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Abstract

Deposition of ubiquitin conjugates on inclusion bodies composed of protein aggregates is a

definitive cytopathological hallmark of neurodegenerative diseases. We show that accumu-

lation of ubiquitin on polyQ IB, associated with Huntington’s disease, is correlated with

extensive depletion of nuclear ubiquitin and histone de-ubiquitination. Histone ubiquitination

plays major roles in chromatin regulation and DNA repair. Accordingly, we observe that cells

expressing IB fail to respond to radiomimetic DNA damage, to induce gamma-H2AX phos-

phorylation and to recruit 53BP1 to damaged foci. Interestingly ubiquitin depletion, histone

de-ubiquitination and impaired DNA damage response are not restricted to PolyQ aggre-

gates and are associated with artificial aggregating luciferase mutants. The longevity of

brain neurons depends on their capacity to respond to and repair extensive ongoing DNA

damage. Impaired DNA damage response, even modest one, could thus lead to premature

neuron aging and mortality.

Introduction

Neurodegeneration is a major challenge facing the global aging population. Millions are

afflicted by the highly prevalent Parkinson’s and Alzheimer’s diseases, as well as dozens of less

common disorders like Huntington’s disease and eight other polyQ disorders. Protein aggre-

gation is the most prominent histopathological hallmark of most neurodegenerative diseases.

Each disease is associated with the aggregation of one or more specific mutant or wild type

protein. The effect of these aggregating proteins is, in most cases, a dominant gain of function

[1] but it is not clear at all if and how they bring about neuron mortality. It is also debated

whether aggregation reduces or increases the toxicity of the protein [2].
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In addition to the specific disease associated proteins, several other proteins also localize to

the aggregates. The most common of these co-aggregating proteins is ubiquitin, which is pres-

ent in almost all types of disease-associated aggregates [3]. Inclusion bodies (IB) contain a con-

siderable amount of ubiquitin and several groups have shown that they perturb the ubiquitin

homeostasis of the cell [4, 5]. In some experimental systems IB formation is associated with

breakdown of the capacity of ubiquitin dependent [6] and independent [7] proteasomal degra-

dation. We have observed [7] that this breakdown is a relatively late event and could therefore

be a downstream result of other more direct effects of IB. Cells express considerable amounts

of ubiquitin from four different genes. The level of cellular ubiquitin is nevertheless tightly

controlled and knockout of Ubb, one of the four ubiquitin genes in mice, led to a 30% reduc-

tion of the level of ubiquitin in the hypothalamus resulting in hypothalamic neurodegenera-

tion [8]. This observation demonstrates how sensitive neurons can be to perturbations of their

ubiquitin homeostasis.

Ubiquitin plays multiple roles in addition to its function in proteasomal degradation. Cells

stained with antibodies to ubiquitin, or expressing fluorescently tagged ubiquitin, have a

strong nuclear staining, most of it due to mono-ubiquitinated histones. Histone ubiquitination

in response to DNA damage was first discovered by Nico Dantuma [9] and its role in the DNA

damage response has been extensively documented [10–16]. This ubiquitination is highly

dynamic and is rapidly turned over by multiple ubiquitin ligases and de-ubiquitinating

enzymes [17, 18]. Indeed perturbation of ubiquitin homeostasis by proteasomal inhibition

leads to rapid depletion of nuclear ubiquitin [19].

At least four histones are monoubiquitinated in the nucleus. Histone H1 is ubiquitinated by

RNF8 coupling initiation and amplification of ubiquitin signaling after DNA damage [20]. His-

tone H2A ubiquitination on K13 and K15 by the RNF168 drives DNA damage signaling [21].

Histone H2B ubiquitination on K120 by the ubiquitin ligases RNF20/40 [22–24] and BAF250

[25] is associated with chromatin activation and is also required for double strand DNA repair

[15, 24]. Finally histone H4 is ubiquitinated on K91 by the BBAP ubiquitin ligase [26] leading

to H4K20 methylation, which plays a role in the localization of the DDR protein 53BP1 to dam-

aged sites. Whereas histone ubiquitination is associated with repair of double strand breaks,

ubiquitination also plays a role in several stages of nucleotide excision repair [9, 27–30].

Brain neurons make up 2% of body mass but consume 20% of its oxygen [31] generating a

considerable amount of reactive oxygen radicals. It is conceivable that these radicals are at

least partially responsible for the large number of DNA lesions observed in neurons [32, 33].

Given the fact that neurons are not replaceable and designed to last a lifetime, it is understand-

able that they heavily rely on the DNA damage response (DDR) and repair mechanisms. This

can be demonstrated by the fact that several inherited mutations in DDR genes like ATM and

NBS have a pronounced effect on brain neurons [34].

We report here that ubiquitin conjugates accumulate on PolyQ IB and that this accumula-

tion is correlated with ubiquitin depletion from the nucleus and extensive histone H2A and

H2B de-ubiquitination. Given the important role of histone ubiquitination for the DNA dam-

age response, we tested how these cells respond to DNA damage. We observed that cells with

IB indeed fail to respond normally to such damage. The perturbed effect could be partially res-

cued by ubiquitin overexpression. These observations can explain the observed damage found

in DNA of cells with Huntingtin aggregates [35, 36]. Ubiquitin is present in most types of dis-

ease related cellular protein aggregates. We thus wondered whether other types of aggregates

have a similar effect on nuclear ubiquitin homeostasis and on the DNA damage response. We

addressed this question using an “artificial” firefly luciferase mutant protein that is not associ-

ated to any disease [37]. Strikingly this protein had the same effects on histone ubiquitination

and the DNA damage response as did the Htt-Q91 protein.

Ubiquitin Depletion by Disease Associated Protein Aggregates
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Results

PolyQ aggregates deplete nuclear ubiquitin and lead to histone de-

ubiquitination

A fusion protein of exon 1 of the mutant huntingtin gene, which encodes 91 glutamines and

a fluorescent protein (Htt-Q91-FP) is a well-characterized model for PolyQ aggregation

[38]. We have recently set up a system to follow this aggregation and its effects on cells in

real time. We observed that once the level of this protein achieved a certain threshold con-

centration, it rapidly aggregates and forms inclusion bodies (IB) [7]. Most aggregates form

in the cytoplasm but some aggregates form in the nucleus. We did not observe any difference

in behavior of cytosolic and nuclear aggregates. Like most cellular protein aggregates associ-

ated with neurodegenerative diseases, also polyQ IB contain ubiquitin [39, 40]. To assess the

effect of protein aggregation on the homeostasis of ubiquitin in live cells we generated a

U2OS cell line stably expressing ubiquitin with an N-terminal YFP tag (YFP-Ubi). YFP-Ubi

gets incorporated into poly ubiquitin chains and is capable of mono-ubiquitination of pro-

teins ([41] and S1 Fig). Live cell studies of these cells show that, as expected, YFP-Ubi is pres-

ent in all cellular compartments but is considerably enriched in the nucleus and on

chromosomes (S1 Mov). We observed a similar enrichment in fixed cells stained with the

Fk2 monoclonal antibody that identifies ubiquitinated proteins. Most of the ubiquitination

of nuclear proteins comprises of histone mono-ubiquitination [42]. As expected YFP-U-

biΔG75,76, a ubiquitin mutant lacking its two C-terminal glycine residues, does not localize

to chromosomes (S2 Mov).

Transient expression of HttQ91-mCherry in the stable YFP-Ubi cells showed that ubiquitin

accumulates on the polyQ aggregates within about an hour of IB formation ([7] and Fig 1A).

The YFP-UbiΔG75,76 mutant does not accumulate on aggregates. Moreover inhibition of ubi-

quitination by an E1 inhibitor [43] also prevented accumulation of ubiquitin on aggregates

([44] and data not shown). These observations indicate that aggregates don’t recruit free ubi-

quitin but only one conjugated to other proteins.

We observed that accumulation of YFP-Ubi on the aggregate was followed by its depletion

from the nucleus (Fig 1A and S3 Mov). We confirmed that IB deplete endogenous ubiquitin

from nuclei by transiently transfecting cells with Htt-Q91-Cherry and staining them with the

Fk2 antibody (Fig 1B). While YFP-Ubi imaging represents both the conjugated and free ubi-

quitin, Fk2 stains only ubiquitin conjugated, either as poly or mono ubiquitin, to other pro-

teins. We observed a similar depletion of ubiquitin by the polyQ aggregate in neuronal derived

cells lines N2A and PC12 (S2 Fig).

We next expressed untagged Htt-Q91 in cells to ensure that ubiquitin does not accumulate

on aggregates and deplete nuclear ubiquitin due to the fluorescent tag of the aggregating pro-

tein. Fig 1C shows that untagged polyQ aggregates accumulate ubiquitin and deplete nuclear

ubiquitin just like the fluorescently tagged polyQ.

We next explored whether the loss of nuclear ubiquitin is associated with the depletion of

the available ubiquitin in the cell. We used the Ub[9]-mRFP[1] expression vector [45], which

expresses the open reading frame of a ubiquitin precursor encoding nine ubiquitin monomers

in frame with mRFP. Ubiquitin hydrolases convert this fusion protein into nine ubiquitin

monomers and one mRFP molecule. The level of mRFP thus indicates how much ubiquitin is

expressed in each cell. Fig 1D shows that indeed in cells overexpressing ubiquitin, as indicated

by mRFP expression, nuclear ubiquitin staining was maintained in spite of ubiquitin accumu-

lation on IB.

Ubiquitin Depletion by Disease Associated Protein Aggregates
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Fig 1. Poly Q aggregates accumulate ubiquitin and lead to depletion of nuclear ubiquitin. Cells stably expressing YFP-Ubi were transiently

transfected with Htt-Q91-Cherry and followed by live cell imaging (S3 Mov). Shortly after the Htt-Q91-Cherry aggregates it starts to accumulate

ubiquitin. T = 0 was arbitrarily set to the time protein aggregation started in this particular cell. Strikingly YFP-Ubi staining in the nucleus is depleted (A).

U2OS Cells were transiently transfected with Htt-Q91-Cherry and fixed for immunofluorescence with an antibody that identifies ubiquitinated proteins

(Fk2). The experiment was repeated in N2A and PC12 cells (S2 Fig). In each of these lines the cells with the IB lack nuclear ubiquitin staining compared

to the non-expressing cells. (B). U2OS Cells were transiently transfected with untagged Htt-Q91 and fixed for immunofluorescence with Fk2. Ubiquitin

accumulated on the untagged IB and was depleted from the nucleus like with the Htt-Q91-Cherry (C). U2OS cells were co-transfected with Ubi[9]-

mRFP[1] and YFP-Htt-Q91. Overexpression of ubiquitin reduces depletion of nuclear ubiquitin by Htt-Q91 in spite of the accumulation of ubiquitin on

the IB (D).

doi:10.1371/journal.pone.0169054.g001
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Accumulation of ubiquitin on IB is correlated with histone de-

ubiquitination

Nuclear ubiquitin is mainly conjugated as mono-ubiquitin to chromatin histones [42]. Histone

ubiquitination is highly dynamic and is rapidly turned over. In a FRAP (Fluorescence Recov-

ery After Photobleaching) experiment on nuclear YFP-Ubi about 70% of the fluorescence

recovered within less than 10 minutes (S3 Fig). It is likely that ubiquitin turnover on different

histones and other nuclear proteins follows different kinetics, however most of it seems to be

rather rapid. Perturbation of ubiquitin homeostasis by treating cells with the proteasome

inhibitor MG132 leads to rapid loss of histone ubiquitination [19] and S4 Mov.

We used antibodies against specific ubiquitinated histones to examine whether PolyQ IB

lead to histone de-ubiquitination. Fig 2A shows cells expressing PolyQ IB stained with anti-

bodies against ubiquitinated histone H2B. Cells with IB have a significantly reduced staining

of histone H2B ubiquitination. Fig 2B shows that also histone H2AX ubiquitination is consid-

erably reduced in cells with IB.

The experiments described so far were performed by transient expression of Htt-Q91 in

cells. This method leads to rapid expression of high levels of the aggregating protein. It could

be argued that this acute expression is of limited physiological relevance. We therefore sought

a more physiological method of expression. We generated cells expressing Htt-Q91-Cherry

from a tetracyclin inducible promoter, which is induced by doxycycline. While all cells

expressed the protein at detectable levels only a fraction of them expressed sufficient amounts

to form aggregates. These cells thus express Htt-Q91-Cherry close to the threshold level

required for IB formation. At the phenomenological level this is more reminiscent to what is

observed in the brain, where only a small number of cells are observed to contain IB. It is how-

ever of course unknown what the real levels of Htt in the brain are and at what concentration

they form IB. Unlike the transiently expressing cells IB formation in these inducible lines does

not lead to rapid cell death. We induced these cells for several days, fixed them and stained

them with antibodies against Ubiquitin (Fk2), Ubi-H2B and Ubi-H2AX. Fig 3 shows that cells

Fig 2. Poly Q aggregates lead to depletion of histone ubiquitination. U2OS cells were transiently transfected with Htt-Q91-Cherry and

fixed for immunofluorescence with an antibody that identifies ubiquitinated H2B (A) and ubiquitinated H2AX The staining of the IB with the

Ubi-H2B and Ubi-H2AX antibodies is likely due to cross reaction of these antibodies with the high concentrations of ubiquitin on the

aggregates (B). Cells were either imaged under the microscope (A,B) or analyzed in bulk by flow cytometry. The red bars indicate cells that

lack aggregates and the blue bars cells with aggregates. The presented experiment is a representative of three repeats (C).

doi:10.1371/journal.pone.0169054.g002
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with IB have considerably reduced levels of nuclear ubiquitin and of Ubi-H2B and Ubi-H2AX,

compared to neighboring cells that lack IB.

IB formation is correlated with a compromised DNA damage response

Histone ubiquitination plays a crucial role in various stages of the DNA damage response. We

therefore wondered whether the significant reduction in histone ubiquitination caused by IB

would affect the capacity of cells to respond to DNA damage. Histone ubiquitination has been

mainly implied in response to double strand breaks and we therefore focused on response to

this type of damage. We treated cells transiently expressing PolyQ IB with the radiomimetic

agent neocarzinostatin and stained cells with antibodies against phospho-gamma-H2AX.

Phosphorylation of gamma-H2AX is considered to be an early response to damage. While it is

still under debate whether the initiation of it requires histone ubiquitination, the amplification

of this signal depends on this modification [46, 47]. Fig 4A compares cells with IB to their

untransfected neighbors 30 minutes after neocarzinostatin treatment. It is evident that the

cells with IB have a considerably smaller number of phospho-gamma-H2AX positive foci. We

used flow cytometry to quantify the effect of DNA damage in response to DNA damage.

Fig 3. Inducible expression of Poly Q aggregates leads to depletion of histone ubiquitination. U2OS cells expressing an inducible Htt-

Q91-Cherry vector were induced with dox. Cells were fixed and stained with Fk2 antibodies that identify ubiquitinated proteins B, antibodies

against ubiquitinated H2B (B) and ubiquitinated H2AX (C). Cells were imaged under the microscope (B,C). Several hundred cells in multiple

fields were photographed and quantified by ImageJ. The red bars indicate cells that lack aggregates (normalized to 1) and the blue bars cells

with aggregates, error bars are SE (D).

doi:10.1371/journal.pone.0169054.g003
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Fig 4B shows that cells expressing high levels of Htt-Q91-Cherry, representing cells with IB,

failed to induce gamma-H2AX phosphorylation in response to damage. Cells without Htt-

Q91-Cherry did, as expected, induce gamma-H2AX phosphorylation in response to neocarzi-

nostatin treatment.

We next tried to rescue gamma-H2AX phosphorylation by over expression of ubiquitin.

We transfected Ub[9]-mRFP[1] [45] simultaneously with Htt-Q91-YFP. Fig 4C shows that in

cells with IB over-expressing intermediate levels of ubiquitin, gamma-H2AX phosphorylation

markedly increased (Fig 4C- two cells in the middle) compared to cells with IB over-expressing

low levels of ubiquitin (Fig 4C -two right cells) or cells with IB not over-expressing ubiquitin

(Fig 4A). Higher levels of ubiquitin expression proved to be toxic to cells. This observation

cautiously indicates that depletion of histone ubiquitination could be directly or indirectly

involved in reducing gamma-H2AX phosphorylation in cells expressing IBs.

The requirement of histone ubiquitination for the recruitment of the 53BP1 repair protein

to DNA double strand breaks has been well documented [48]. We transfected cells with Htt-

Fig 4. Cells with Poly Q aggregates have an impaired DNA damage response, which can be partially rescued by ubiquitin over-

expression. U2OS cells were transiently transfected with Htt-Q91-Cherry, treated with DNA damaging agent neocarzinostatin and fixed at

indicated time points. Cells were stained with an antibody against the early marker for DDR phosphor-gamma-H2AX. The red line indicates

cells that lack aggregates and the blue line cells with aggregates. The presented experiment is a representative of three repeats (A, B).

U2OS cells were co-transfected with Ubi[9]-mRFP[1] (red) and Htt-Q91-Venus treated with neocarzinostatin and fixed after one hour (C).

Cells transiently transfected with Htt-Q91-Cherry, and treated with neocarzinostatin were fixed at indicated time points and stained with

antibodies against the late DDR marker 53BP1 (D, E). Cells were either imaged by microscope (A, C, D, E) or analyzed by flow cytometry.

The red bar indicates cells that lack aggregates and the blue bar cells with aggregates. Number of foci of 53BP1 were counted manually,

error bars represent SE, three repeats (E).

doi:10.1371/journal.pone.0169054.g004
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Q91-Cherry, treated them with neocarzinostatin, fixed them and stained them with anti

53BP1. Fig 4D and 4E show that cells with IB have much less 53BP1 positive foci than cells

without aggregates. To test the potential of ubiquitin over-expression on restoring the forma-

tion of 53BP1foci we again used Ub[9]-mRFP[1]. However this time our results remained

inconclusive. Phosphorylation of gamma-H2AX and 53BP1 foci require different types of his-

tone ubiquitination—H2AX Ser139 [46, 47] and H2A Lys15 [48] respectively. It is thus con-

ceivable that crude over expression of ubiquitin will not necessarily rescue both effects to the

same extent.

Nuclear ubiquitin depletion, histone de-ubiquitination and compromised

DNA damage response are associated with “generic” firefly luciferase

aggregates

Most disease associated protein aggregates are rich in ubiquitin. We therefore wondered

whether the effect we observed of PolyQ IB on nuclear ubiquitin homeostasis and the DNA

damage response are associated with other types of aggregates. We sought an aggregating pro-

tein that is not normally expressed in human cells and which is not associated with any disease.

We chose a mutant of firefly luciferase fused to GFP that was designed to form aggregates in

cells [37]. Unlike PolyQ, which forms a clean and single IB, FLUC forms multiple aggregates

in each expressing cell. Fig 5A shows that FLUC aggregates accumulate ubiquitin like PolyQ

IB and that consequently ubiquitin is depleted from nuclei. Fig 5B shows that, as expected,

these aggregates reduce histone H2AX ubiquitination. We next checked the effect of FLUC on

the DNA damage response. Fig 5C shows that cells expressing FLUC fail to respond to such

damage by phosphorylating histone gamma-H2AX. Similarly, FLUC drastically reduced the

number of 53BP1 foci in cells that suffered DNA damage (Fig 5D and 5E). These results indi-

cate that FLUC aggregates and polyQ IB have a comparable effect on histone ubiquitination

and the DNA damage response. These observations further imply that many other disease-

associated aggregating proteins could have a related effect on nuclear ubiquitin and the capac-

ity of cells to respond to damage.

PolyQ aggregates sequester 53BP1

Staining cells expressing polyQ IB with anti 53BP1 not only showed considerably reduced lev-

els of damage specific foci, but also often showed staining of the IB itself (Fig 4C). To test

whether this is a nonspecific interaction between the antibody and aggregated polyQ we stably

expressed 53BP1-GFP in cells and followed them by live cell imaging. Fig 6 (left) and S5 Mov

show that when polyQ transiently expressed in these cells aggregated, 53BP1-GFP accumu-

lated on it. This accumulation is not only interesting due to the yet inexplicable fact that 53BP1

is attracted to aggregates, but also due to the inevitable conclusion that 53BP1 exits the nucleus.

The prompt translocation of 53BP1 from the nucleus to the aggregates in the cytoplasm is

unlikely due to active regulated export, and suggests the disruption of the nuclear compart-

ment. To test whether the nuclear compartment is disrupted, we generated cells stably express-

ing YFP with a nuclear localization signal (YFP-NLS). These cells were transfected with Htt-

Q91-mCherry and YFP-NLS was followed in parallel to IB formation. S6 Mov shows that for-

mation of a polyQ aggregate coincides with massive leakage of YFP from the nucleus into the

cytoplasm. Fig 6 (right) shows that about 50% of cells with aggregates have a disrupted nuclear

compartment while only about 10% of cells with diffuse Q91, as well as Q25 demonstrate such

a disruption. These observations support a recent report [49] showing that perinuclear inclu-

sions disrupt the nuclear membrane.

Ubiquitin Depletion by Disease Associated Protein Aggregates
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Discussion

Brain neurons are not replaced during the lifetime and can thus reach a ripe old age. Moreover

their number does not drastically decline during normal aging [50]. The symptoms of neuro-

degeneration in contrast are caused by premature loss of neurons in specific parts of the cen-

tral nervous system. Protein aggregation is the most obvious histopathological hallmark of

neurodegeneration but how aggregation is related to neuronal demise is not fully understood.

Toxicity has been attributed both to the pre-aggregated [51, 52] as well as the aggregated pro-

tein [7]. These observations do not necessarily contradict each other. Even if the pre-aggre-

gated proteins are more deleterious to the cell in the short run, the aggregates could still be

toxic in the long run. Our results suggest that the aggregate might have a long-term chronic

effect on the capacity of cells to repair their damaged genome. This model does not exclude

any other toxic effects of the aggregates and the pre-aggregate protein.

Most neurodegenerative diseases are characterized by their gradual and late onset. In this

sense they can be viewed as premature aging of specific cell populations. Accumulation of

Fig 5. Firefly luciferase aggregates are associated with histone de-ubiquitination and a compromised DNA damage response.

U2OS Cells were transiently transfected with FLUC-DM-YFP and fixed for immunofluorescence with an Fk2, an antibody that identifies

ubiquitinated proteins (A) and ubiquitinated H2AX (B). U2OS cells were transiently transfected with FLUC-DM-YFP, treated with the DNA

damaging agent neocarzinostatin and fixed at indicated time points (C,E). Cells were either stained with an antibody against phosphor-

gamma-H2AX and analyzed by flow cytometry (C) The presented experiment is a representative of three repeats. Alternatively, cells were

stained or against the 53BP1(D), Cells from three experiments were counted and quantified (E). Error bars represent SE, three repeats.

doi:10.1371/journal.pone.0169054.g005
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DNA damage is a normal effect of aging as are breakdown of proteostasis and disruption of

the nuclear lamina [53, 54]. Protein aggregation indeed leads to breakdown of proteostasis [6,

7], as well as reduced response to DNA damage [55] and to disruption of the nuclear lamina

[49]. All these effects accelerate aging by pushing the cells faster over the cliff.

Here we show that perturbation of ubiquitin homeostasis is likely to be involved in the

recently reported compromise of the DNA damage response [36]. We have further shown that

the effect of protein aggregation might have similar characteristics no matter which protein

forms the aggregates. It remains therefore a mystery why different cell types are affected in dif-

ferent aggregation diseases.

In addition to ubiquitin, IB bind and deplete other proteins, which could affect the DNA

damage response like VCP/p97 [36] and 53BP1 as we have shown here.

It is yet unknown why ubiquitin conjugates accumulate on aggregates. Several ubiquitin

binding proteins like NPL4 which complexes with VCP/p97, Atx3 and the p62/SQSTM1 are

all known to localize to aggregates and could also contribute to the accumulation of ubiqui-

tin. It is possible that this accumulation takes the form of a chain reaction where ubiquitin

binding proteins start to settle on the aggregate binding ubiquitinated chains, which further

bind ubiquitin binding proteins and so on and so forth. The initial trigger could be a small

amount of ubiquitin on the primary aggregating protein or of co-aggregating proteins. We

have recently shown that ubiquitin binds tightly to IB so that once it has been bound it

remains there [44].

If indeed perturbation of ubiquitin homeostasis accelerates cell aging, preventing this per-

turbation could be a promising new medical approach. We have recently shown that ubiquitin

is recruited to the aggregates after they form [7]. This observation has been corroborated in

the R6/2 PolyQ mouse model [56]. As ubiquitin accumulation happens after aggregation and

Fig 6. 53BP1 exits the nucleus and accumulates on polyQ aggregates. Cells stably expressing 53BP1-GFP (green) were transiently

transfected with Htt-Q91-Cherry (red) and followed by live cell imaging for aggregate formation. The 53BP1-GFP exits from the nucleus and

localizes to the aggregate shortly after it forms (S5 Mov) (left panels). Cells stably expressing YFP-NLS were transfected with Htt-

Q91-Cherry or Htt-Q25-Cherry and fixed after 24 hours. The number of cells with IB, soluble Q91 and Q25 with disrupted nuclei were counted

(right panel). See also S6 Mov).

doi:10.1371/journal.pone.0169054.g006
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is not part of the aggregation process it should be in theory possible to uncouple it from aggre-

gation. This is of importance in light of the reports that show that pre-aggregated proteins are

highly toxic and that aggregation could detoxify them [51]. Inhibition could be achieved either

by small molecule inhibitors or by inhibition of proteins that are binding ubiquitin to aggre-

gates. Such inhibition will enable us to discriminate between the effect of the aggregate itself

and to the effect of depletion of cellular ubiquitin.

Materials and Methods

Plasmids

pEF-EYFP-Ubi was generated by cloning ubiquitin downstream of EYFP in the pEF-BOS vec-

tor. Htt-Q91-Cherry was generated by cloning the first exon of huntingtin with 91 glutamine

repeats from N-htt(Q91)–chFP [7] into pcDNA4/TO with KpnI+XbaI. Inducible Htt-

Q91-Cherry was generated by cloning first exon of huntingtin with 91 glutamine repeats from

N-htt(Q91)–chF into pTRE-Tight with KpnI+XbaI. Htt-Q91 was generated by deleting the

open reading frame of Cherry from Htt-Q91-Cherry. The Ub[9]-mRFP[1] expression vector

[45] was obtained from the Addgene repository. FLUC-DM-YFP was a kind gift of F. Ulrich

Hartl and Rajat Gupta of the Max Planck Institute in Martisried, Germany.

Cell culture and transfections

Human dox inducible U2OS-human osteosarcoma cells were obtained from invitrogene,

mouse Neuro 2A (N2A) and rat Pheochromocytoma cells were a kind gift or Sagiv Shifman

from our institute. U2OS and N2A cells were cultured in DMEM with 10% FCS and Penicil-

lin- Streptomycin (all from Biological Industries). Rat PC12 cells were cultured in DMEM

with 5% FCS, 10% Horse serum and Pen/Strep. U2OS cells were transfected with Jetprime™
(Polyplus Tranfection) and N2A and PC12 with Lipofectamine 2000 (Life Technologies).

U2OS cells stably expressing inducible pTET-Q91-mCherry were induced with 1μg/ml

Doxycycline (Sigma) for 48 hours or more. DNA damage was induced with 0.03μg/ml Neo-

carzinostatin (Sigma) for 10 minutes in darkness. Cells were subsequently washed and fed

with fresh medium.

Antibodies and indirect immunofluorescence

The following antibodies were used: Mouse anti Mono and poly Ubiquitinylated conjugates

FK2 (ENZO), Mouse anti Phospho histone H2A.X (Ser139) (Millipore), Mouse anti Ubiquityl

Histone H2B (Lys120) (Millipore), Mouse anti Ubiquityl Histone H2A.X (Lys119) (Millipore),

Rabbit anti 53BP1 (Bethyl), Rabbit anti histone H3 (Sigma). Fluorescently tagged secondary

antibodies were from Jackson ImmunoResearch.

For indirect immunostaining U2OS and N2A cells were cultured on uncoated coverslips

and PC12 cells were cultured on coverslips coated with Poly-Lysine (Sigma). After transfec-

tions and the relevant treatment cells were washed briefly with PBS and subsequently for 30

seconds with cytoskeleton buffer (CKS) (100 mM NaCl, 300 mM Sucrose, 10 mM Pipes, 3 mM

MgCl2, 1 mM EGTA). U2OS cells were fixed for 10 minutes with 4% Paraformaldehyde (pFA)

for experiments entailing DNA damage or with 4% Formaldehyde otherwise, and washed

three times with PBS. N2A and PC12 cells were fixed for 30 minutes with 4% pFA and were

subsequently treated for 30 minutes with 0.5% Triton in PBS to perforate their membranes.

Staining with antibodies against ubiquityl histone H2B required a more drastic protocol to

denature the chromatin. Cells were therefore fixed for 20 minutes with 4% pFA, membrane

perforation with 0.1% triton in PBS for 20 minutes and chromatin denaturation with 2M HCl
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for 10 minutes at 37˚C. This treatment precludes chromatin staining with DAPI and cells were

therefore double stained with anti-Histone H3.

All cells were treated for 30 minutes with blocking buffer (1% Triton, 10% FCS in PBS).

Cells were incubated with the primary antibody diluted in blocking buffer (contact authors for

specific dilutions) overnight (phosphor histone H2A.X, and 53BP1) or for one hours (all other

antibodies). Cells were washed three times with PBS for 5 minutes each and incubated for one

hour with the relevant secondary antibody (1:1000) and washed again three times with PBS.

Cells were stained with DAPI or Hoechst (Sigma) and mounted with fluorescent mounting

medium (DakoCytomation).

Stained cells were imaged with an inverted IX70 Olympus microscope (40X/1.3 oil immer-

sion objective) fitted with Sutter filter wheels, a Roper HQ cooled CCD camera driven by

Micromanager software. Alternatively, cells were imaged on an FV1000 Olympus confocal

laser scanning microscope (60X/1.4 oil immersion objective). Images were processed with

ImageJ (contrast enhancement, cropping and color merging only).

FACS analysis

DNA damage was induced with 0.03μg/ml Neocarzinostatin (Sigma) for 10 minutes in dark-

ness in 24 well tissue culture dishes. Cells were detached from the wells with trypsin, pelleted

(1200 RCF 3 minutes at 4˚C) and suspended in 4% pFA for 30 minutes on ice. Cells were pel-

leted again, suspended in FACS buffer (PBS, 1% FCS, 0.05% Sodium Azid) and kept over night

at 4˚C. The following day cells were pelleted, washed twice in Saponin solution (0.1% saponin

in FACS buffer) to perforate the membrane and suspended in 50 μl saponin solution with

mouse anti Histone H2A.X (Ser 139) for 30 minutes on ice. Staining was terminated by the

addition of 1 ml saponin solution followed by three washes as described above. Cells were next

incubated with 50 μl saponin solution with Goat α Mouse DyLight 488 (Pierce Biotechnology)

for 30 minutes on ice and washed again three times. Cells were finally suspended in 300 μl of

saponin solution and 10000 cells were read for each sample on a FACS Aria III (BD) with both

the green (488 nm) laser to visualize the antibody staining and the red (561 nm) laser to visual-

ize Q91-mCherry.

Supporting Information

S1 Fig. YFP-Ubi gets incorporated into Polyubquitin chains. Protein was extracted from

293 cells untransfected (Un) and transfected with expression vectors for YFP, YFP-Ubi

(WT) and YFP-UbiΔG75,76. Protein was resolved by SDS-PAGE and immunoblotted with

antibodies against GFP (cross-reacting with YFP) and Ubiquitin. The poly-ubiquitin ladder

in the GFP blot of wild type YFP-Ubi indicates that it gets incorporated into poly-ubiquitin

chains. As expected the YFP-UbiΔG75,76 mutant does not get incorporated.

(TIF)

S2 Fig. Poly Q aggregates accumulate ubiquitin and lead to depletion of nuclear ubiqui-

tin. N2A (top) and PC12 (bottom) cells were transiently transfected with Htt-Q91-Cherry

and fixed for immunofluorescence with an antibody that identifies ubiquitinated proteins

(Fk2).

(TIF)

S3 Fig. Ubiquitin is turned over relatively rapidly on chromosomes. A U2OS cell stably

expressing YFP-Ubi was photobleached as indicated with the arrow and followed for 10 min-

utes. Time lapse frames show that about 70% ofr ubiquitination on histones recovers within

about 8 minutes (A, B). The fluorescence of one set of segregating sister chromatids of a

Ubiquitin Depletion by Disease Associated Protein Aggregates

PLOS ONE | DOI:10.1371/journal.pone.0169054 January 4, 2017 12 / 17

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0169054.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0169054.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0169054.s003


dividing NIH3t3 murine fibroblast stably expressing YFP-Ubi was photobleached (C). Time

lapse frames show how rapidly ubiquitination on histones recovers even under conditions of

chromatin condensation.

(TIF)

S1 Mov. YFP-Ubi is concentrated in the nucleus and binds to chromosomes. Cells stably

expressing YFP-Ubi were imaged every five minutes.

(MOV)

S2 Mov. The non-conjugating YFP-UbiΔG is diffuse in the cell and does not bind chromo-

somes. Cells stably expressing YFP-UbiΔG75,76 were imaged every five minutes on an LSM5

(Zeiss) laser scanning microscope.

(MOV)

S3 Mov. Ubiquitin accumulates on aggregates after they form and is depleted from the

nucleus. Cells stably expressing YFP-Ubi were transfected with Htt-Q91-Cherry and imaged

every six minutes. Left panel is Htt-Q91-Cherry and right panel ubiquitin. T = 0 was arbitrarily

chosen at three frames before aggregation of Htt-Q91-Cherry in the lower cell. Initially ubiqui-

tin is absent from the aggregate and it starts to accumulate within about one hour. By the end

of the movie the level of ubiquitin in the nucleus is considerably reduced and is comparable to

the level of ubiquitin in the cytoplasm.

(AVI)

S4 Mov. Perturbation of ubiquitin homeostasis in the cell by a proteasome inhibitor leads

to loss of nuclear ubiquitin. Cells stably expressing YFP-Ubi were treated at T = 0 with the

proteasome inhibitor MG132 and imaged every five minutes.

(MOV)

S5 Mov. 53BP1 exits the nucleus and accumulates on polyQ aggregates. Cells stably express-

ing 53BP1-GFP (top-green) were transiently transfected with Htt-Q91-Cherry (middle-red)

and followed by live cell imaging for aggregate formation. The 53BP1-GFP exits from the

nucleus and localizes to the aggregate shortly after it forms.

(AVI)

S6 Mov. PolyQ aggregates rupture the nuclear lamina. Cells stably expressing NLS-YFP

(green) were transiently transfected with Htt-Q91-Cherry (red) and followed by live cell imag-

ing for aggregate formation. NLS-YFP exits from the nucleus upon aggregate formation.

(AVI)
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