%® (see below and Supplementary Note 6). The
higher predicted number of FL sites was significant (P<0.01) with respect to
parametric bootstrapping of the demographic models (Supplementary Note 3).

A picture similar to Fig. 1c was seen when computing the rate of discovery of non-
reference variants. There, projection to larger samples was on the basis of the first
three entries of the allele frequency spectrum and the method of*> (Supplementary
Note 3; Supplementary Fig. 3).

The joint allele frequency spectrum. Initial inspection of the joint spectrum
revealed a few thousands of highly differentiated variants (for example, AJ-specific
variants of frequency >50%). We suspected that those variants were due to
reference genome mapping discrepancy (hgl8/hgl9), which we confirmed using
Complete Genomics’ public genomes resource (Supplementary Note 3). We
therefore removed from further analysis ~ 4,000 population-specific variants with
frequency >25%. To facilitate population-genetic comparisons, we downsampled
the joint spectrum to 50 AJ and 50 FL haploid genomes analytically using
hypergeometric expectations. We folded and marginalized the spectrum using
standard definitions (Supplementary Note 3; minor alleles were defined with
respect to the combined sample; Fig. 3b). The Wright-Fisher expected spectrum
(Fig, 3a) was computed using standard coalescent theory®!. The panmictic
spectrum of Fig. 3b was computed analytically assuming that the appearances of
each variant are randomly distributed between AJ and FL (Supplementary Note 3).
Fsr was computed using 8adi®.

IBD segment detection. To detect IBD segments, we first assigned genetic map
distances using HapMap2 (ref. 63). We then ran Germline?® using a minimal
length cutoff of either 3 cM or 5cM, and in the ‘genotype extension’ mode!2, which
allows segments to extend as long as double homozygous sites are matching. We
followed by filtering segments with particularly short physical length, overlap with
sequence gaps or where all matching sites had the major allele. We further filtered
segments by computing a score related to the probability of a segment to be truly
shared-by-descent, on the basis of the allele frequencies of sites along the segment
(Supplementary Note 4). Scores were higher for within-AJ segments than for
within-FL or AJ-FL segments (Supplementary Fig. 4). In addition, most non-AJ
sharing was concentrated in a handful of peaks (Supplementary Note 4), suggesting
that many of the non-AJ detected segments were false positives.

Coverage of the genome by IBD segments. To create Fig. 2b, we considered
sharing within-AJ (using all 128 individuals) and within-Europeans (FL or CEU
from the 1000 Genomes Project) separately. For each hypothetical reference panel
size n, we created a subset of size n of the full panel. For each individual in the
subset, we computed the fraction of the genome (in physical distance) shared
between that individual and the rest of the subset (which implies sharing of at least
one of the haplotypes, but not necessarily both). We then averaged over all indi-
viduals in the subset and over 50 random subsets. The coverage curve was fitted to
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the expectation from a simple model of a bottleneck lasting a single generation,
with the population size being extremely large otherwise (Supplementary Note 4).

Demographic inference using IBD segments. We used the method developed in
ref. 14. For each segment length bin, we summed the total length (in cM) of
segments having length in the bin and divided by the total genome size and by the
total number of (haplotype) pairs. The resulting curve (Fig. 3¢) was fitted (by a grid
search, minimizing the sum of squared (log-) errors) to a bottleneck and expansion
model, with theoretical curves computed as in ref. 14. The constant population size
estimator was computed as in ref. 21. The fitting error around the optimal
parameters (Supplementary Fig. 11) showed deep minima around the optimal
bottleneck time and population size, but less confidence in the values of the
ancestral population size and the growth rate. Confidence intervals were obtained
using jackknifing (Supplementary Table 6; Supplementary Note 4). Parametric
bootstrap gave qualitatively similar results.

Imputation accuracy using the AJ panel. We split the 57 AJ genomes of the first
batch (here phased using a variation of SHAPEIT that employs molecular phasing
information (Supplementary Note 2)) into a reference panel (n=50) and a study
panel (n =7). We reduced the study panel sequences to SNPs typically genotyped on
an [lumina Human Omnil-Quad array, and sup?lemented them with 1000 SNP
arrays of AJ controls from a Schizophrenia study!*$, to emulate a typical
imputation scenario. After standard QC procedures (Supplementary Note 5), we
phased the entire study panel (n=1007) using SHAPEIT. We then imputed the
study panel, on the basis of the AJ reference panel, using IMPUTE2 (ref. 64). We also
imputed using the CEU reference panel from 1000 Genomes (n = 87, larger than the
AJ panel). We carried out all analyses on chrl only (Supplementary Note 5).

Imputation accuracy was measured by uncovering the full sequences of the AJ
study genomes (Supplementary Table 4). Sites not imputed by the CEU panel were
set as homozygous reference, and sites imputed by the CEU panel that were not
found in the AJ sequences were (conservatively) discarded (Supplementary Note 5).
Monomorphic non-reference sites in the AJ panel were also discarded. The squared
correlation coefficient, r%, was computed between the aggregate of all true
genotypes (over all sites and study individuals) and all imputed dosages. Due to our
small study panel, we computed the minor allele frequency (plotted in Fig. 2c and
Supplementary Fig. 6) in the AJ reference panel (n=150). We excluded variants
with frequency zero from these plots (leaving finally ~200K variants per
individual), since they are necessarily wrongly imputed. They were not removed
from the overall accuracy reports (Supplementary Table 4).

Demographic inference using the allele frequency spectrum. We inferred the
parameters of demographic models using 9adi%%. For all models, we used a
mutation rate of 1.44 x 10~ 8 per bp per generation® (based on the time of the
human settlement in the Americas) and set the genome length to 2.685 x 10°
(autosomal hgl9, excluding sequence gaps) times 0.81, which is an estimate of the
fraction of variants remaining after cleaning (Supplementary Note 6). We
estimated the scaled mutation rate, 6, by matching the number of segregating sites.
The generation time we used was 25 years. We inferred single-population models
using the individual AJ and FL spectra as well as two-population models using the
joint spectrum (downsampled to 50 x 50 haploid genomes). In each case, the
spectrum was fitted, using 0adi, with parameters as recommended by the authors
(Supplementary Note 6). For each model, we experimented with different
parameter regions until identifying a plausible parameter set. We then initiated the
parameters to randomly perturbed values around that set. We repeated
optimization with 100 different initial conditions and reported the most likely
parameters. We verified that these parameters were not close to the optimization
boundaries and not sensitive to the initial perturbation.

Parametric bootstrap was carried out by simulating (using MaCS®, a coalescent
simulator) artificial genomes under the demographic model of the most likely
parameter set. For each of 100 data sets, the allele frequency spectrum was
computed and folded, and 0adi was used to infer the demographic parameters,
exactly as for the real data. The biased-corrected 95% confidence intervals were
computed assuming a normal distribution of the inferred parameters
(Supplementary Note 6). Note that the confidence intervals account only for
sampling noise but not for systematic errors such as sequencing errors or model
and mutation rate misspecification.

For the single-population case (Supplementary Note 6, Supplementary Fig. 7
and Supplementary Table 5), we found that a model of a bottleneck followed by
exponential growth explains well the spectra of both populations (Supplementary
Fig. 8). Our main two-population model is shown in Fig. 4. The parameters of the
recent AJ bottleneck were fixed to the values inferred from the IBD analysis
(Supplementary Table 6). We verified that the log-likelihood of the optimal model
decreased sharply near the values of two key parameters: the fraction of European
admixture into AJ and the time of the European-Middle Eastern divergence.
Admixture into AJ was shown to be necessary for a reasonable fit (Supplementary
Note 6). Most parameters were robust to model specification, specifically, the time
of the out-of-Africa bottleneck, the fraction of European admixture into AJ, and to
some extent, the European-Middle Eastern divergence time. The time of the
European admixture, however, differed considerably between models

SGS

(Supplementary Note 6). The most promising model refinement included an
additional wave of migration from the ancestral Middle Eastern population into
Europeans at about =17 Kyr; experiments with further refinements did not
converge to a consistent parameter set (Supplementary Note 6).

The deleterious mutation load. We annotated coding variants in the merged and
size-matched AJ-FL data set (n =26 x 2) using the SeattleSeq Variant Annotation
server. We measured the (non-reference) variant load either as unique or total
counts, and either for all or low frequency only variants (Supplementary Note 7).
We further broke the counts by whether the variants were non-coding, coding
synonymous or coding non-synonymous, and by PolyPhen’s® predicted effect
(damaging or benign). To account for the genome wide larger number of variants
in AJ, we normalized all counts by the ratio between the number of neutral AJ and
FL variants. Significance of AJ-FL differences in any category was evaluated by
assuming that all counts were binomial (Supplementary Table 8; Supplementary
Note 7). To compare the number of non-synonymous variants per individual
(Supplementary Fig. 15), we normalized each count by the number of intergenic
variants. The (genome wide) average GERP score over all non-reference variants in
each individual®” was slightly higher (more conserved) in AJ than in FL
(Supplementary Note 7).

We also attempted to determine whether there was any disease category with
particularly high mutational burden in AJ. We computed the total number (over all
individuals in each population) of non-synonymous (non-reference) variants in all
genes belonging to each disease category, using the annotation developed in ref. 47
and then by Omicia (assigning 2488 genes into 17 categories; Supplementary
Table 9). We then ranked all genes according to the difference between the number
of AJ and FL non-synonymous variants, and used GSEA®® to determine whether
any given category had an exceptional number of top ranked genes. Only the aging
category reached P <0.05, but with false discovery rate >0.05 (Supplementary
Note 7).

A catalogue of variants in known disease genes. Our list of AJ disease genes is
based on a table from ref. 2. We determined the hgl9 coordinates of all disease
mutations in that table manually using a number of online resources
(Supplementary Note 7). The final list of 73 mutations in 48 genes is reported in
Supplementary Data 4, along with some properties of each mutation. We then
extracted all variants (including non-SNVs) in these genes from our unfiltered AJ
genotypes (n=128). We detected carriers of 35 known disease mutations in 29
genes and annotated 953 newly discovered variants (using ANNOVAR®; also
reported in Supplementary Data 4, along with summary statistics per gene;
Supplementary Note 7).
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