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Abstract: This research studied the effect of molecular weight (Mw) and degree of substitution
(DS) on the microstructure and physicochemical characteristics of methylcellulose (MC) films with
or without SNC. The Mw and DS of three types of commercial MC (trade name of M20, A4C,
and A4M, respectively) were in the range of 0.826 to 3.404 × 105 Da and 1.70 to 1.83, respectively.
Mw significantly affected the viscosity of methylcellulose solutions as well as the microstructure
and tensile strength of methylcellulose films, while DS had a pronounced effect on their oxygen
permeability properties. The incorporation of 15% (w/w) SNC resulted in the efficient improvement of
tensile strength, water, and oxygen barrier properties of films, particularly for the A4C nanocomposite
films. The results from SEM and FTIR illustrated that relatively homogenous dispersion of SNC was
distinguished in A4C-15% (w/w) SNC films. Furthermore, microstructures of MC-SNC nanocomposite
films were strongly dependent on both Mw and DS of MC. This work offers a convenient and
green method to fabricate MC-based nanocomposite films with desirable mechanical, light, oxygen,
and water vapor barrier properties.

Keywords: methylcellulose films; starch nanocrystals; molecular weight; degree of substitution;
physicochemical properties

1. Introduction

Synthetic petroleum-based plastics have dominated the food packaging industry,
since they are versatile, flexible, durable, and low cost. Despite these advantages, extensive
use of plastic packaging materials has led to serious environment problems, due to their
non-biodegradability. Biopolymer films, produced from polysaccharide, protein, lipid,
and their blends, have received considerable attention as promising candidates for food
packaging [1]. According to the Market Data Forecast, the global edible packaging market
was valued to be USD 727.6 million in 2021 and is expected to expand at a compound
average growth rate of 6.2%, reaching USD 1.1 billion by 2026 [2].

Cellulose, the most abundant natural polymer from renewable sources, is a linear
biopolymer of D-glucose rings linked by β-1,4 glycosidic bonds [3]. Methylcellulose (MC) is
a water-soluble cellulose derivative, and its hydroxyl groups of the anhydroglucose repeat
units are partially substituted by hydrophobic methoxy groups. This substitution pattern
endows MC with excellent thermal gelation and film-forming characteristics compared
with cellulose [4]. Up to now, it has been demonstrated that molecular weight (Mw) and
degree of substitution (DS) of MC play critical roles in its physicochemical properties, i.e.,
water solubility, thermal stability, thickening, and gel- and film-forming properties [5].
Commercial MC is usually produced with an average DS value ranging from 1.4 to 1.9 mol
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of OCH3 per mol of AGU unit, which can readily dissolve in water at low temperatures
to form homogeneous film-forming solutions [6]. MC films display efficient oxygen and
lipid barrier properties; however, their weak mechanical strength and water vapor barrier
capability have limited their application [7].

Currently, the incorporation of polysaccharide nanofillers (such as cellulose, chitin,
and starch nanocrystals) into biopolymers to fabricate bio-nanocomposite films has gained
considerable attention, because of their biodegradability and outstanding physical and
functional properties [8]. Starch nanocrystals (SNC) are crystalline platelets produced from
the disruption of the semi-crystalline structure of starch granules by the acid hydrolysis
of amorphous parts [9]. Researchers have studied the reinforcement effects of SNC in
biopolymer films produced from incorporating SNC into carboxymethyl chitosan, pullulan,
starch, pea starch, thermoplastic starch, amaranth protein, and soy protein isolate [10–15].
All these studies demonstrated that these biopolymer-SNC nanocomposite films exhibited
improved mechanical, oxygen and water vapor barrier, surface hydrophobicity, and/or
thermal properties in comparison with the pure biopolymer films. Although the improve-
ment effects of SNC on the biopolymer films have been investigated, information on the
physicochemical properties of methylcellulose-SNC films has not been reported yet.

In our previous study, SNC from waxy rice starch displayed a square-like platelet
morphology with a diameter distribution range from 85.24 to 182.48 nm, while it showed
an A-type crystalline structure with a highly crystalline nature [16]. Thus, this SNC could
potentially be the promising nanofillers for reinforcement of polysaccharide films. Herein,
the first objective was to analyze the Mw and DS of three types of commercial MC by using
high-performance size exclusion chromatography-angle laser light scattering-refractive
index detector (HPSEC-MALL-RI) and gas chromatography (GC). The second objective of
the research was to investigate the influence of Mw and DS of MC on the morphology and
physicochemical characteristics of the MC films and nanocomposite films reinforced with
SNC from waxy rice starch.

2. Materials and Methods
2.1. Materials

Three MC samples, with trade name of M20 (Sinopharm Chemical Co., Ltd., Shanghai,
China), A4C, and A4M (Ashland Co., Shanghai, China), were used as received from
the manufacturers. Waxy rice starch SNC was prepared using the method reported by
our previous study [16]. Sulfuric acid, NaNO3, methylbenzene, o-xylene, adipic acid,
hydroiodic acid, and methyl iodide (Aladdin Bio-Chem Technology Co., Ltd., Shanghai,
China) were used as received from the manufacturers.

2.2. Structural and Characterization of Methylcellulose

Mw distributions of MC were determined using HPSEC-MALLS-RI (Wyatt Technology
Corp., Santa Barbara, CA, USA) as described by Li, Shen, Lyons, Sammler, Brackhagen,
and Meunier (2016) [17]. MC powder (100 mg) was dissolved in 1 mL 0.1 M NaNO3 solu-
tion, filtered through a 0.45 µm filter, and then injected into an HPSEC-MALLS-RI system.
The eluting procedure was performed at 0.4 mL/min within ShodexTM OHpak SB-803 HQ,
OHpak SB-804 HQ, and SB-805 HQ columns (Showa Denko K.K., Tokyo, Japan) in series.

The methoxy content of MC was estimated according to the United States Pharma-
copeia Convention with slight modification [18]. The methylbenzene in o-xylene (30 mg/mL)
was used as internal standard. To prepare sample solution, 0.065 g MC was placed in a
reaction vial with 0.065 g of adipic acid, 2 mL of internal standard solution, and 57% hy-
droiodic acid, followed by thoroughly mixing at 130 ◦C for 20 min. In another vial, 0.135
g of adipic acid, 4 mL of the internal standard solution, and hydroiodic acid were added
and sealed. After that, 90 µL of methyl iodide was added and the reaction vial was shacked
well. Finally, each 2 µL of sample solution and standard solution were determined using
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GC equipped with a flame ionization detector (FID) (GC-2010 Pro, Shimadzu, Tokyo, Japan).
Based on the methoxy content of MC, the DS value was calculated by Equation (1) [19]:

DS =
162 × OCH3

31 − (14 × OCH3)
(1)

where OCH3 is the methoxy content of MC, and 162, 31, and 14 account for molecular
weight of AGU units of cellulose, methoxy content, and the net increase in molecular
weight of the AGU unit for each methoxy group substituted, respectively.

2.3. Viscosity of Film-Forming Solutions

Three MC solutions were prepared by mixing 1.5 g of MC powder into 100 mL of
redistilled water, then stirring for 3 h at 60 ◦C to form homogeneous and transparent
solutions. The MC-SNC film-forming solutions were prepared as follows: 1.5 g of MC
powder was mixed into 85 mL of redistilled water and then stirred for 5 h at 60 ◦C to
form homogeneous solutions. Aliquots of 15 mL of SNC suspension (1.5 g/100 mL) were
homogenized in ice bath using an Ultra Turrax T25 homogenizer at 30,000 rpm (10 min)
and then added slowly to prepared MC solutions. The mixtures were mixed thoroughly
by using a magnetic stirrer (150 rpm) at 25 ◦C for 1 h. Based on the weight percentage of
SNC/MC ratio, the resulting solutions were referred to as M20-15% SNC, A4C-15% SNC,
and A4M-15% SNC, respectively. Viscosity of MC solutions was detected by a rotational
rheometer (Kinexus Rheometer, Malvern Instruments. Inc., Shanghai, China) equipped
with a 60 mm diameter parallel-plate geometry. Flow behaviors of samples were fitted by
power-law equation (Equation (2)):

σ = Kγn (2)

where σ, γ, K, and n are shear stress, Pa, shear rate, s−1, consistency index, Pa·sn, and flow
behavior index, respectively.

2.4. Preparation of Films

Preliminary experiments in MC-based films containing SNC concentrations in the
range 5–25% (w/w) suggested that addition of 15% (w/w) SNC into MC resulted in formation
of the coherent and relatively strong films. Here, the MC and MC-SNC solutions as outlined
in Section 2.4 were deaerated using a vacuum pump (YC7134, Suli Instruments Co. Ltd.,
Wenlin, China) and then casted on glass molds. After that, the film-forming solutions were
dried in an environmental chamber (GZ-150-HSII, Kezhi Instruments Co. Ltd., Shaoguan,
China) at 48 ◦C and 55% RH for 8 h.

2.5. Scanning Electron Microscope (SEM)

The cross-section morphology of film was observed by a scanning electron microscope
(SU8020, Hitachi Ltd., Tokyo, Japan). Films were coated with gold under vacuum and then
scanned with an accelerating beam voltage of 3 kV.

2.6. Fourier Transform Infrared Spectroscopy (FTIR)

FTIR spectra were determined by using an ATR-FTIR spectrometer (FTIR-8400S,
Shimadzu Corporation, Tokyo, Japan). All spectra were collected from 4000 to 700 cm−1

with a resolution of 4 cm−1 at 25 ◦C.

2.7. X-ray Diffraction (XRD)

The XRD diffraction of films was characterized by Bruker D8 Advance model X-ray
diffractometer (Brucker GmbH, Karlsruhe, Germany) equipped with Cu Kα radiation.
The results were collected in the range from 2θ = 4◦ to 2θ = 40◦ at 2◦ min−1 scan rate.
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2.8. Thermogravimetric Analyzer (TGA)

TGA of films was determined on a TGA instrument (STA 449 F5/F3 Jupiter, Netzsch,
Hanau, Germany). The samples were heated under a nitrogen atmosphere at 10 mL/min
flow rate at a heating rate of 10 ◦C/min.

2.9. Light Transmission

Light transmission of films was measured by using a UV-2600 spectrophotometer
(Shimadzu Corporation, Tokyo, Japan). The films were cut into a rectangular specimen and
placed in the spectrophotometer cell. An empty compartment was used as a reference in the
measurements. The light barrier properties of the film samples were measured by scanning
the samples at wavelengths between 300 and 800 nm using the spectrophotometer.

2.10. Mechanical and Barrier Properties

Tensile strength (TS) and elongation at break (EAB) of film specimens were analyzed
by an Electronic Universal Testing Machine (Jiangsu Kaiyuan Testing Equipment Co., Ltd.,
Nanjing, China) based on ASTM standard method D882-02 [20].

Water vapor permeability (WVP) of film specimens was determined using ASTM E96
method [21]. Additionally, oxygen transmission rate (OTR, mL·m−2·day−1) of films was
obtained by oxygen transmission rate tester (BTY-B1, Labthink Inc., Jinan, China) at 25 ◦C
and 55% RH, according to ASTM D3985-02 [22].

2.11. Statistical Analysis

Analysis of variance (ANOVA) was analyzed by using SPSS software (SPSS Inc.,
Chicago, IL, USA).

3. Results and Discussions
3.1. Characteristics of Methylcellulose

The weight average molar mass (Mw), polydispersity index (Mw/Mn), radius of gyra-
tion (Rz), methoxy content, and DS of three types of MC are summarized in Table 1. The Mw
values of M20, A4C, and A4M were 0.826 × 105, 1.329 × 105, and 3.404 × 105 g/mol, respec-
tively. The Mw/Mn value of M20 was obviously higher than that of A4C and A4M, implying
that M20 showed a broad Mw distribution among the tested MC samples [23]. The Rz of
MC increased with an increase in its Mw value: A4M displayed the largest gyration radius
(102 nm), and M20 had the smallest (53.0 nm). As shown in Table 1, the methoxy content of
M20, A4C, and A4M was 29.1, 28.4, and 30.2%, respectively. Correspondingly, the resulting
DS values for M20, A4C, and A4M were 1.75, 1.70, and 1.83, respectively.

Table 1. The weight average molar mass (Mw), polydispersity index (Mw/Mn), radius of gyration
(Rz), methoxy content, and DS of MC.

Samples Mw × 105, Da Mw/Mn Rz, nm Methoxy Content, % DS

M20 0.826 ± 0.02 c 3.45 ± 0.07 a 53.0 ± 1.71 c 29.1 ± 0.26 b 1.75 ± 0.04 b

A4C 1.329 ± 0.01 b 2.92 ± 0.06 b 57.7 ± 2.07 b 28.4 ± 0.45 c 1.70 ± 0.06 c

A4M 3.404 ± 0.06 a 2.76 ± 0.08 b 102.0 ± 1.91 a 30.2 ± 0.32 a 1.83 ± 0.03 a

a–c Least square means with different letters within M20, A4C and A4M are significantly different (p < 0.05).

3.2. Viscosity of Film-Forming Solutions

The viscosity of MC and MC-SNC solutions is presented in Figure 1. As shown in
Figure 1a, no significant change in the viscosity value of 1.5% (w/w) M20 solutions was
observed with increasing shear rate from 0.1 to 100 1/s, indicating that the 1.5% (w/w)
M20 solution showed Newtonian flow behavior. In contrast, A4C and A4M solutions
showed the shear thinning behavior at the same concentration. Moreover, the viscosity
increased dramatically with their Mw increasing, probably due to the formation of larger
aggregates in MC aqueous solution with increasing its Mw [24]. For MC-15% (w/w) SNC
solutions, n values of all the samples were significantly lower than unity, and the viscosity
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was obviously higher than that of pure MC solutions within the tested shear rate range.
This result indicated that SNC acted as an effective thickening agent in MC solutions.
The increased viscosity could be attributed to the flow-impeding effect induced by the
presence of SNC in the biopolymer matrix [25]. Since the particle size of SNC is larger than
that of the chain segments of MC biopolymers, SNC restrained the shear flow of MC macro-
molecules, which resulted in an increase in viscosity [26]. Similar behaviors were reported
for alginate-cellulose nanocrystal and starch-cellulose nanocrystal solutions [26,27].
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Figure 1. Apparent viscosity of (a) MC film-forming solutions (�) M20; (•) A4C; (�) A4M; and
(b) MC-SNC film-forming solutions (♦) M20-15% SNC; (#) A4C-15% SNC; (�) A4M-15% SNC.

3.3. SEM

SEM photographs of cross-sections of MC films and MC-SNC nanocomposite films are
presented in Figure 2. M20 films showed a porous network structure (Figure 2a), while A4C and
A4M films exhibited a fibrillar network structure along with nonuniform holes (Figure 2b,c).
Additionally, the hole size of M20 films in the range from 11 to 120 nm was significantly
larger than that of A4C (from 8 to 78 nm) and A4M films (from 5 to 35 nm) (Figure S1).
This phenomenon could mainly be related to the difference in their Mw. MC chains have a
tendency to form fibrils in aqueous solutions above 40 ◦C, and the increase in Mw leads to the
production of longer fibrils [28]. Therefore, the MC with higher Mw assembled into the more
connected fibrillar network with a smaller hole size during the film formation.
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By the incorporation of SNC to MC matrix, the cross-section microstructure became
markedly different. As shown in Figure 2d, the irregular and micron-sized agglomerations
of SNC were obviously stacked in the M20-15% (w/w) SNC nanocomposite films, probably
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due to their lowest Mw value. As mentioned in Section 3.2, Newtonian flow behavior
was observed for the 1.5% (w/w) M20 solution alone. This indicated that chains of M20
were contacting each other to form a transient network that was disrupted readily, thereby
forming large agglomerations of SNC during film formation (as schematically shown in
Figure 3a). In contrast, the relatively homogenous dispersion of SNC was distinguished in
the A4C-15% (w/w) SNC film, except individually or in small aggregates at the A4C matrix
(Figure 2e). This indicated that SNCs have better compatibility with A4C than M20 and
A4M, which was probably ascribed to the favorable interfacial interactions between the
SNC and A4C matrix. In A4M-15% (w/w) SNC films, the SNCs were partially aggregated
to form the submicrometer-sized aggregations, which were not uniformly distributed
throughout the nanocomposite films (Figure 2f). This could be due to their high DS value,
which led to the lower capacity to fabricate the intermolecular interactions between SNC
and A4M, promoting the aggregation of SNC. Based on the abovementioned SEM results,
the schematic of the distribution of SNC in the three-dimensional network fabricated by
MC chains could be provided, as shown in Figure 3.
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3.4. ATR-FTIR

FTIR spectra for MC films and MC-SNC nanocomposite films are summarized in
Figure 4. The band around 3441 cm−1 in all samples was attributed to O-H stretching
vibration [16]. The bands at around 2973, 2932, 2903, and 2837 cm−1 were due to the
symmetric and asymmetric stretching vibration of C-H bonds, while the bands around
1420 and 1374 cm−1 were determined by the deformation vibrations of CH2 and bending
vibration of CH groups, respectively, due to the presence of the CH3 groups of MC and
CH and CH2 groups of SNC [29]. As presented in Figure 4A, the 900–1150 cm−1 region
of the spectra displayed several overlapping bands. To accurately study the vibration
bands and their frequency shift, a second derivative was shown in Figure 4B,C. For pure
MC films, six bands at around 1112, 1074, 1054, 1025, 1009, and 945 cm−1 were revealed
(Figure 4B). The absorbance bands at around 1112, 1074, 1054, 1025, and 945 cm−1 were
related to the asymmetric stretching of C-O-C of the glucoside bridge, symmetric stretching
of C-O for primary alcohol, stretching vibration of C-O, vibration of the OCH3 groups,
and asymmetric stretching of the glucose ring for MC, respectively [30]. For the SNC
spectrum, the absorbance bands at 1105, 1075, and 1059 cm−1 were attributed to the
stretching vibration of C-C, bending vibration of C-O-H, and stretching vibration of C-
OH, respectively. The bands at around 1048, 1013, and 995 cm−1 were due to the C-O-H,
deformation vibration of C-OH, and bending vibration of C-O-C in the glucose ring,
respectively, while 955 cm−1 was due to the coupled vibration of C-C and C-O [16,31].
Thus, a new band at around 1048 cm−1 was observed for all MC-SNC nanocomposite films
(Figure 4C), which was associated with the ordered double helix structure of SNC [16].
As shown in Figure 4B,C, the absorbance band at around 1025 cm−1 significantly shifted
to a lower wavenumber (around 1020 cm−1) with the addition of SNC into MC films.
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This observation implied that the OCH3 groups for MC have a tendency to form a hydrogen
bond with SNC in the nanocomposite films, which may be responsible for the improved
mechanical strength of MC-SNC films.
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Figure 4. Origin ATR-FTIR spectra (A) and second derivative spectra in the range of 900–1100 cm−1

(B,C) of MC films and MC-SNC nanocomposite films: (a) M20; (b) M20-15% SNC; (c) A4C; (d) A4C-
15% SNC; (e) A4M; (f) A4M-15% SNC.

3.5. XRD

X-ray diffractograms of MC films and MC-SNC films are displayed in Figure 5.
Two broad diffraction peaks at 2θ around 7.8◦ and 20.5◦ were presented in the diffrac-
togram of M20 films, indicating that M20 showed the amorphous state. A similar result
has been reported for the same type of commercial MC [32]. For M20-SNC nanocomposite
films, besides the aforementioned peaks shown in the diffractogram of M20 films, a new
peak at around 15.05◦ appeared, which was due to the crystalline structure of SNC [16].
In contrast, both diffractograms of A4C and A4M films displayed a sharp peak at 2θ = 8.02◦

and a broad peak at 2θ = 20.5◦, indicating that A4C and A4M films showed a typical
semi-crystalline state. Similar XRD patterns have been reported by Kumar et al. (2012).
Moreover, the position of the sharp peak for A4C (around 8.02◦) was slightly higher than
that for A4M (around 7.81◦), indicating the difference in DS of A4C and A4M. Moreover,
the projection of the methyl groups in MC is related to an increase in the interfibrillar
distance [33]. Incorporating 15% (w/w) SNC into A4C and A4M films resulted in no signifi-
cant difference in diffraction patterns of nanocomposite films. This could be attributed to
the high crystallinity degree of A4C and A4M compared to that of SNC, resulting in the
predominant role of the biopolymer in the nanocomposite films.
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Figure 5. X-ray diffractograms of MC films and MC-SNC nanocomposite films: (a) M20; (b) M20-15%
SNC; (c) A4C; (d) A4C-15% SNC; (e) A4M; (f) A4M-15% SNC.

3.6. TGA

TGA and derivative thermogravimetry (DTG) curves of MC films and MC-SNC
nanocomposite films are shown in Figure 6. As presented in Figure 6a, two weight loss
stages were observed for pure MC films, as reported by Tunç and Duman (2010) [34].
The first stage (below 100 ◦C) related to the evaporation of absorbed water, while the
second stage was attributed to the degradation of MC chains [7]. Moreover, thermal
depolymerization of A4C and A4M films started later than M20 films, which was due to the
low Mw of M20. Similar results have been reported for chitosan with a different Mw [35].
However, the thermal decomposition of MC-SNC films occurred in three main stages.
The second and third stages were related to the degradation of sulphate groups of SNC and
the decomposition of macromolecules, respectively [16]. Furthermore, M20-15% (w/w) SNC
films showed a lower degradation temperature at the second and third stages of weight
loss (218.8 and 357.6 ◦C, respectively) compared to other nanocomposite films (Figure
6b). According to Kassab et al. (2019), the increased degradation temperature of cellulose
nanocrystals/κ-carrageenan nanocomposite films at the second stage was due to the strong
interfacial interaction [36]. Therefore, in this study, the reason for the lower degradation
temperature at the second stage could be ascribed to the formation of larger agglomerations
of SNC in M20-15% (w/w) SNC films, which decreased the interfacial interaction between
SNC and M20. In comparison with other nanocomposite films, the lower degradation
temperature of M20-15% (w/w) SNC films at the third stage could be attributed to the lower
Mw and amorphous state of M20. The temperature at 10% weight loss (T10%) and char yield
of MC films and MC-SNC nanocomposite films are summarized in Table 2. Among the
tested MC films, M20 showed the lowest T10% values (292.2 ◦C), probably due to lowest
molecular weight of M20. A similar trend has been observed for the char yield of MC films.
For MC-SNC nanocomposite films, all samples exhibited lower T10% values than those
of MC films, indicating that the addition of SNC to MC films resulted in the decreased
thermal stability of MC films. However, the char yield of M20-15% (w/w) SNC, A4C-15%
(w/w) SNC, and A4M-15% (w/w) SNC was 16.25, 16.71, and 18.49%, respectively, which was
higher than that of pure MC films.
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Figure 6. TGA and DTG curves of (a) MC films and (b) MC-SNC nanocomposite films.

Table 2. Thermal properties of MC films and MC nanocomposite films.

Samples T10%, ◦C Char Yield, % Td2, ◦C Td3, ◦C

M20 292.2 ± 4.27 c 13.79 ± 2.32 b NA 354.4 ± 4.63 b

A4C 313.3 ± 5.83 b 15.91 ± 2.16 a NA 358.0 ± 2.63 a

A4M 327.4 ± 3.36 a 17.66 ± 1.98 a NA 357.4 ± 3.79 a

M20-15% SNC 256.0 ± 3.19 C 16.25 ± 2.07 A 218.8 ± 2.99 B 357.6 ± 2.75 A

A4C-15% SNC 276.4 ± 5.29 B 16.71 ± 1.85 A 241.4 ± 3.58 A 358.8 ± 3.18 A

A4M-15% SNC 285.0 ± 2.91 A 18.49 ± 2.19 B 245.2 ± 3.21 A 360.5 ± 3.85 B

T10%: temperature at 10% weight loss; Td2: degradation temperature at the second stage of weight loss; Td3:
degradation temperature at the third stage of weight loss. a–c Least square means with different letters within
MC films are significantly different (p < 0.05). A–C Least square means with different letters within MC-SNC
nanocomposite films are significantly different (p < 0.05).

3.7. Light Transmission

Figure 7 shows the transmittance of MC films and MC-SNC nanocomposite films in the
wavelength range of 250–800 nm. In the visible region, the transmittance of M20 films was
slightly higher than that of A4C and A4M films, while no difference was observed for the
transmittance of M20, A4C, and A4M films in the UV region. Overall, the addition of SNCs
improved the barrier to UV and visible light of the nanocomposite films. The transparency
of MC-15% (w/w) SNC films strongly depended on the dispersion of SNCs within the
biopolymer matrix. Any aggregation of SNCs in the MC matrix would increase the
scattering effect, resulting in reduced film transparency [37]. Similar results have been
reported for poly(butylmethacrylate)-SNC, cassia gum-carboxylated cellulose nanocrystal,
and carboxymethyl cellulose-cellulose nanocrystal films [26,37]. It was noticed that the
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transmittance of A4C-15% (w/w) SNC films was significantly higher than that of M20 and
A4M blend films with 15% (w/w) SNC in the tested wavelength region, probably due to
the relatively good distribution of SNCs in the A4C matrix. This is consistent with the
SEM findings as mentioned in Section 3.3. Although the larger agglomerations of SNC
were observed in M20-15% (w/w) SNC films, no significant difference was observed for
the transmittance in the UV and visible region (p < 0.05) between M20-15% (w/w) SNC
and A4M-15% (w/w) SNC films. This could be attributed to the difference of the Mw, Mw
distributions, DS, and crystalline structure of M20 and A4C. Furthermore, the inclusion of
SNC significantly decreased the rate of transmittance compared to pure MC films in the UV
region, implying that this nanocomposite film could be potentially utilized as packaging
material with a UV light barrier property.
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3.8. Mechanical Properties

The mechanical properties of MC films and MC-SNC nanocomposite films are summa-
rized in Table 3. A4M films exhibited the highest TS (68.31 MPa), YM values (890.98 MPa),
and stretchability (8.4%) among the tested MC films. This could be attributed to the highest
molecular weight of A4M, implying the higher level of physical entanglement arising from
the longer chains of A4M compared to M20 and A4C. A similar result has been reported
for pullulan and HPMC films with different Mw [38,39]. For MC-SNC nanocomposite
films, A4C-15% (w/w) SNC and A4M-15% (w/w) SNC films showed significantly higher TS
values than pure MC films. However, no obvious difference in TS values was observed
between M20 and M20-15% (w/w) SNC films. This could be attributed to the formation of
a micron-sized agglomeration of SNC in the M20 matrix, which was consistent with the
previous electron scanning microscopy findings (Figure 2d). On the contrary, YM values of
nanocomposite films were significantly higher than those of pure MC films, due to the high
rigidity exerted by the SNC. As shown in Table 3, all EAB values decreased remarkably
after incorporating 15% (w/w) SNC into MC films, probably due to the rigid behavior of
SNC and their interfacial interactions with the biopolymer, which prevent the motion of
the macromolecular chains of the biopolymer [40]. Note that A4C-15% (w/w) SNC films
exhibited the highest TS value (75.49 MPa) among the tested samples due to the homoge-
nous distribution of SNC accompanied by the favorable interfacial interactions between
the SNC and A4C matrix.
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Table 3. Tensile strength, Young’s modulus, elongation at break, water vapor permeability, and oxygen transmission rate of
MC film with and without SNC.

Samples TS, MPa YM, MPa EAB, % WVP × 10−4

g·m·Pa−1·h−1·m−2
OTR,

cm3·m−2·day−1

M20 38.11 ± 5.62 c 651.71 ± 25.62 c 4.71 ± 0.50 c 6.22 ± 0.22 a 275.92 ± 4.31 a

A4C 61.15 ± 3.36 b 757.69 ± 34.66 b 5.77 ± 0.49 b 6.09 ± 0.25 a 206.30 ± 6.06 b

A4M 68.31 ± 4.21 a 890.98 ± 46.89 a 8.42 ± 0.68 a 6.28 ± 0.21 a 248.06 ± 2.22 c

M20-15% SNC 40.43 ± 2.96 C 757.72 ± 19.07 C 1.93 ± 0.56 C 6.07 ± 0.26 A 204.17 ± 3.71 A

A4C-15%SNC 75.49 ± 4.49 A 1050.6 ± 56.67 B 4.68 ± 0.22 B 4.79 ± 0.25 C 156.04 ± 3.82 B

A4M-15%SNC 72.99 ± 3.35 B 1106.5 ± 24.25 A 7.66 ± 0.37 A 5.65 ± 0.14 B 151.84 ± 1.92 C

a–c Least square means with different letters within MC films are significantly different (p < 0.05). A–C Least square means with different
letters within MC-SNC nanocomposite films are significantly different (p < 0.05).

3.9. Barrier Properties

No significant difference was observed for WVP values of M20, A4C, and A4M
films due to their hydrophilic properties, while the addition of 15% (w/w) SNC into MC
films resulted in a decrease in the WVP value (Table 3). This could be due to generating
a tortuous path for water molecules by the incorporation of SNC into the biopolymer
matrix [14]. Among the tested films, A4C-15% (w/w) SNC films displayed the lowest
WVP value (4.79 × 10−4 g·m·Pa−1·h−1·m−2), probably due to the good distribution of
SNC in the A4C matrix, which led to the formation the longer diffusion path for water
molecules [14]. Similar phenomena have been reported for amaranth protein-SNC films
and carboxymethyl cellulose/starch-cellulose nanocrystal films [12].

M20 films showed the highest OTR value (275.9 cm3·m−2·day−1) among the tested
MC films (Table 3). This could be a result of the more porous structure of M20 films com-
pared to A4C and A4M films, which might facilitate the permeation of oxygen. However,
for A4C and A4M films, although the hole size of A4M films was smaller than that of A4C
films, the OTR value (248.1 cm3·m−2·day−1) was significantly higher than that of A4C
(206.3 cm3·m−2·day−1). This could be related to the higher DS value of A4M, which led to
the higher capacity of interaction with oxygen molecules compared to A4C films. Regard-
ing the OTR results of MC-SNC nanocomposite films, it was expected that the addition of
SNC could led to the decrease of the OTR values, due to the capacity of these platelet-like
nanocrystals to produce a tortuous path for oxygen molecules, decreasing the diffusiv-
ity [41]. Similar results have been reported for thermoplastic starch-SNC, whey protein
isolate, and starch films reinforced with CNC [42,43]. These observations indicated that
MC-SNC nanocomposite films could potentially be a packaging material for meat, poultry,
and/or seafood products due to their desirable oxygen barrier properties.

4. Conclusions

In this study, the morphology and physico-chemical properties of MC films are signifi-
cantly influenced by Mw, DS, and the incorporation of SNC. Mw significantly affected the
microstructure and tensile strength of methylcellulose films. For example, M20 films
showed a porous network structure, while A4C and A4M films exhibited a fibrillar
network structure along with nonuniform holes. A4M films exhibited the highest TS,
YM values, and stretchability among the tested MC films. On the other hand, the OTR
value of A4M was 248.1 cm3·m−2·day−1, which was remarkably higher than that of A4C
(206.3 cm3·m−2·day−1), probably due to the fact that DS had a pronounced effect on their
oxygen permeability properties. Nanocomposite films incorporated with 15% (w/w) SNC
had a higher TS value and lower transmittance, WVP, and OTR values than pure MC films,
especially for the A4C-SNC nanocomposite films. Furthermore, both Mw and DS values
of MC significantly affected the microstructure of nanocomposite films, while Mw had a
pronounced effect on their EAB values. The fabrication of MC-SNC nanocomposite films
provides a convenient, green, and environmentally friendly route to develop packaging
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materials with desirable mechanical, light, oxygen, and water vapor barrier properties,
which could potentially be applied to meat, poultry, and/or seafood products.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/polym13193291/s1, Figure S1: Histograms showing the distribution of hole size of MC film:
(a) M20; (b) A4C; (c) A4M.
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