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Brain tumor is one of the leading causes of cancer-related death globally among
children and adults. Precise classification of brain tumor grade (low-grade and high-
grade glioma) at an early stage plays a key role in successful prognosis and treatment
planning. With recent advances in deep learning, artificial intelligence–enabled brain
tumor grading systems can assist radiologists in the interpretation of medical images
within seconds. The performance of deep learning techniques is, however, highly
depended on the size of the annotated dataset. It is extremely challenging to label a
large quantity of medical images, given the complexity and volume of medical data. In
this work, we propose a novel transfer learning–based active learning framework to
reduce the annotation cost while maintaining stability and robustness of the model
performance for brain tumor classification. In this retrospective research, we employed
a 2D slice–based approach to train and fine-tune our model on the magnetic
resonance imaging (MRI) training dataset of 203 patients and a validation dataset
of 66 patients which was used as the baseline. With our proposed method, the model
achieved area under receiver operating characteristic (ROC) curve (AUC) of 82.89% on
a separate test dataset of 66 patients, which was 2.92% higher than the baseline AUC
while saving at least 40% of labeling cost. In order to further examine the robustness of
our method, we created a balanced dataset, which underwent the same procedure.
The model achieved AUC of 82% compared with AUC of 78.48% for the baseline,
which reassures the robustness and stability of our proposed transfer learning
augmented with active learning framework while significantly reducing the size of
training data.
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INTRODUCTION

Brain tumor is one of the leading causes of cancer-related death globally among children and adults (Siegel
et al., 2019). According to the World Health Organization (WHO) classification 2016 (Louis et al., 2016),
brain tumors are divided into different grades (grades I, II, III, or IV) based on histology and molecular
characteristics. The higher the grade of the tumor is, the more malignant it becomes. Patients with low-
grade glioma (LGG, grade I/II) usually have better survival than those diagnosed with high-grade glioma

Edited by:
Tuan D. Pham,

Prince Mohammad bin Fahd
University, Saudi Arabia

Reviewed by:
Akram Mohammed,

University of Tennessee Health
Science Center, United States

Chirag Kamal Ahuja,
Post Graduate Institute of Medical

Education and Research, India

*Correspondence:
Farzad Khalvati

farzad.khalvati@utoronto.ca

Specialty section:
This article was submitted to
Medicine and Public Health,

a section of the journal
Frontiers in Artificial Intelligence

Received: 30 November 2020
Accepted: 26 April 2021
Published: 17 May 2021

Citation:
Hao R, Namdar K, Liu L and Khalvati F

(2021) A Transfer Learning–Based
Active Learning Framework for Brain

Tumor Classification.
Front. Artif. Intell. 4:635766.

doi: 10.3389/frai.2021.635766

Frontiers in Artificial Intelligence | www.frontiersin.org May 2021 | Volume 4 | Article 6357661

ORIGINAL RESEARCH
published: 17 May 2021

doi: 10.3389/frai.2021.635766

http://crossmark.crossref.org/dialog/?doi=10.3389/frai.2021.635766&domain=pdf&date_stamp=2021-05-17
https://www.frontiersin.org/articles/10.3389/frai.2021.635766/full
https://www.frontiersin.org/articles/10.3389/frai.2021.635766/full
https://www.frontiersin.org/articles/10.3389/frai.2021.635766/full
https://www.frontiersin.org/articles/10.3389/frai.2021.635766/full
http://creativecommons.org/licenses/by/4.0/
mailto:farzad.khalvati@utoronto.ca
https://doi.org/10.3389/frai.2021.635766
https://www.frontiersin.org/journals/artificial-intelligence
www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://doi.org/10.3389/frai.2021.635766


(HGG, grade III/IV), which is incurable and universally fatal. LGG
has high possibility of eventually progressing to HGG if it is not
diagnosed and the treatment is delayed (Claus et al., 2016).

Precise classification of brain tumor grade at the early stage
plays a key role in successful prognosis (Delattre et al., 2014).
Magnetic resonance imaging (MRI) is the favored imaging
technique in glioma diagnostics due to good contrast
enhancement and noninvasive features (Essig et al., 2012). The
conventional method for tumor detection is followed by
radiologists who observe and diagnose tumors, which is
extremely laborious and time-consuming. Recent advances in
artificial intelligence (AI) and deep learning have made great
strides in computer-aided medical diagnosis (CAMD), which can
assist doctors in the interpretation of medical images within
seconds (Hosny et al., 2018).

The performance of deep learning technique is highly
dependent on the quality and size of the dataset. Deep
learning techniques require a large number of images with
high-quality annotations. However, labeling large quantities of
medical images is quite challenging as annotation can be
expensive in terms of both time and expertise (Razzak et al.,
2018). Insufficient amount of imaging data and scarcity of human
expert annotations for images are the two major barriers in
success of deep learning for medical imaging (Razzak et al., 2018).

To address and resolve the abovementioned challenges,
numerous efforts have been made. For instance, transfer
learning is a promising strategy in case of limited domain
training samples. It fine-tunes a network which is already
pretrained on a large labeled dataset, typically from another
domain. By transferring learned knowledge to the target
dataset, the speed of network convergence becomes faster
while maintaining low computational complexity level at the
training stage (Tajbakhsh et al., 2016).

Active learning algorithms have also been investigated to train a
competitive classifier with minimal annotation cost. The underlying
idea behind active learning is that different training examples have
different effects on the performance of the current model. Instead of
labeling the complete dataset, an active learning method selects a
subset of informative samples to annotate and then train the
classification model without compromising its performance.
There are two important metrics to describe the informativeness
of an unlabeled sample: uncertainty, which is the inverse of the
confidence of predicted results by the model; and representativeness,
whichmeasures the degree of similarity in distribution and structure
between selected samples and target dataset (Du et al., 2017). Based
on different query schemes of informative unlabeled samples,
conventional active learning algorithms can be listed as follows:
uncertainty sampling, query by committee, expected model change,
expected error reduction, variance reduction, and density-weighted
methods (Settles 2011).

In this work, we propose an active learning method which
integrates traditional uncertainty sampling technique and query-
by-committee method, and transfer learning to reduce the
amount of required training samples while maintaining
stability and robustness of convolutional neural network
(CNN) performance for brain tumor classification.

MATERIALS AND METHODS

Related Work
Brain Tumor Classification Using Deep Learning
Pereira et al. (2018) proposed a novel CNN with deeper
architectures and small kernels for automatic LGG and HGG
brain tumor grading prediction on both whole brain and only
tumor region MRI images, and the accuracies were 89.5% and
92.98%, respectively. The datasets they used were BRATS 2013
and BRATS 2015. Suganthe et al. (2020) employed recurrent
neural network (RNN) architecture for detection of tumors on a
600 MRI brain image dataset and achieved an accuracy of 90%.
On a brain tumor dataset consisting of 3,064 MRI images from
233 patients, there has been multiple experiments (Afshar et al.,
2018; Das et al., 2019; Badža and Barjaktarović 2020). Each
patient in the dataset has one of the three types of brain
tumor (glioma, meningioma, and pituitary). Badža and
Barjaktarović (2020) presented a new CNN architecture for
the three types of brain tumor classification, and the best
accuracy was 96.56%. Das et al. (2019) also explored a CNN
model for the classification of the three types of brain tumor MRI
images, and an accuracy of 94.39% was achieved. Afshar et al.
(2018) proposed a modified CapsNet architecture (Ballal and
Joseph 2004) combined with tumor boundaries information for
brain tumor classification and achieved 90.89% accuracy.

Transfer Learning and Active Learning for Medical
Imaging
Yang et al. (2018) compared the classification performance of
fine-tuned pretrained CNNs and CNNs trained from scratch on a
private glioma MRI dataset containing 113 LGG and HGG
patients. The experiments showed that transfer learning and
fine-tuning improved performance for classifying HGG and
LGG. They achieved their best test accuracy of 90%, using
GoogLeNet. Banerjee et al. (2019) proposed three CNN
models (PatchNet, SliceNet, and VolumeNet), trained from
scratch, and compared with the two pretrained ConvNets
(VGGNet (Simonyan and Zisserman 2015) and ResNet (Li
et al., 2019)) fine-tuned on the BRATS 2017 dataset for HGG
and LGG classification problem. Results demonstrate that the
proposed VolumeNet achieved best testing accuracy of 95%.
Swati et al. (2019) used a block-wise fine-tuning algorithm
based on transfer learning to fine-tune pretrained CNN on an
MRI brain tumor dataset and obtained average accuracy of
94.82% under five-fold cross validation. Rehman et al. (2019)
employed three pretrained CNNs (AlexNet (Krizhevsky et al.,
2017), GoogLeNet (Zeng et al., 2016), and VGGNet (Simonyan
and Zisserman 2015)) to classify brain tumor MRI images with
two different transfer learning techniques (fine-tune and freeze),
and the fine-tuned VGG16 architecture showed the highest
accuracy of 98.69%.

Smailagic et al. (2018) sampled the instances which had the
longest distance from other training samples in a learned feature
space. The proposed strategy reduced the annotated examples by
32% and 40%, respectively, compared to the conventional
uncertainty and random sampling methods on the task of

Frontiers in Artificial Intelligence | www.frontiersin.org May 2021 | Volume 4 | Article 6357662

Hao et al. Active Learning for Glioma Classification

https://www.frontiersin.org/journals/artificial-intelligence
www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles


diabetic retinopathy detection. Dai et al. (2020) proposed a
gradient-guided suggestive annotation framework which
computes gradient of training loss and then selects informative
examples which have the shortest Euclidean distance to the
gradient-integrated samples projected onto the data manifold
learned by a variational auto-encoder (VAE). Through employing
this framework, they selected 19% of the MRI images from
BRATS 2019 dataset to train a CNN for brain tumor
segmentation task and achieved competitive results (a Dice
score of 0.853) compared with when the whole labeled dataset
was used. Zhou et al. (2017) augmented each sample by data
augmentation technique, and then computed entropy and relative
entropy for original and augmented samples. Next, they
continuously selected the most uncertain samples to label and
added them to the training dataset to fine-tune AlexNet at each
iteration. They managed to cut the needed annotated training
data by half in three different biomedical imaging applications. Li
et al. (2019) proposed an active learning strategy for breast cancer
classification on pathological image dataset. Instead of selecting
the most informative samples, the algorithm removed 4,440
misleading samples from the training dataset which contained
68,640 samples. They obtained patch-level average classification
accuracy of 97.63%, compared to 85.69% which was resulted by
training on the whole dataset.

Methods
Transfer learning is a widely used approach in which a network is
trained on a large labeled source dataset, and the resulting
pretrained network is fine-tuned on the small target dataset,
transferring the learned knowledge from the source to target
dataset. Active learning, on the other hand, is a promising
strategy which has been investigated to train a competitive
classifier with minimal annotation cost. In this retrospective
work, transfer learning and active learning are the components
of our proposed uncertainty sampling method for achieving
stable test results using a smaller subset of training cohort. We
chose the MICCAI BRATS 2019 dataset (Menze et al., 2015;
Bakas et al., 2017; Bakas et al., 2018) as the target dataset, which is
a new, well-annotated, well-preprocessed, and skull-striped
dataset with interpolation and registration.

Dataset
All the experiments in this work were performed on the BRATS
2019 dataset which consists of 335 patients diagnosed with brain
tumors (259 patients with HGG and 76 patients with LGG).
According to the available age information of 240 patients, the
mean age is 60.31 years. Each patient MRI scan set has four MRI
sequences, which are T1-weighted, post–contrast-enhanced T1-
weighted (T1C), T2-weighted (T2), and T2 fluid-attenuated
inversion recovery (FLAIR) volumes. The dataset was
preprocessed with skull-striping, interpolated to a uniform
isotropic resolution of 1 mm3, and registered to SRI24 space
with a dimension of 240 × 240 × 155. The annotations of the
dataset include four labels: background, gadolinium-enhancing
tumor, the peri-tumoral edema, and the necrotic and non-
enhancing tumor core. The area identified by the last three of
the four labels represents the complete tumor region.

To implement the proposed method in this work, we
randomly extracted 20 slices with the tumor region from each
patient MRI scan in axial plane, and kept T1, T1C, and T2
channels for each slice. The pretrained AlexNet requires three
channel input, and we chose T1, T1C, and T2 channels from total
four channels based on the results of the initial experiments. The
obtained 6,700 2D 3-channel slice dataset was further split into
training set (203 patients), validation set (66 patients), and test set
(66 patients). All the three cohorts have the same ratio of HGG
patient number and LGG patient number as the full dataset.
Every slice with LGG tumor was annotated as label 0, and HGG
tumor slices were labeled as 1. The images were resized from
240 × 240 pixels to 224 × 224 pixels in order to fit the
pretrained CNN.

Transfer Learning
Training a CNN from scratch (with random initialization)
requires massive amount of annotated training samples and
relatively more time and computational resources than
employing a CNN pretrained on a very large dataset. In
general, there are two main scenarios of transfer learning: fine-
tuning and freezing. In fine-tuning, instead of random
initialization, weights and biases of a pretrained CNN are
adopted, and then a conventional training process on the
target dataset is performed. In the freezing scenario, we
consider the pretrained CNN layers as a fixed feature
extractor. In this context, we freeze the weights and biases of
our desired convolutional layers, and let the fully connected layers
be fine-tuned over the target dataset. The frozen layers do not
have to be limited to the convolutional layers. Frozen layers can
be chosen to be any subset of convolutional or fully connected
layers; however, a common practice is to freeze the shallower
convolutional layers. In our research, the CNNs are pretrained on
ImageNet Large-Scale Visual Recognition Challenge (ILSVRC)
dataset (Russakovsky et al., 2015) which includes natural images.
Due to the large difference between our target medical image
domain and the ImageNet dataset, we chose fine-tuning to be our
strategy of transfer learning.

Based on the purpose of reducing the annotation cost, we
opted the pretrained AlexNet and fine-tuned it on the BRATS
19 dataset. AlexNet is composed of five convolutional layers,
three max-pooling layers, and three fully connected layers. The

TABLE 1 | Detailed architecture of AlexNet.

Layer Kernel size Stride Padding Output size

Conv1 11 × 11 4 2 64 × 55 × 55
Maxpool1 3 × 3 2 0 64 × 27 × 27
Conv2 5 × 5 2 2 192 × 27 × 27
Maxpool2 3 × 3 2 0 192 × 14 × 14
Conv3 3 × 3 1 1 384 × 13 × 13
Conv4 3 × 3 1 1 256 × 13 × 13
Conv5 3 × 3 1 1 256 × 13 × 13
Maxpool3 3 × 3 2 0 256 × 6 × 6
FC1 – – – 4096 × 1
FC2 – – – 4096 × 1
FC3 – – – 2 × 1
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detailed architecture used in this work is shown in Table 1.
AlexNet depth is capable for brain tumor classification, and it
is considerably shallower than other benchmark CNNs (e.g.,
ResNet (He et al., 2016) and VGG (Simonyan and Zisserman
2015)), which leads to faster convergence and less required
computational resources.

Uncertainty Score Calculation
We use entropy and relative entropy as measures to estimate the
informativeness of each training example. Given a discrete
random variable X, with possible outcomes x1, x2, . . . , xn
which occurs with probabilities P(x1), P(x2), . . . , P(xn), the
entropy formula of X is given by Equation (1).

H(X) � −∑
n

i�1
P(xi)logP(xi) (1)

.

Another useful measure for estimating the amount of
mutual information between two possibility distributions
on a random variable is relative entropy, also known as the
symmetric Kullback–Leibler (KL) divergence. Formally,
given two probability distributions P(x) and Q(x) over a
discrete random variable X which has n possible outcomes,
the relative entropy given by D(p∣∣∣∣∣∣∣∣q) is given by
Equation (2).

D(p
∣∣∣∣
∣∣∣∣q) � ∑

n

i�1
P(xi)log P(xi)Q(xi) (2)

.

In this scenario, the probability distributions are the outputs of
the pretrained CNNs.

Workflow
In this work, we present a novel transfer learning–based active
learning framework to reduce the annotation cost while
maintaining stability and robustness of CNN performance for

brain tumor classification. Our active learning workflow is
described in Figure 1.

We assume the training dataset consists of labeled and
unlabeled subsets. The goal is to find the best informative
samples in the entire training set, which may or may not
overlap with the labeled training subset. The workflow is
divided into four steps: 1) For the labeled training subset, we
randomly selected 30% training samples and assumed the
remaining 70% samples were unlabeled. We then used the
30% labeled training subset to fine-tune the pretrained
AlexNet, and the learning rate α was set to different values
(i.e., 0.001, 0.0005, and 0.0001). By performing this step, we
obtained three fine-tuned CNNs. 2) We used these fine-tuned
CNNs to compute the classification probabilities of each sample
in the entire training dataset. In this step, the CNNs only perform
forward propagation to calculate outputs; therefore, no labels are
required. 3) Once each training sample produced three predicted
possibilities in step 2, we computed the individual entropy
(Equation 1) and pairwise KL divergence (Equation 2). The
uncertainty score is the sum of the entropy and KL divergence of
each sample. Through this approach, an uncertainty score list of
the entire training dataset was obtained. 4) We sorted the
uncertainty score list in descending order, and we sampled
30% of the training cohort, which consisted of the best
informative samples. This selected subset required labeling and
was consequently used to fine-tune a pretrained AlexNet.

If there was no overlap between the original labeled training
subset (30%) and the discovered best informative subset (30%),
then the maximum training size needed is 30 + 30 � 60% (40%
reduction in training size) of the entire training cohort. If the
discovered best informative samples happen to be exactly the
same as the original labeled training subset (30%), then the
maximum training size needed is only 30% (70% reduction in
training size) of the entire training cohort. In other words,
between 40 and 70% of annotation cost (average of 55%) can

FIGURE 1 | Workflow of proposed transfer learning–based active learning framework.
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be saved by our proposed transfer learning–based active learning
framework.

RESULTS

All the experiments were conducted on a NVIDIA GeForce RTX
2070 platform, using Python 3.8 and PyTorch 1.5.1. In order to
prove the stability and reproducibility, all the AUC results below
are averages of 10 runs of a single experiment and presented as
mean along with the 95% confidence interval (CI).

In Results of Using Transfer Learning, we will show transfer
learning is an effective approach and improves our baseline
models. In AUC Results of Selecting a Different Range of
Uncertainty Distribution, we will demonstrate the top 10%
certain and uncertain examples are not informative, and thus,
omitting them helps the models to better generalize. In AUC
Results of the Uncertainty Sampling Method, we will
experimentally show our uncertainty sampling approach
improves the baseline with sample size fixed at 30%. Finally,
in AUC Results of the Uncertainty Sampling Method on
Balanced Dataset, we will demonstrate the following: 1)
Regardless, if the dataset is balanced or imbalanced, our
sampling method is effective. 2) The fact that our sampling
approach improves the baseline is not arbitrary or as a result of
filtering noisy examples through chance. It in fact always
outperforms random sampling. 3) Although 30% is the
optimum sample size, our sampling method works at other
sample sizes as well.

Results of Using Transfer Learning
Training AlexNet from scratch requires massive data with high-
quality annotation. Employing transfer learning technique
improves performance of the model when sufficient data are
not available. The baseline AUCwas computed by fine-tuning the
pretrained AlexNet on the entire training dataset. The maximum
number of epochs was 30, the learning rate was set to 0.001, the
batch size was set to 16, momentum in stochastic gradient descent
(SGD) optimizer was 0.8, and L2 regularization penalty was set to
0.0001 based on a grid search strategy. We also explored training
AlexNet from scratch, with the same hyperparameter settings,
except that epoch number was increased to 80 because it needed
more iterations to converge.

Table 2 lists AUC results with and without transfer learning
strategy on both validation dataset and test dataset. As it can be
seen, the validation AUC and test AUC improved by 1.51% and
7.98%, respectively, when employing the transfer learning
method.

AUC Results of Selecting a Different Range
of Uncertainty Distribution
As described in Workflow, we fine-tuned the pretrained AlexNet
on 30% of the training dataset, which was labeled, and obtained
three fine-tuned CNNs with learning rate α set to 0.001, 0.0005,
and 0.0001, respectively. The uncertainty score list of the entire
training samples was computed based on the output of these
CNNs. Figure 2 visualizes uncertainty distribution of the training
dataset, where uncertainty score list is unsorted in Figure 2A, and
uncertainty scores are ranked in the descending order in
Figure 2B.

While keeping the number of samples constant (i.e., 30% of
the training dataset), we fine-tuned the pretrained AlexNet on
different ranges of uncertainty distribution. This was done to
assess the effect of sampling from diverse uncertainty ranges on
the performance of the CNN. In all experiments, we stopped our
training or fine-tuning procedure at the highest validation AUC.

As reflected in Figure 3, AUC results for validation and test
sets were calculated on samples from different uncertainty ranges

TABLE 2 | AUC results of AlexNet trained from scratch and fine-tuned from the
pretrained model.

AUC (95% CI) Pretrained AlexNet AlexNet
trained from scratch

Validation dataset 87.46% (87.11, 87.81) 86.14% (85.60, 86.68)
Test dataset 79.91% (78.95, 80.87) 71.93% (70.76, 73.10)

FIGURE 2 | Visualization of uncertainty distribution of training dataset:
(A) unsorted and (B) sorted.
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according to the sorted uncertainty list. As it can be seen, the
biggest jumps of validation AUC occur when the first and last
10% of the sorted list (the top 10% certain and uncertain
examples) are excluded. As shown in Figure 3, using the top
30% certain examples or the top 30% uncertain examples results
in a decrease of AUC results for the validation (and test) cohort.
Thus, we removed the top 10% (highest uncertainty scores) and
the bottom 10% (lowest uncertainty scores) samples to eliminate
outliers with least training values. As it can be seen in Figure 3,
the uncertainty range of 10–40% improves AUC results by
12.51% compared to the range of 0–30%. Similarly, the
uncertainty range of 60–90% elevates AUC by 7.72% in
comparison to the range of 70–100%.

The distribution and proportion of the hardest 10% samples
and the easiest 10% samples in the entire uncertainty distribution
are visualized in orange color and purple color, respectively, in
Figure 4. We hypothesize the top 10% uncertain examples are
outliers, and the bottom 10% do not provide training value for the
model, which will result in a poor model generalization.

FIGURE 3 | CNN performance on samples from different uncertainty ranges.

FIGURE 4 | The distribution of 10% examples with the highest and lowest uncertainty scores.

TABLE 3 | AUC results of the proposed method and baseline AUC.

AUC (95% CI) Proposed method Baseline

Validation dataset 86.86% (86.48, 87.24) 87.46% (87.11, 87.81)
Test dataset 82.89% (81.87, 83.91) 79.91% (78.95, 80.87)
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AUC Results of the Uncertainty Sampling
Method
In our uncertainty sampling algorithm, in order to train a model
with better generalization, we discarded the top 10% and the bottom
10% training examples to eliminate outliers and least informative
samples, respectively. Next, we randomly sampled 30% of the entire
training cohort from the remaining dataset. We hypothesized that
because this sample set did not include the top and bottom most
uncertain and certain cases, it was the best informative and
representative part of the dataset, and hence, we used it to fine-
tune a pretrained AlexNet, in order to achieve competitive model
performance compared with using the whole training dataset.

Table 3 lists model classification performance based on the
proposed uncertainty sampling method and compares it with the
baseline in which we fine-tuned the pretrained AlexNet on the entire
training dataset. Figure 5 illustrates contents of the Table 3.

It can be seen that our proposed uncertainty sampling method
achieved similar classification performance on the validation
dataset, and the AUC on the test set was 2.92% higher than
the baseline AUC. Overall, the proposed method could save
40–70% of labeling cost while maintaining high classification
performance of the model.

AUC Results of the Uncertainty Sampling
Method on Balanced Dataset
For the purpose of verifying the robustness of our proposed
method, we further created a balanced dataset and applied
uncertainty sampling method. In order to better control the

variables, we did not change the way the training, validation,
and test sets were divided. Rather, we changed the number of
slices extracted from each patient’s MRI scan. Because the ratio of
the number of HGG patients (259 patients) and LGG patients (76
patients) is close to 3:1, the ratio of the number of HGG and LGG
slices can be changed to 1:3 to form a balanced dataset. Therefore,
30 slices were extracted from MRI scan instead of 20 slices for
each LGG patient, and the number of MRI slices for every HGG
patient reduced from 20 slices to 10 slices. This yielded a dataset
of 4,870 2D 3-channel slices.

The baseline AUC was computed when the pretrained
AlexNet was fine-tuned on the entire balanced training set,
and the uncertainty sampling method was the same as
described previously. As Table 4 and Figure 6 indicate, even
on a balanced dataset, our proposed method achieved better
classification performance than the baseline test AUC with
significantly less annotations, which demonstrates robustness
of our uncertainty sampling method.

Comparison of AUC Results of the
Uncertainty Sampling Method and the
Random Sampling Method
In the previous sections, our sample size was fixed at 30% of the
training dataset, excluding the top and bottom most certain and
uncertain samples. In this section, we investigate the effect of the
sample size. In order to compare the efficacy of the uncertainty
sampling method and the random sampling method, we fine-
tuned the pretrained AlexNet on the fixed number of examples
which were created using these two sampling methods.

In our random sampling method, we started with random
sampling of 10% of the training cohort (N samples), and then
increased the number of samples by 10% of the training dataset
(N) until it accounted for 80% of the total training set samples
(8xN) (top and bottom 10% already removed). Thus, 8 sampled
datasets with a sample size of 10–80% (N to 8xN) of the total
training set were obtained, with interval of 10% (N). For the

FIGURE 5 | Comparison of AUC results of the proposed method and baseline.

TABLE 4 | AUC results of the proposed method and baseline AUC on the
balanced dataset.

AUC (95% CI) Proposed method Baseline

Validation dataset 85.20% (84.88, 85.52) 87.17% (86.87, 87.47)
Test dataset 82.00% (81.18, 82.82) 78.48% (77.60, 79.36)
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uncertainty sampling method, we removed the top 10% and
bottom 10% samples according to the sorted uncertainty list,
and randomly selected a subset whose sample size is 10% of the
total training cohort (N) from the remaining part of the dataset.
Similar to the previous sampling process, we created eight
different datasets and conducted our experiments on them.
Table 5 describes the details of correspondence between the
proportion of sample size and the number of examples on
imbalanced and balanced datasets.

Figure 7 and Figure 8 show the visualizations of test AUC
results using the uncertainty sampling method and the random

samplingmethod on the imbalanced as well as the balanced datasets.
In each figure, the solid and dash dotted lines indicate the AUC
values obtained on the samples corresponding to the parameters of
the horizontal axis, and the dotted lines represent the baseline AUC
which were computed when the pretrained CNNwas trained on the
entire labeled training datasets. The two colors orange and blue in
each figure represent AUC results calculated by the uncertainty
sampling method and the random sampling method, respectively.

As shown in Figures 7, 8, for both imbalanced and balanced
datasets, our proposed method performs better than the random
sampling method, and the AUC results are higher than the

FIGURE 6 | Comparison of AUC results of the proposed method and baseline on the balanced dataset.

TABLE 5 | Correspondence between the proportion of sample size and the number of examples on the imbalanced dataset and the balanced dataset.

Proportion of sample size 10% 20% 30% 40% 50% 60% 70% 80%

Number of examples Imbalanced dataset 406 812 1218 1624 2030 2436 2842 3248
Balanced dataset 487 974 1461 1948 2435 2922 3409 3896

FIGURE 7 | Comparison of test AUC results of the uncertainty sampling method and random sampling method on the imbalanced dataset.
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baseline on every proportion of sample size, which demonstrates
the stability and robustness of our proposed uncertainty sampling
strategy.

DISCUSSION

Deep learning algorithms for detection of tumors in medical
images require large annotated datasets for training. The
annotation is usually done manually by subspecialty
radiologists. The associated cost (time and expertize) is
prohibitively high, which hinders success of AI in medical
imaging. Transfer learning is a widely used approach which
can transfer the knowledge that the model has learned on
large datasets to the new recognition and classification tasks.
Active learning algorithms have been investigated to train a
competitive classifier with minimal annotation cost. In this
work, we combine transfer learning and active learning to
propose a novel uncertainty sampling method which can
reduce the amount of required training samples while
maintaining stability and robustness of CNN performance for
brain tumor classification.

There are two important metrics to describe the
informativeness of an unlabeled sample: uncertainty, which is
the inverse of the confidence of predicted results by the model;
and representativeness, which measures the degree of similarity
in distribution and structure between selected samples and target
dataset (Du et al., 2017). Most studies consider only one of these
two metrics. For example, Smailagic et al. (2018) selected samples
which had the longest distance from other training samples in a
learned feature space as the informative subset. Although this is
an efficient approach in terms of uncertainty metric, it is hard to
detect outlier samples because it is not guaranteed that the
selected samples are all representative of the whole training
cohort. Our proposed active learning method integrates the
traditional uncertainty sampling technique and the query-by-
committee method (Settles 2011), which selects the subset of

informative samples in terms of both uncertainty and
representativeness.

All BraTS multimodal scans were acquired with different
clinical protocols and various scanners from multiple (n � 19)
institutions. The details about the patients’ demographics, region,
racial diversity, clinical setting, and data extraction techniques are
not provided, and it is highly possible that they are not exactly the
same in these 19 institutions. The patients in the test set were
randomly sampled from the dataset with the same ratio of HGG
and LGG cases as those in the full dataset. Therefore, the selected
diverse test set has a good representation of the population
cohort, which could provide a valid and comprehensive
evaluation on the model performance.

Our proposed sampling method selects samples with
representativeness and informativeness by discarding subsets
of training samples with the highest and lowest uncertainty
scores. We set the proportion of discarded samples as 10%
because the top 10% examples with highest uncertainty and
the bottom 10% samples with the lowest uncertainty resulted
in a poormodel generalization as shown in Figure 3. We then had
multiple options for using the remaining 80% of the training
dataset. Our experiments revealed that a sample as big as 30% of
the dataset is the optimum choice (Figures 7, 8). By using 30% of
the training dataset conditioned on excluding top and bottom
10% of our uncertainty list, the uncertainty sampling method
achieved AUC of 82.89% and 82.00% on the imbalanced and
balanced datasets, respectively, which was comparable or better
than the baseline AUC. Although the best sampling size for the
balanced dataset would be 60%, given the slight difference
between AUC results at 30 and 60% (82.00 vs. 82.11%), we
chose 30% to save a considerable amount of labeling costs and
to be consistent with the imbalanced scenario. The proposed
method can save 40–70% of the labeling cost. We also compared
our uncertainty method with random sampling and
demonstrated that our proposed method outperforms random
sampling. It should be noted that random sampling is inherently
unstable compared to the proposed systematic sampling

FIGURE 8 | Comparison of test AUC results of the uncertainty sampling method and random sampling method on the balanced dataset.
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approach, and the results for random sampling are not reliable as
they may not be repeatable.

To apply the proposed method in a prospective setting and
generalize to other cohorts, the same hyperparameter setting
proposed in this research can be used to fine-tune the
pretrained CNNs and obtain the list of uncertainty scores for
the entire training dataset. According to the distribution of the
obtained uncertainty scores, we could set the threshold
proportion to discard the samples with extreme scores. Then
the proportion of samples selected from the remaining datasets
can be set to 30%, similar to this research or based on further
analysis of the new training data.

Although there is no mathematical proof or guarantee that our
results will generalize to othermedical imaging datasets, our research
introduces an annotation reduction method for AI applied to
medical imaging projects, which was proved to effectively reduce
annotation cost in brain tumor classification task.

CONCLUSION

A transfer learning–based active learning framework can
significantly reduce the size of required labeled training data
while maintaining high accuracy of the classification of tumors in
brain MRI.
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