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Network-based machine learning approach to
predict immunotherapy response in cancer patients
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Immune checkpoint inhibitors (ICIs) have substantially improved the survival of cancer

patients over the past several years. However, only a minority of patients respond to ICI

treatment (~30% in solid tumors), and current ICI-response-associated biomarkers often fail

to predict the ICI treatment response. Here, we present a machine learning (ML) framework

that leverages network-based analyses to identify ICI treatment biomarkers (NetBio) that can

make robust predictions. We curate more than 700 ICI-treated patient samples with clinical

outcomes and transcriptomic data, and observe that NetBio-based predictions accurately

predict ICI treatment responses in three different cancer types—melanoma, gastric cancer,

and bladder cancer. Moreover, the NetBio-based prediction is superior to predictions based

on other conventional ICI treatment biomarkers, such as ICI targets or tumor

microenvironment-associated markers. This work presents a network-based method to

effectively select immunotherapy-response-associated biomarkers that can make robust ML-

based predictions for precision oncology.
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Over the past several years, immune checkpoint inhibitors
(ICIs) have drastically improved the clinical treatment of
cancer patients1. In clinical trials, using ICIs generally

induced fewer side effects than chemotherapy with longer-lasting
treatment benefits. Accordingly, the use of ICIs has expanded to a
constantly growing list of cancer types, including melanoma,
bladder cancer, and gastro-esophageal cancer1. However, despite
the clinical benefits gained from ICI treatments, one major lim-
itation is that only a minority of patients respond to immu-
notherapy (~30% in solid tumors), and toxicity may occur after
ICI treatment2. Therefore, a method is needed to identify bio-
markers that can detect immunotherapy responders before drug
administration, providing information about the clinical use of
ICIs and improving the survival of cancer patients2,3.

A major challenge of precision medicine using immunotherapy
is identifying markers from immunotherapy-treated patients that
can robustly predict drug responses across multiple cancer patient
cohorts. For example, programmed cell death 1 (PD1)/pro-
grammed cell death-ligand 1 (PD-L1) expression by immuno-
histochemistry is a Food and Drug Administration (FDA)-
approved companion diagnostic test for various cancer types4.
Accordingly, many studies have reported a positive correlation
between PD-L1 expression and the ICI response in non-small cell
lung cancer5–7. Strikingly, however, other studies have reported
no significant correlation between PD-L1 expression and the ICI
treatment response3,8–10, and some studies have even revealed
that ICI responders display low PD-L1 expression levels3,11.
These inconsistent predictions of previously identified biomarkers
necessitate identifying new biomarkers that robustly predict the
immunotherapy response. Litchfield et al. recently found that
conventional biomarkers can explain only ~60% of the ICI
response, suggesting that novel factors are yet to be discovered12.
Because of the challenges associated with identifying robust bio-
markers from immunotherapy-treated patients, many recent
studies have focused on identifying biomarkers from cancer
patients who were not treated with ICIs, a strategy that benefits
from the availability of many samples13–17. Despite the success of
this approach, a major limitation of these unsupervised learning
methods is that markers specific to immunotherapy treatment
may not be identified from non-immunotherapy-treated patients,
limiting the potential improvements of ICI-based personalized
medicine. Therefore, successful methods must be developed to
identify biomarkers from ICI-treated patients3 (e.g., supervised
learning methods) and ultimately maximize the benefit of ICI
treatment.

Network biology offers a powerful means to identify robust
biomarkers. Network-based approach exploits observations that
genes with similar phenotypic roles tend to co-localize in a spe-
cific region of a protein-protein interaction (PPI) network18,19.
This tendency has been leveraged to identify gene modules that
are much more robust in predicting phenotypic outcomes than
using single gene-based approaches20. For example, Hofree et al.
showed that patients with somatic mutations in similar network
regions displayed similar clinical outcomes, although many
clinically identical patients share no more than a single
mutation21. Furthermore, Guney et al. demonstrated that a drug’s
efficacy can be inferred from the proximity between drug targets
and disease genes22. In addition, we have previously reported that
drug-response biomarkers that predict the overall survival in
cancer patients can be identified via network proximity using the
pharmacogenomics data of patient-derived organoid models23.
Altogether, evidences indicate that the network-based approach
provides predictive and less noisy biomarkers, but the usefulness
of the approach has not yet been validated to predict responses to
ICI treatment in a large sample of cancer patients.

Here, we report a network-based machine-learning framework
that can (i) make robust predictions across ICI datasets and (ii)
identify potential biomarkers. Specifically, we could robustly predict
responders and non-responders using the expression levels of
network-based biomarkers in more than 700 patient samples,
covering melanoma, metastatic gastric and bladder cancer patients
treated with ICIs targeting the PD1/PD-L1 axis. To identify robust
drug-response biomarkers, we implemented a network-based
approach, in which we identified biological pathways located
proximal to immunotherapy targets in a PPI network. To measure
the generalizability of our biomarkers, we extensively tested within-
study cross-validations, as well as across-study predictions. We
found that the NetBio-based predictions were more accurate than
predictions based on the expression levels of ICI targets including
PD1, PD-L1, or cytotoxic T-lymphocyte antigen 4 (CTLA4) and
markers associated with the tumor microenvironment, including
CD8 T cell, T-cell exhaustion, cancer-associated fibroblast (CAF),
and tumor-associated macrophage (TAM) markers. Furthermore,
using our network-based transcriptome biomarkers and the tumor
mutational burden (TMB), a well-established marker of the ICI
response, improved the prediction of the overall survival in ICI-
treated bladder cancer patients compared with TMB-based pre-
dictions. These findings suggest that network-guided transcriptomic
biomarkers can help improve genomic-based ICI response predic-
tions. In summary, our method provides an approach to unveil
biomarkers from ICI-treated patients, helping previously identified
biomarkers to improve the prediction of the ICI response.

Results
Overview of network-based immunotherapy response predic-
tions. Our previous work supported that biomarkers associated
with the anti-cancer drug response are located proximal to the
drug targets in a PPI network23. Briefly, we found that biomarkers
that are associated with a therapeutic effect can be identified from
patient-derived organoid models, which were predictive of the
drug response in 5-Fluorouracil-treated colorectal cancer and
cisplatin-treated bladder cancer patients. Building from our pre-
vious work, we aimed to identify biological pathways that are
associated with the ICI response by selecting pathways proximal
to ICI targets (Fig. 1a, b; Methods). We used the STRING PPI
network (STRING score >700)24, comprising 16,957 nodes and
420,381 edges. First, we applied network propagation, using ICI
targets (e.g., PD1 for nivolumab or PD-L1 for atezolizumab) as
seed genes, to spread the influence of ICI targets over the network
(Fig. 1a and Supplementary Data S1–3). A characteristic of net-
work propagation is that influence scores are higher for nodes
closer to ICI targets25. Next, we selected genes with high-
influence scores (top 200 genes), and identified biological path-
ways (Reactome pathways26) enriched with the genes (Fig. 1b and
Supplementary Data S4). We then used the selected biological
pathways to predict the immunotherapy response and considered
these pathways as Network-Based Biomarkers (NetBio).

To conduct ML-based immunotherapy-response predictions, we
used NetBio as input features; as a negative control, we used gene-
based biomarkers (i.e., immunotherapy target genes), tumor
microenvironment-based biomarkers or pathways selected from
data-driven ML approaches (Fig. 1c and Supplementary Data S5, 6).
Using the expression levels of the input features, we applied logistic
regression to train the ML model. To test the predictive
performances of the input features, we measured the performance
in predicting (i) the drug response measured by a reduced tumor size
after immunotherapy treatment or (ii) the patient’s survival. To train
an ML model using supervised learning, we used different
combinations of training and test datasets to extensively measure
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the consistency of the prediction performances. Specifically, we
performed (i) within-study predictions, in which training and test
datasets were generated from a single cohort or (ii) across-study
predictions, in which two independent datasets were used as training
and test datasets (Fig. 1d). Furthermore, we alternated using large or
small numbers of training samples to measure the consistency of the
prediction performances under various training conditions.

Within-study cross-validations reveal that NetBio-based ML
can make consistent predictions of the ICI treatment response
and overall survival. The transcriptome of our NetBio could
make consistent predictive performances to predict the ICI
response (Fig. 2). In comparison, we observed less stronger pre-
diction performances when using the expression of drug targets
(i.e., PD-1 for nivolumab and pembrolizumab, PD-L1 for
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Fig. 1 A network-based machine-learning (ML) approach to identify immunotherapy-associated biomarkers. a Network visualization to identify genes
proximal to immunotherapy targets in a protein-protein interaction (PPI) network. Immunotherapy targets (e.g., PD-1 for nivolumab) are displayed in blue
and projected onto a PPI network, followed by network propagation using drug targets as seed genes. Network propagation is depicted as blue arrows.
After propagation, drug target-proximal genes were selected by choosing nodes with high propagation scores (high-influence scores). b Identifying
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c Input features used for machine learning to predict immunotherapy responders and non-responders. d Overview to measure predictive performances. For
prediction objectives, we conducted predictions of the drug response and overall survival. For the training and test datasets, we conducted within-study
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atezolizumab and CTLA4 for ipilimumab-treated patients). We
first conducted a leave-one-out cross-validation (LOOCV) to
measure the performance using NetBio or other known
immunotherapy-related biomarkers (including drug targets). To
this end, we used four immunotherapy cohorts—two melanoma
cohorts (Gide et al.27, Liu et al.28), one metastatic gastric cancer
cohort (Kim et al.29) and one bladder cancer cohort

(IMvigor21030). The ML model trained using our NetBio con-
sistently made accurate predictions in all four datasets (Fig. 2a–d;
Fisher’s exact test, P < 0.05 was considered significant). By con-
trast, predictions made using the expression levels of drug targets
were less consistent, where drug targets were accurately predictive
only in a melanoma cohort (Gide et al.; Fig. 2a) but not in the
other three cancer cohorts (Fig. 2b–d). Notably, predictions using
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the expression level of drug targets were inversely predictive in
the Liu dataset (Fig. 2b). Furthermore, a prolonged overall sur-
vival was consistently observed for patients predicted as ICI
responders using our NetBio-based ML in three datasets with
overall survival data available (Gide et al.; Kim et al.; IMvigor210;
log-rank test P < 0.05 was considered significant); using drug
target expression predicted the overall survival in only one dataset
(Fig. 2e–g). Similarly, we found that NetBio-based LOOCV was
able to accurately predict progression-free survival (PFS) in the
Gide and Liu datasets (Supplementary Fig. 1a, b; log-rank test,
P < 0.05 considered significant). By comparison, drug target-
based predictions were less consistent in predicting PFS (Sup-
plementary Fig. 1a, b). In particular, prediction based on PD1
expression in the Liu dataset was inversely predictive of PFS
(Supplementary Fig. 1b). We also calculated predictions of drug
response, overall survival, and PFS in the Liu dataset based on
combined expression profiles of PD1 and CTLA4 (Supplementary
Fig. 2). The results showed that the combined PD1 and CTLA4
expression levels were not predictive of immunotherapy response,
overall survival, or PFS (Supplementary Fig. 2). Altogether, our
data showed that the network-based approach, which expands
biomarkers to network neighbors of drug targets, improves pre-
dictions based on the expression levels of drug targets.

We next compared the predictive performance of our NetBio
with other previously identified ICI-related biomarkers and found
that our approach was, in most cases, better across all four cancer
datasets (Fig. 2h–o). For single gene-based markers, we
considered the expression levels of immunotherapy targets (PD-
1, PD-L1, or CTLA4). For tumor microenvironment-associated
markers, we considered gene sets associated with CD8 T-cell
proportions, T-cell exhaustion, CAFs, and TAMs. We also
considered using either all the single gene-based markers
(GeneBio) or all the tumor microenvironment-associated markers
(TME-Bio) to make predictions. We used accuracy and the
F1 score to measure the predictive performances of LOOCV and
found that NetBio-based predictions were better in 71 of 72
comparisons (98.6%) than predictions using all other biomarkers.

Furthermore, predictions from NetBio were similar to or better
than other biomarkers when using fewer training datasets to train
ML models. Specifically, we conducted a Monte-Carlo cross-
validation. For 100 different iterations, 80% of the samples were
randomly selected and used as a training set and the remaining
20% were used as a test set (Supplementary Fig. 3a). In 70 of 72
comparisons (97.2%), our network-based approach showed
significantly better or equal performance compared with all other
biomarkers (Supplementary Fig. 3b–j; two-sided Student t test
P < 0.05 was considered significant).

To determine if NetBio can improve predictive performance
compared with markers used in clinical settings, such as
immunohistochemistry (IHC)-based markers, we compared
IHC-based predictions with NetBio-based predictions for the
IMvigor210 dataset, which contains both bulk RNA sequencing
data and tumor proportion scores (TPS). Compared with TPS,

NetBio performed better in three different prediction tasks,
including LOOCV, Monte-Carlo cross-validation (80% training
and 20% testing for 100 independent iterations), and overall
survival prediction (Supplementary Fig. 4). Our results provide
further evidence that using a network-based approach to identify
biomarkers can make robust predictions of the ICI response in
cancer patients.

Across-study predictions using NetBio-based ML can make
consistent predictions in additional independent melanoma
datasets. Key aspects of an accurate ML model include the fol-
lowing: (i) its ability to generalize to new datasets and (ii) its
consistent performance when few training samples are available.
First, we observed that the ML model trained using NetBio could
make robust predictions when using independent datasets,
whereas the predictive performance was poorer when using other
biomarkers (Fig. 3). To test the generalizability of our ML model,
we used the melanoma dataset from Gide et al. to train the ML
model and tested the predictive performance in three indepen-
dent melanoma datasets (Auslander et al.13, Prat et al.31, and Riaz
et al.32; Fig. 3a). To compute the performance of our model, we
used the prediction probability using a logistic regression model.
We selected the area under the curve (AUC) of the receiver
operating characteristics curve as a performance metric13–16.
NetBio-based ML showed AUCs >0.7 in two external datasets
(Fig. 3b, c; Auslander AUC= 0.79; Prat AUC= 0.72), and 0.69 in
the remaining dataset (Fig. 3d; Riaz). In contrast to NetBio-based
ML, predictions using other biomarkers displayed highly varying
prediction performances (Fig. 3b–d). For example, PD-1 expres-
sion showed fewer optimal performances, with the maximum
AUC reaching only 0.66 (Fig. 3b–d). Additionally, although
predictions using markers of T-cell exhaustion were highly
accurate in the Auslander and Riaz datasets (Fig. 3b, d; AUC >
0.7), the prediction performances were slightly better than ran-
dom expectation in the Prat dataset (Fig. 3c; AUC= 0.58).
Moreover, NetBio-based prediction outperformed predictions
based on drug targets or tumor microenvironment markers when
area under the precision-recall curve (AUPRC) was used as a
performance metric (Supplementary Fig. 5). We also observed
that NetBio-based prediction performed better than other
methods when three independent training datasets were com-
bined into a single dataset (Supplementary Fig. 6), highlighting
the robustness of our network-based approach.

Additionally, we found that NetBio improved predictive
performance when the training data and test data were drawn
from different cohorts. When we used the Liu data to train
the machine-learning model and then tested the predictive
performance in three different cohorts (Supplementary Fig. 7a),
NetBio-based predictions outperformed predictions based on
other ICI-related biomarkers in 88.5% (23/26) of comparisons
(Supplementary Fig. 7b–d). These results suggest that regardless
of the datasets used to train the machine-learning model, NetBio

Fig. 2 Predictions of drug response and overall survival for immunotherapy-treated patients. a–d Immunotherapy-response prediction using the
expression levels of drug targets (PD-1, PD-L1, or CTLA4) or network-based biomarkers (NetBio). Leave-one-out cross-validation (LOOCV) predictions for
the (a) Gide, (b) Liu, (c) Kim, and (d) IMvigor210 datasets are plotted. Predicted responders (Pred R) and non-responders (Pred NR) are plotted against
observed responders (teal) and non-responders (orange). The two-sided Fisher’s exact test was used to compute statistical significance. e–g Overall
survival of predicted responders and non-responders based on LOOCV. The predicted responders and non-responders are depicted in red and blue,
respectively. The log-rank test was used to measure statistical significance. The light-colored areas indicated 95% confidence interval of each percent
survival. h–o LOOCV performance based on NetBio markers; gene-based markers, including PD-1, PD-L1, and CTLA4; and tumor microenvironment (TME)-
based markers, including CD8 T cells, T-cell exhaustion, cancer-associated fibroblasts (CAFs), and tumor-associated macrophages (TAMs). GeneBio and
TME-Bio include all of the target genes of each category. To quantify performance, we used (h–k) accuracy and (l–o) F1 score. Source data are provided as
a Source Data file.
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can improve predictive performance compared with drug target-
based or tumor microenvironment-based biomarkers.

Next, we tested the performance of NetBio-based predictions
using data on cancer recurrence after anti-PD-1 treatment in a
recent cohort of melanoma patients (Huang et al.33) (Supple-
mentary Fig. 8a). We found that regardless of the training dataset
used (Gide or Liu), NetBio-based markers accurately predicted
cancer recurrence after ICI treatment (Supplementary Fig. 8b, c;
Gide to Huang AUC= 0.78, Liu to Huang AUC= 0.8). These
results suggest that NetBio-based machine-learning can be a
useful framework for predicting ICI responses in new datasets.

Next, we tested whether the ML model can make robust
predictions even when fewer training samples are available.
Again, NetBio-based ML with smaller sample sizes made
consistent predictions compared with GeneBio or TME-Bio-
based ML models. To test this, for 100 iterations, we randomly
sampled 80% of patients from the training dataset (Gide dataset)
to train the ML model and tested the prediction performance in
three external melanoma datasets (Supplementary Fig. 9a). Our
biomarkers showed statistically significantly better or equal
performance in 49 of 54 comparisons (Supplementary Fig. 9;
90.7%). Only PD-L1 expression in the Auslander dataset, CTLA4
in the Riaz dataset, and CD8 T-cell exhaustion markers in the

Riaz datasets displayed prediction performances that were better
than NetBio-based predictions when using AUC as the measure
of performance, but these biomarkers (PD-L1, CTLA4, and CD8
T exhaustion markers) were inconsistent in their predictions in
the other melanoma datasets (Supplementary Fig. 9d–i).

NetBio-based predictions outperform other state-of-the-art
methods of drug response prediction. Next, we compared
NetBio-based prediction with other state-of-the-art methods for
immunotherapy-response prediction13,14,16,17 as well as a deep
neural network (DNN)-based method34 (see the Methods). We first
tested the predictive performance for LOOCV. We found that
NetBio-based prediction was better than the other methods in 33 of
34 comparisons (Supplementary Fig. 10; 97.1%). For across-study
predictive performance, NetBio-based prediction was better than
the other methods in 17 of 18 comparisons (Supplementary Fig. 11;
94.4%). These results suggest that NetBio can improve prediction of
ICI treatment response compared with other biomarkers.

NetBio-based predictions outperform purely data-driven fea-
ture selection approach. A major limitation of using data-driven
ML models for clinical applications is its inability to consistently
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perform in new datasets, despite performing well in training
datasets. Thus, we tested whether the addition of prior biological
knowledge, representing a PPI network in this study, can improve
feature selection compared with purely data-driven feature
selection approaches. The NetBio-based ML model enables con-
sistently improved prediction performances compared with
purely data-driven ML predictions (Fig. 4). In detail, for the data-
driven ML model, we selected K number features (where K equals
the number of NetBio) that best distinguish responders and non-
responders in a training dataset and used the selected features to
train the ML model (Fig. 4a; Methods). In 11 different tasks, we
found that NetBio-based predictions showed significantly better
performance than features from ML-based feature selection
(Fig. 4b; two-sided paired Student t test P= 3.3 × 10−3). Fur-
thermore, performance improvements were consistently observed
when predicting across melanoma cohorts (across-study predic-
tions; Fig. 4c), suggesting that network-guided selection can help
reduce the overfitting of ML models. This observation suggests
that network-guided feature selection can provide robust features
compared with those from purely data-driven feature selection.
Altogether, our result suggests that robust transcriptomic

biomarkers can be identified by leveraging network-based bio-
marker selection.

NetBio-based predictions recapitulate the immune micro-
environment in external The Cancer Genome Atlas (TCGA)
datasets. Because NetBio robustly performed the best across
distinct cohorts encompassing three different cancer types, we
investigated whether NetBio-based predictions can recapitulate
the immune microenvironment that is associated with immu-
notherapy responses. We tested how NetBio-based predictions
were correlated with immune contextures in the TCGA datasets35

(Fig. 5a). Specifically, we used the Gide or Liu dataset (melanoma
cohorts) to predict ICI responses in melanoma patients in the
TCGA dataset (TCGA SKCM), Kim dataset (gastric cancer
cohort) to predict TCGA gastric cancer (TCGA STAD), and
IMvigor210 dataset (bladder cancer cohort) to predict TCGA
bladder cancer (TCGA BLCA) patients and correlated the pre-
dicted drug response with (i) the tumor mutation burden (TMB)
or (ii) immune contextures of TCGA patients (Fig. 5a). For
immune contextures, we used immunogenic scores computed by
Thorsson et al.36. The entire correlation results for NetBio-based
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predictions versus TMB or immune contextures are available in
Supplementary Fig. 12.

NetBio-based predictions successfully recapitulated the
immune microenvironments (Fig. 5b). We speculated that the
correlation results from Gide and Liu cohorts have common
characteristics because they both concern melanoma patients. As
expected, they exhibited similar immune microenvironment
characteristics, including a high positive correlation with
leukocyte fractions and CD8 T-cell proportions, and a high
negative correlation with M2 macrophage proportions (Fig. 5b).
By contrast, we observed reduced correlations with immune
signatures when we merged three TCGA cancer types into a
single cohort for analysis (Supplementary Fig. 13), suggesting the
importance of considering cancer-type specificity. Moreover, we
also found that regardless of the training dataset used (Gide or
Liu), patients with the “immune” phenotype in the SKCM TCGA
dataset37 were likely to be predicted ICI responders based on
NetBio markers (Supplementary Fig. 14), suggesting that
predicted ICI responders have high immune infiltration levels.
Interestingly, the correlation between predictions based on the
two different training sets was weak (Supplementary Fig. 15),
suggesting that (i) ICI responders may have distinct immune cell
infiltration mechanisms and (ii) multiple molecular subtypes may
exist within melanoma patients.

We further investigated which NetBio pathway was responsible
for the high correlation with immune cell proportions. The
pathway features of greatest importance from ML training (top 10
greatest feature importance with positive coefficient) using the
Gide dataset (Supplementary Fig. 16) revealed that “antigen
presentation folding assembly and peptide loading of class I
MHC” displayed the highest positive correlation with CD8 T-cell
proportions (Fig. 5c and Supplementary Fig. 16; PCC= 0.41).
This finding was expected because antigen presentation by
antigen-presenting cells or tumor cells induces the infiltration
of CD8 T cells. When using the Liu dataset, among pathways of
greatest importance (top 10 greatest feature importance with
negative coefficient), “FGFR signaling” showed the highest
correlation with CD8 T-cell proportions (Supplementary Fig. 17),
where the expression level of the pathway was negatively
correlated with the cell proportions (Fig. 5d and Supplementary
Fig. 17; PCC=−0.29). Moreover, we found that the expression
level of “FGFR signaling” was lowest in SKCM TCGA patients
with the immune subtype (Supplementary Fig. 18), suggesting
that low expression of FGFR signaling is associated with high
immune infiltration. Consistent with our findings, recent studies
have suggested that fibroblast growth factor 2 depletion can lead
to increased T-cell recruitment, enabling tumor regression38. Our
results here suggest the following: (i) non-identical CD8 T-cell
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recruitment mechanisms may exist in melanoma and (ii) NetBio
can robustly capture CD8 T-cell recruitment in tumor samples,
even when different melanoma cancer cohorts are used to train
an ML model.

NetBio pathways were also identified that were consistent with
the immune microenvironment in gastric and bladder cancer. In
gastric cancer, NetBio-based predictions were highly correlated
with follicular helper T-cell proportions (Fig. 5b). Among
pathways of greatest importance from the Kim cohort, a high
expression level of “mitotic G2-G2-M phases” was associated with
high follicular helper T-cell proportions (Supplementary Figs. 16,
19). Consistent with our results, a previous study reported that
the differentiation of helper T cells was regulated by the cell cycle
pathway39. In bladder cancer, we found that NetBio-based
predictions were positively correlated with the leukocyte fractions
(Fig. 5b). Accordingly, the NetBio pathways demonstrated
chemotaxis (i.e., chemokine receptors bind chemokines) and
phagocytosis (i.e., FcgR activation), which are functions closely
associated with immune infiltration (Supplementary Figs. 16,
S20). These pathways displayed a high correlation with leukocyte
fractions in TCGA bladder cancer patients (Supplementary
Fig. 20a, b; PCC > 0.6). Our results suggest that the immune
microenvironments can be captured using NetBio pathways in
gastric cancer and bladder cancer.

Expression levels of NetBio pathways are associated with
immune cell infiltration in bladder cancer patients. Because
infiltration of immune cells was reported to be closely associated
with anti-cancer drug responses in bladder cancer30,40, we asked
whether expression levels of NetBio pathways in the bladder cancer
TCGA dataset (Supplementary Fig. 20) are associated with immune
cell infiltration levels. In bladder cancer patients, we validated that
both chemotaxis and phagocytosis pathways (i.e., chemokine
receptors bind chemokines and FcgR activation, respectively) are
associated with immune infiltration in the PD-L1 treated bladder
cancer cohort, using additional IHC-based results (Fig. 6). We used
immune phenotypes in the IMvigor210 dataset30. Specifically, we
used distinct immune phenotypes including (i) immune desert

(fewer than 10 CD8 T cells), (ii) excluded (CD8 T cells adjacent to
tumor cells), and (iii) infiltrated (CD8 T cells in contact with tumor
cells) phenotypes30 (Fig. 6a) and compared the expression levels of
chemotaxis and phagocytosis pathways with the immune pheno-
types (Fig. 6b, c). The immune infiltrated phenotype displayed the
highest expression level of the pathways compared with the immune
desert or excluded phenotypes (Fig. 6b, c; Mann–Whitney U
P < 0.05), suggesting that the NetBio pathways can capture leukocyte
infiltration fractions in bladder cancer. Altogether, our results sug-
gest that NetBio can consistently unveil pathways related to the
immunotherapy response-associated immune microenvironment.

Combining NetBio expression levels with the tumor mutation
burden (TMB) in an ML model improves the prediction of PD-
L1 inhibitor-treated bladder cancer patients. Although a high
TMB level is associated with increased benefits of ICI treatment,
ICI responders and non-responders often show significant over-
lap of TMB levels, suggesting that TMB alone is not a sufficient
predictor of the ICI response4,41,42. Thus, we tested whether
combining our NetBio with TMB-based predictors improves
prediction performance (Fig. 7a). Combining the NetBio
expression levels and TMB improved the prediction of the overall
survival in bladder cancer patients treated with atezolizumab,
which is a PD-L1 inhibitor (Fig. 7b, c and Supplementary Fig. 21).
Using LOOCV to predict the ICI treatment response with only
the TMB to train the ML model, the 1-year percent survival
difference between the predicted responder group and predicted
non-responder group was 18% (Fig. 7b; log-rank test
P= 2.0 × 10−3; the 1-year percent survival rates for the predicted
responder and predicted non-responder group was 60.8% and
42.8%, respectively). The 1-year percent survival difference was
increased to 22.3% when using both the TMB and NetBio (Fig. 7c;
the 1-year percent survival rates for the predicted responder and
predicted non-responder group were 64.4% and 42.1%, respec-
tively), as well as improvements in log-rank test statistics
(P= 2.02 × 10−4).

Next, we observed that the combined predictors correctly
reclassified non-responders from predicted responders using
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TMB alone (R2NR; Supplementary Fig. 22) and correctly
reclassified responders from predicted non-responders from
TMB-alone predictions (NR2R; Supplementary Fig. 22). R2NR
patients exhibited a lower overall survival than the predicted
responder group when using only the TMB (Supplementary
Fig. 22b); the 1-year percent survival decreased to 51.2% (log-
rank test P value= 0.07). Similarly, the 1-year percent survival
increased to 57.1% in NR2R patients and displayed a statistically
significant increase in the overall survival compared with the
predicted non-responders using TMB-based predictions (Supple-
mentary Fig. 22c; log-rank test P= 1.94 × 10−2). Altogether, our
results suggest that TMB combined with NetBio transcriptomic
features can improve the correct classification of responders and
non-responders.

Having observed improved prediction performances, we
sought to identify a feature responsible for the improvements in
the prediction performance. We first observed that the TMB
levels remained similar in the reclassified subgroups (Supple-
mentary Fig. 23), suggesting that the TMB levels are not a

confounding factor in the improved prediction of the overall
survival. To identify a transcriptomic feature associated with
resistance to immunotherapy in the high TMB group, we
investigated differentially expressed pathways between predicted
responders using TMB-based predictions (i.e., high TMB group)
and the R2NR group. The Raf activation pathway was
significantly differentially expressed between the two subgroups
(Fig. 7d; two-sided Student’s t test P= 3.39 × 10−2). In detail,
patients who were predicted as non-responders from the
combined prediction model (i.e., R2NR patients) displayed higher
expression of Raf activation pathway components. From the PPI
network, components of the Raf activation pathway, including
HRAS, KRAS, and JAK2, were direct neighbors of PD-L1
(Fig. 7e), suggesting that this pathway may exert a mechanistic
effect during drug treatment.

To further examine the potential usefulness of the Raf
activation pathway as an ICI-treatment biomarker, we analyzed
the association among PD-L1 expression, the TMB and the
expression level of Raf activation components with the overall
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survival in an external TCGA bladder cancer dataset (n= 405).
Specifically, we tested whether Raf activation affected overall
survival when (i) the PD-L1 expression was low, simulating PD-
L1 inhibition, and (ii) the TMB level was high. The Raf activation
pathway had a statistically significant impact on the overall
survival in bladder cancer patients exhibiting low PD-L1
expression and high TMB levels (Fig. 7f; P= 0.025). Importantly,
higher expression of the Raf activation pathway was associated
with poor overall survival, a finding that is consistent with PD-L1
inhibitor-treated patients exhibiting resistance to the treatment
(Fig. 7d, f). Altogether, our results suggest that (i) network-based
transcriptomic biomarkers can help improve TMB-based immu-
notherapy-response predictions and (ii) ICI response biomarkers
can be identified using network-based approaches.

Discussion
In this study, we tested whether the network-based biomarker
discovery pipeline can make robust predictions of immunotherapy
treatment. NetBio-based ML demonstrated consistent predictive
performance, whereas GeneBio, TME-Bio-based predictions, or
features identified from purely data-driven approaches, showed
less optimal performances (Figs. 2–4). Our work is further sup-
ported by previous studies utilizing PPI networks to (i) increase
the detection of robust biomarkers and (ii) improve the prediction
of clinical outcomes in cancer patients. For example, Leiserson
et al. used network modules to identify cancer-type-specific and
pan-cancer driver genes43. Additionally, Cheng et al. recently
reported that disease-associated germline mutations that alter
protein-protein interactions are highly correlated with cancer
patient survival and the response to anti-cancer drugs44, a finding
that is similar to our previous observation that disease-associated
variants are frequently located at protein interaction interfaces45.
Furthermore, we have previously demonstrated the usefulness of
the PPI network to understand gene-phenotype relationships46–53,
including the identification of oral disease-46 and mitochondrial
disorder47,50-associated variants. Taken together, our findings
offer a network-based ML model that robustly predicts the
immunotherapy response in cancer patients.

Because a complete and accurate map of the PPI network is
critical for network-based approaches19, we asked how the pre-
dictive performance would be affected if a smaller network
(STRING score >900) were used to identify NetBio pathways. We
compared the NetBio pathways found using STRING > 900
(NetBio 900) to those found using STRING > 700 (NetBio 700)
and observed high overlap coefficient scores across four cohorts
(Gide, Liu, Kim, and IMvigor210) (Supplementary Fig. 24). These
results show that the majority of the pathways in NetBio 900 were
included in NetBio 700, suggesting that the pathways are con-
served. Moreover, we found that although NetBio 900 had reduced
predictive performance compared with NetBio 700, the network-
based approach with the smaller network was still effective in
predicting ICI response (Supplementary Figs. 25, 26). In a within-
study LOOCV task, the predictive performance of NetBio 900 was
equal to or better than that of other ICI biomarkers, such as
GeneBio and TME-Bio, in 32 of 36 comparisons (Supplementary
Fig. 25; 88.9%). Furthermore, in across-study predictions, NetBio
900 performed better than other ICI biomarkers in 40 of 54
comparisons (74.1%) (Supplementary Fig. 26). These results sug-
gest that although the performance of ICI response prediction
declines when a smaller network is used, the network-based
approach still performs better than target gene-based and tumor
microenvironment-based biomarkers. Also, the reduced predictive
performance resulting from the use of an incomplete network
highlights the importance of network coverage for identifying
drug-response biomarkers. Additionally, continuous development

of network propagation algorithms will help improve tasks of
precision medicine since the algorithms have been successfully
applied to identify disease genes and drug target54 s. In this study,
a random walk with restart was employed. However, various
algorithms of network propagation have been recently proposed to
account for degree bias of protein interaction networks55,56. These
methods have a potential to find diseases modules with improved
performance of identifying disease genes, drug target candidates,
and biomarkers for drug response.

We also identified that NetBio-based predictions can con-
sistently recapitulate immune microenvironments that are asso-
ciated with the immunotherapy response. Across three different
cancer types (melanoma, gastric cancer, and bladder cancer), we
found that NetBio-based predictions were consistently positively
correlated with the proportions of anti-tumor leukocytes such as
CD8 T-cell proportions, whereas the proportions of pro-tumor
leukocytes, such as M2 macrophages, were consistently negatively
correlated with NetBio-based predictions (Fig. 5b). Our prediction
results are consistent with previous study findings because (i) ICI
treatment aims to reinvigorate CD8 T cells such that higher CD8
T-cell proportions lead to increased ICI treatment efficacy30,57; (ii)
M2 macrophages suppress CD8 T cells such that higher propor-
tions of M2 macrophages result in the resistance to ICI
treatment58. Furthermore, NetBio-based predictions consistently
recovered CD8T cell proportions even when different melanoma
cohorts (Gide et al. or Liu et al.) were used to train the ML model
(Fig. 5b). Altogether, our results suggest that NetBio pathways,
which are network neighbors of ICI targets, robustly capture
patients’ immune composition from transcriptome data. Given the
consistency of our results, a future research opportunity would be
to apply the network-based approach with higher-resolution
sequencing techniques (e.g., single-cell RNA sequencing) that
enable consideration of important aspects of the immune micro-
environment, including immune cell proportions or cell states59.

One might ask whether combining multiple cancer types in a
comprehensive dataset might improve the performance of
NetBio-based prediction. We found that combining all cancer
types into a single comprehensive dataset did not improve the
performance of ICI response prediction, suggesting the impor-
tance of cancer type-specific ICI response mechanisms. First, we
tested whether gene expression patterns of network-based bind-
ing partners to the ICI drug targets were similar across cancer
types (see the Methods). We found that transcriptome similarity
was high between two melanoma cohorts (median transcriptome
similarity of 0.39 and 0.41 for ICI responders and non-respon-
ders, respectively), whereas it was lower between cohorts with
different cancer types (Supplementary Fig. 27). We next used
ComBat60 to remove batch effects among four independent
datasets (Gide, Liu, Kim, IMvigor210) and combined the datasets
for NetBio prediction. We found that the LOOCV performance of
the combined NetBio markers was decreased compared with that
of NetBio markers based on each individual dataset (Supple-
mentary Fig. 28). These results suggest that expression-based
biomarkers of ICI treatment response differ across cancer types.

Although the identification of drug-response biomarkers has
traditionally focused on genomic markers17, we tested whether
NetBio-based transcriptomic features, when combined with
genomic features, can improve the prediction of immunotherapy
responses. Specifically, we selected the TMB for genomic feature
because a higher mutation burden is likely to increase neoantigen
presentation, which can subsequently increase T-cell infiltration
and ICI treatment efficacy4. Combining the TMB levels with
NetBio-based transcriptomic features improved the prediction of
the overall survival in PD-L1 inhibitor-treated bladder cancer
patients (Fig. 7b, c; Supplementary Fig. 22). Consistent with our
predictions in bladder cancer, we observed that combining
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NetBio and TMB levels improved the prediction of overall sur-
vival in a melanoma cohort (Supplementary Fig. 29). Our results
suggest that combining various omics datasets can improve the
prediction of the response to ICI treatment in cancer patients.
Additionally, combining TMB with NetBio provided tran-
scriptomic biomarkers responsible for improved ICI-response
prediction in bladder cancer. We identified the “Raf activation”
pathway, which is a downstream pathway of the Epithelial
Growth Factor Receptor (EGFR) gene, as a transcriptomic feature
in the IMvigor210 cohort (Fig. 7d–f). In detail, up-regulation of
the pathway was correlated with a poor response to ICI treatment
(Fig. 7d). Similar to our findings, multiple clinical trials have
reported that lung cancer patients harboring activating EGFR
mutations show resistance to PD-1 and PD-L1 inhibitor
treatments61. Because the Raf signaling pathway is a direct
downstream pathway of EGFR, activation of the Raf pathway may
also be responsible for the poor response to ICI treatments.
Further studies on the role of the Raf activation pathway in the
immunotherapy response in bladder cancer will be required to
confirm this possibility.

We envision that our work here opens up interesting new
research opportunities for precision medicine using ICI treat-
ment. For example, we have developed an ML method that trains
directly from ICI-treated samples (i.e., supervised learning),
whereas most state-of-the art techniques use ML models that
learn from non-ICI-treated samples to predict the response to ICI
treatment (i.e., unsupervised learning)13–17. Because supervised
and unsupervised learning uses different cancer patients to train
ML models, both learning approaches may complement each
other, leading to improved prediction performances when used
together (e.g., the semi-supervised approach). As a proof of
concept, combining NetBio-based predictions with those from
the unsupervised learning approach by Lee et al.15 using gene-
gene synthetic lethal interactions can improve the prediction
of the ICI response (Supplementary Fig. 30). Specifically, we
found that the performance of combined predictions was
improved across all tested conditions when predictions from
supervised learning (NetBio) and unsupervised learning (Lee
et al.) showed low correlation with each other (Supplementary
Fig. 30b), suggesting that both learning methods can learn dis-
tinct, yet ICI-treatment-relevant, biological signals. Since biolo-
gical outcomes of immunotherapy are highly complex, a method
relying on a single omics feature has a limitation in predicting
patient response to immunotherapy treatments. Combining a
network-based machine-learning model with diverse omics layers
would make better clinical results. As more sequencing data of
tumor samples become available for both ICI-treated and non-
ICI-treated cancer patients, we hope that our work here, along
with other previous and future ML methods, can facilitate major
improvements in precision oncology.

Methods
Curation and pre-processing of patient data. We collected the data of the fol-
lowing eight different patient cohorts treated with ICIs targeting the PD-1/PD-L1
axis: (i) Gide et al. (nivolumab-, pembrolizumab-, and/or ipilimumab-treated
melanoma; n= 91)27; (ii) Liu et al. (nivolumab- or pembrolizumab-treated mela-
noma; n= 121)28, (iii) Kim et al. (pembrolizumab-treated metastatic gastric cancer;
n= 45)29; (iv) IMvigor210 (atezolizumab-treated bladder cancer, n= 348)30; (v)
Auslander et al. (anti-PD-1- and/or anti-CTLA4-treated melanoma; n= 37)13; (vi)
Prat et al. (nivolumab- or pembrolizumab-treated melanoma; n= 25)31; (vii) Riaz
et al. (nivolumab-treated melanoma; n= 49)32; (viii) Huang et al. (pembrolizumab-
treated melanoma; n= 13)33. For the Prat et al. dataset, we only considered mel-
anoma samples. For the Riaz et al. dataset, we only used expression samples col-
lected before drug treatment. For the Huang dataset, we considered patients
without recurrence to be ICI responders and patients with recurrence to be ICI
non-responders. Detailed information on the drug-response labels used in the
study is available in Supplementary Table 1. The datasets were not combined into a
single comprehensive dataset unless noted. We did not generate any new data for
this study, so no additional ethics approval was required.

Regarding the TCGA dataset, we used the following: (i) TCGA SKCM
(melanoma; n= 103); (ii) TCGA STAD (stomach adenocarcinoma; n= 375); and
(iii) TCGA BLCA (bladder cancer; n= 405). Gene expression data (HTSeq—
Counts), somatic mutation data, and clinical data (i.e., overall survival data) were
downloaded using the TCGAbiolinks R package62. To calculate the TMB in TCGA
cancer patients, we used the following equation from Wang et al.63:

TMBpatient ¼ Tpatient2:0 þ NTpatient ´ 1:0 ð1Þ

where Tpatient is total number of truncating mutations and NTpatient is the total
number of non-truncating mutations. For truncating mutations, we considered
nonsense mutations, frame-shift deletion or insertion and splice-site mutations.
For non-truncating mutations, we used missense mutations, in-frame deletion or
insertion, and nonstop mutations.

For the pre-processing of gene expression data, we calculated the gene expression
levels using read counts from the IMvigor210, Auslander, Prat, Riaz, and TCGA
datasets, which were normalized using trimmed means of M-values normalization64

from the edgeR65 R package. For other datasets, we used normalized expression values
provided by Lee et al. (https://zenodo.org/record/4661265)15. To estimate the pathway
expression levels, we used Reactome pathways downloaded from the MSigDB
database26 and performed single-sample GSEA (ssGSEA)66 using the GSVA R
package67. We used the normalized enrichment score (NES) to estimate the pathway
expression levels of each sample (Supplementary Data S7).

To classify samples into responders and non-responders, we used response
evaluation criteria in solid tumors (RECIST) criteria, where complete response
(CR) and partial response (PR) were classified as responders and stable disease
(SD) and progressive disease (PD) were classified as non-responders, as in previous
studies15,34,68–71. For dataset that did not provide or use RECIST criteria
(Auslander dataset), we used responder and non-responder classification from the
original paper. The clinical outcome data used in the paper are provided in
Supplementary Data S8.

Preparation of the PPI network. We downloaded the human PPI network from
the STRING database v.11.0. (https://string-db.org/)24. To leverage high-
confidence PPIs, we considered links with interaction scores greater than 70020,23.
Next, for network-based analysis in this manuscript, we used the largest connected
component of the PPI network, resulting in 16,957 nodes and 420,381 edges. The
largest connected component was computed using the NetworkX python
module72. We used Cytoscape (v.3.7.1) for network visualization73.

NetBio detection. The detection of NetBio pathways comprises two steps: (i) the
detection of ICI target-proximal genes in the PPI network and (ii) detection of
biological pathways (Reactome pathway26) proximal to ICI targets (i.e., NetBio
pathways). First, we identified ICI target-proximal genes via network propagation
using the page-rank algorithm from the NetworkX python module72. We used one
for ICI targets and zero for all other genes in the network as an input for the
personalization parameter in the page-rank algorithm. Default settings were used
for any other parameters for the page-rank algorithm (damping factor= 0.85).
After network propagation, we considered the top 200 genes with highest influence
scores as ICI target-proximal genes.

Next, we detected biological pathways located proximal to ICI targets using ICI
target-proximal genes. We computed the gene set enrichment test that specifically
calculates how many ICI target-proximal genes are included in each pathway. We
used the hypergeometric test to obtain statistical significance. Finally, we selected
pathways significantly enriched with ICI target-proximal genes using an adjusted P
value of <0.01. The Holm-Sidak test was used for multiple hypothesis testing. We
computed hypergeometric test statistics and the adjusted P value using scipy74 and
statsmodels75 python modules, respectively. The number of NetBio pathways
selected for the Gide, Liu, Kim, and IMvigor210 cohorts was 472, 323, 292, and
353, respectively. The NetBio pathways are provided in the Source Data. We used
the expression profile of all NetBio pathways to train a logistic regression classifier.

To test whether ICI response is dependent on network connectivity, we tested if
the connectivity of the binding partners of ICI drug targets (PD1, PD-L1, and
CTLA4) was correlated with ICI efficacy. To measure ICI efficacy for each binding
partner, we used each patient’s binding partner expression level and ICI response
and computed the AUC of gene expression and ICI response to define ICI efficacy.
We observed that in four different ICI-treated cohorts, ICI efficacy did not
correlate with the connectivity of the binding partners (Supplementary Fig. 31; P
value < 0.05 considered significant). These results suggest that a gene’s degree
centrality is not a confounding factor when predicting ICI response.

Furthermore, we found that expression profiles of NetBio pathways did not
significantly change from prior to treatment to during treatment (Supplementary
Fig. 32a, b). Using a melanoma cohort (Riaz et al.), we identified differentially
expressed pathways (DEPs) by comparing pre-treatment and during-treatment
expression profiles (Supplementary Fig. 32a). We found that compared to all
pathways available from the Reactome database, DEPs were not enriched in NetBio
pathways (Supplementary Fig. 32b; two-sided Fisher’s exact test P= 0.5). This
suggests that the expression levels of NetBio pathways do not necessarily change
during ICI treatment.
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Measuring the performances of ML predictions. Throughout the manuscript,
we used logistic regression to train ML models, implemented in Scikit-learn in
Python76. Specifically, we used the l2 regularized logistic regression (LR) model.
We also tested the predictive performances of NetBio-based machine-learning
using Support Vector Classifier (SVC), random forest (RF), and deep neural
network (DNN) models. We found that SVC and RF models performed similarly
to the LR-based model, whereas the LR-based model was more generalizable to
new datasets than DNN-based models (Supplementary Fig. 33, Supplementary
Fig. 34). To train ML models, we used the expression levels of genes/pathways
against drug responses (classified as responders and non-responders). To select
optimal hyperparameters for LR-based model, we conducted fivefold cross-
validation in a training dataset by iterating the regularization parameter (C)
from 0.1 to 1 in 0.1 intervals. We used “balanced” parameters for class weight
hyperparameters to reduce class imbalance effects. To identify optimal hyper-
parameters, we used the GridSearchCV function from the Scikit-learn module76.
The optimal hyperparameters identified during LOOCV are provided in the
Source data. The gene/pathway expression levels are z-score-standardized before
ML training/testing to minimize the batch effect between cohorts, where z-score
standardization was done for each gene/pathway across samples of the same
cohort23,77. For across-study predictions, the distributions of predicted
responses are provided in Supplementary Fig. 35. Z-score-standardized
expression data were used to combine three training datasets for across-study
predictions (Supplementary Fig. 6).

For LOOCV, we considered cohorts that agree with the following criteria: (i)
cohorts with more than 30 samples and (ii) at least 10 samples for both responders
and non-responders. Four datasets remained after applying the criteria (Gide et al.,
Liu et al., Kim et al., and IMvigor210). We used the LeaveOneOut function from
the Scikit-learn module to split the training and test datasets76. The accuracy,
precision, F1, true-positive rate, true-negative rate, false-positive rate, false-negative
rate, sensitivity, and specificity of LOOCV are given in the Supplementary Tables
(Supplementary Tables 2–5).

For predictions based on genes (GeneBio) and the tumor microenvironment
(TME-Bio), we used gene expression levels to train/test the ML model. For
GeneBio, we used the expression levels of PD-1, PD-L1 or CTLA4. For TME-Bio,
we used the gene expression levels of markers of (i) CD8 T cells78, (ii) T-cell
exhaustion14, (iii) CAFs79, and (iv) TAMs (M2 macrophages)14. The detailed gene
list for each marker and references for the gene lists are provided in the
Source Data.

To test the performance of data-driven ML predictions, we conducted feature
selection using the SelectKBest function from Scikit-learn76 (“f_classif” was used
for the score function parameter). We selected K number of reactome pathways,
where K equals the number of NetBio pathways. To train and test the data-driven
ML model, we used the pathway expression levels. Notably, SelectKBest function-
based feature selection was conducted using the training dataset.

To further investigate the association between DEPs and drug responses, we
tested whether DEPs could accurately predict responders and non-responders in
various melanoma datasets (Supplementary Fig. 32a). We used the expression
profiles of DEPs to train a machine-learning model and conducted (i) within-study
prediction (LOOCV) and (ii) across-study prediction (Supplementary Fig. 32c, h).
We observed that in some cases, DEPs provided information to differentiate
responders from non-responders (Supplementary Fig. 32c–p); however, in most
cases, NetBio-based predictions were better than DEP-based predictions
(Supplementary Fig. 32c–p). These results suggest that the baseline gene expression
profiles associated with drug response may not necessarily change after ICI
treatment.

Comparison with other state-of-the-art methods. We used EASIERscores16

provided by the original authors. We computed IMPRES scores13 using pairwise
comparisons of 15 gene pairs, as was done in the original manuscript13. The TIDE
scores14 were computed using the TIDEpy python package (https://github.com/
liulab-dfci/TIDEpy). For TMEsubtypes scores17, we used the microenvironment
subtypes of melanoma patients, which are provided in the original publication17.
We used an l2 regularized logistic regression model to test the performance of the
four state-of-the-art prediction methods13,14,16,17. For the DNN-based method34,
10 sets of hyperparameters were selected at random from the hyperparameter grid
and fivefold cross-validation was conducted to select the best-performing hyper-
parameters. The hyperparameter grid used in our work is provided in Supple-
mentary Table 6. For the activation function, we used the hyperbolic tangent (tanh)
for all hidden layers except the final output layer, where we used the sigmoid
function.

Comparing NetBio pathway expression with IHC phenotypes in the bladder
cancer dataset (IMvigor210). We analyzed the IMvigor210 dataset,30 which
contains both gene expression profiles and IHC staining data. The immune
phenotypes based on IHC staining were (i) immune desert, (ii) excluded, and
(iii) infiltrated. The immune phenotypes were determined based on the pre-
valence of CD8 T cells and infiltration patterns with respect to malignant epi-
thelial cells30. The presence of CD8 T cells was detected using an anti-CD8
antibody (rabbit monoclonal clone SP16)30. The expression levels of

“Chemokine receptors bind chemokines” and “FcgR activation” were used based
on ssGSEA NES values.

Combining TMB levels and NetBio to predict overall survival. We used TMB
levels and expression levels of NetBio pathways to predict ICI response. Both TMB
levels and expression levels of NetBio pathways were z-score standardized prior to
machine-learning training (l2 regularized logistic regression). For the IMvigor210
dataset (Fig. 7), we used the mutation burden per megabase as the TMB level. For
the Liu dataset (Supplementary Fig. 29), the number of nonsynonymous mutations
was used as the TMB level.

Calculating the expression similarity of network-based binding partners to
the ICI drug targets. We used the expression levels of the network neighbors of
ICI targets (PD1, PD-L1, and CTLA4) to measure transcriptome similarity between
cohorts (Supplementary Fig. 27). We defined the transcriptome similarity as fol-
lows: (1) for each patient, we computed Spearman rank correlation to all patients in
another cohort; (2) we took the maximum value from the Spearman correlations;
(3) we iterated steps (1) and (2) for all patients in both cohorts.

Calculating prediction performances for the combined model using NetBio-
based predictions and predictions from the synthetic lethal relationship
(SELECT). The SELECT score15 was provided by the original authors. SELECT
uses synthetic lethal and synthetic rescue relationships between two genes identi-
fied from non-ICI-treated cancer samples. Before combining the SELECT score
with NetBio-based predictions (using the prediction probability from LOOCV), we
first computed Spearman’s correlation between the two prediction scores. In the
Kim et al. cohort (metastatic gastric cancer), the two prediction scores showed no
correlation with each other (Spearman’s correlation rho= 0.28; P= 0.16; Supple-
mentary Fig. 30b), suggesting that the two different prediction models captured
distinct biological signals.

To combine the SELECT score with NetBio-based predictions (Supplementary
Fig. 30a), we used the linear weighted model by Zhang et al.80:

Combined score ¼ wðNetBio predictionsÞ þ ð1 � wÞðSELECT scoreÞ ð2Þ
where w is the linear weight ranging from 0 to 1 in 0.1 intervals (Supplementary
Fig. 30b). We used the AUC of the receiver operating characteristics curve as a
performance metric.

Statistical analysis and software. Fisher’s exact test, Mann–Whitney U test, and
two-sided Student t test were used for data analysis and generation of P values. Log-
rank test was used to compute statistical differences in overall survival and
progression-free survival. For correlation analysis, we used Pearson correlation unless
otherwise noted. All analyses were done in python 3.6.12. Python packages used are
pandas (1.1.15), numpy (1.19.2), scipy (1.5.4), matplotlib (3.3.3), sklearn (0.24.2),
lifelines (0.25.7), networkx (2.5), statsmodels (0.12.2), and pytorch (1.7.l+ cu110).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
For the Gide et al.27, Huang et al.33, Kim et al.29, and Liu et al.28 datasets, we used
normalized expression values and drug responses provided by Lee et al.15. The data sets are
available without requesting the access in Zenodo [https://zenodo.org/record/4661265].
Access of original data could be obtained from PRJEB23709, GSE123728, PRJEB25780, and
the Supplementary Data 2 of Liu et al.28. The IMvigor210 dataset was downloaded from the
original paper [http://research-pub.gene.com/IMvigor210CoreBiologies/]30. The Auslander
dataset13 and Riaz dataset32 were downloaded from the GEO repository81 under the
accession numbers GSE115821 and GSE91061, respectively. The Prat dataset31 was
downloaded from the Supplementary Material of the original paper (Table S1). The TCGA
datasets were downloaded using the TCGAbiolinks R package [https://bioconductor.org/
packages/release/bioc/html/TCGAbiolinks.html]62. The human PPI network was
downloaded from the STRING database v.11.0. [https://string-db.org/]24. The Reactome
pathways26 were downloaded from the MSigDB66 database. All data used in this study are
publically available. Source data are provided with this paper.

Code availability
The source codes for reproduction of the results were developed in python 3.6.12. and are
available at a GitHub repository (https://github.com/SBIlab/NetBio)82.
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