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Abstract

Infectious disease forecasting is of great interest to the public health community and policy-

makers, since forecasts can provide insight into disease dynamics in the near future and

inform interventions. Due to delays in case reporting, however, forecasting models may

often underestimate the current and future disease burden.

In this paper, we propose a general framework for addressing reporting delay in disease

forecasting efforts with the goal of improving forecasts. We propose strategies for leveraging

either historical data on case reporting or external internet-based data to estimate the

amount of reporting error. We then describe several approaches for adapting general fore-

casting pipelines to account for under- or over-reporting of cases. We apply these methods

to address reporting delay in data on dengue fever cases in Puerto Rico from 1990 to 2009

and to reports of influenza-like illness (ILI) in the United States between 2010 and 2019.

Through a simulation study, we compare method performance and evaluate robustness to

assumption violations. Our results show that forecasting accuracy and prediction coverage

almost always increase when correction methods are implemented to address reporting

delay. Some of these methods required knowledge about the reporting error or high quality

external data, which may not always be available. Provided alternatives include excluding

recently-reported data and performing sensitivity analysis. This work provides intuition and

guidance for handling delay in disease case reporting and may serve as a useful resource to

inform practical infectious disease forecasting efforts.

Author summary

The public health community and policymakers are interested in using models to predict

future disease rates using information about disease rates in the past. However, our data

about the recent past are less reliable than older data, due to a time lag between someone

getting sick and their subsequent diagnosis being officially reported. In this paper, we

describe strategies to correct reported disease rates from the recent past to account for dis-

ease diagnoses that haven’t yet been reported. Using more accurate information about the

recent past, we can do a better job predicting what will happen in the future.
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This is a PLOS Computational Biology Methods paper.

1 Introduction

Accurate forecasts of future disease rates are useful for informing public health policy and

response to infectious disease outbreaks [1]. Strategies for improving forecasts are of great

interest to the public health and epidemic modeling communities, and the most up-to-date

reports of case diagnoses can often provide useful insight into disease dynamics in the near

future. For many diseases, however, surveillance and case identification take time, and there is

often a delay between when people become infected with an infectious disease and when that

infection is officially reported and made publicly available [2].

Often, reporting at the national level requires many intermediate reporting steps; diagnostic

labs and health care systems report suspected and/or confirmed cases to local public health sys-

tems, which then report to states, which then report to the national level [2]. Delays in each

one of these reporting steps can result in substantial lag in the information available for fore-

casting, and these delays may vary on a variety of factors, including state infrastructure and

threshold for reporting suspected vs. confirmed cases. National, state, and local reporting sys-

tems produce regular reports providing the most up-to-date statistics on disease diagnoses

(e.g., weekly statistics provided by the National Notifiable Diseases Surveillance System), and

these provisional reports may be revised/corrected through a process called backfill as new

data become available. Real-time reports of current disease burden often substantially underes-

timate the number of cases eventually reported (hereafter referred to as the validation case

counts) for a given time period [3].

Reporting delay can also be a result of the time indexing of the forecasted endpoint. During

the COVID-19 pandemic, a common problem is to predict the number of COVID-19 positive

cases that will eventually be reported, relative to the date of symptom onset (e.g., [4]). Restated,

we may want to predict how many newly symptomatic cases there are today based on tests that

have not yet been administered, which naturally results in a delay between symptom onset and

official case reporting. Reporting delay also occurs when predicting hospitalization rates

among newly-diagnosed patients, since hospitalization due to disease takes time to occur [5].

In this way, the problem of delayed event or case reporting can arise in a variety of ways, either

through official reporting processes or implicitly through our definitions of what it means to

be a “case”.

When the goal is to forecast future disease burden, it is not always clear how one should use

these error-prone real-time case reports. When the reporting delay is minimal, we may expect

reporting to have little impact on model forecasts and use these real-time reports without cor-

rection. When reporting delay is substantial and when real-time estimates and forecasts of dis-

ease burden are relied upon to inform policy interventions, additional thought is needed to

address the reporting delay.

One common strategy for handling reporting delay is to rescale real-time case reports using

the expected amount of under-reporting (e.g., [6]). These scaling factors (hereafter referred to

as reporting factors) can be estimated from historical data on real-time case reporting, if avail-

able, and sophisticated strategies have been developed to model reporting factors and the dis-

ease process jointly (e.g., [3, 7–9]). Other work has used external data to predict the validation

cases (e.g., social media, Google Trends) and account for reporting delay using a weighted ver-

sion of the real-time data and the validation data predictions [10]. Backcast imputation

approaches handle the reporting error by generating past weeks’ validation data using the
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most recent data reports for those weeks and accounting for uncertainty in reporting patterns

[11]. These methods have been studied across multiple disciplines beyond infectious disease

modeling such as in actuarial claims prediction [9] and in correction of cancer registry case

reporting [12]. During the COVID-19 pandemic, a substantial literature on “nowcasting” has

arisen to tackle reporting delay due to delays in testing after symptom onset and to leverage

data on individual disease cases when available, where estimation is further complicated by

incomplete data on date of symptom onset among confirmed cases [4, 13, 14]. Some of the

studies describing how to handle reporting delay compare two or three methods head to head

in narrow modeling settings, but there are no recommendations for how reporting delay should

be handled for infectious disease forecasting in general practice.

In this paper, we propose a general framework for conceptualizing and addressing report-

ing delay in terms of a two-stage estimation problem: (1) estimation of the reporting factors as

a function of time since the initial report and (2) disease modeling and forecasting, accounting

for under- or over-reporting. This framework highlights and extends existing methods in the

literature for handling delayed case reporting, and we demonstrate how these approaches can

be implemented for infectious disease forecast modeling in general. We then propose several

novel strategies for leveraging either historical data on case reporting or external social media/

Google trends data to estimate the amount of reporting error. We apply these methods to

address reporting delay in data on dengue fever cases in Puerto Rico from 1990 to 2009 and to

reports of influenza-like illness (ILI) in the United States between 2010 and 2019. Through a

simulation study, we compare how these methods perform when all assumptions are satisfied

and evaluate their robustness when assumptions are violated. This work provides intuition

and guidance for the comparative performance of various methods for handling delay in dis-

ease case reporting and may serve as a useful resource to inform practical infectious disease

forecasting efforts.

In Section 2, we introduce the data examples, and we describe the various conceptual

approaches for handling reporting delay in Section 3. We implement various approaches for

several data examples in Section 4, and we explore performance and robustness of these meth-

ods in greater detail in Section 5. We present a discussion in Section 6.

2 Disease surveillance data with reporting delay

We consider two motivating datasets in which delayed reporting of disease cases results in dis-

crepancies between the number of cases reported in real-time and the number of cases eventu-

ally reported. In our first data example, we model cases of dengue fever reported between 1990

and 2009 in Puerto Rico. In our second data example, we explore influenza-like illnesses in the

United States between 2010 and 2019.

2.1 Dengue fever surveillance data in Puerto Rico, 1990–2009

We obtain publicly-available data on dengue fever cases in Puerto Rico between 1990 and 2009

that are provided alongside McGough et al. (2020) [3] as part of the R package NobBS. These

data provide the official diagnosis week and the week of case reporting for over 53,000 cases of

laboratory-confirmed dengue fever in Puerto Rico as collected by the Puerto Rico Department

of Health and the Centers for Disease Control and Prevention. Using these person-level data,

we calculate the number of cases diagnosed in each calendar week, which we call the validation

data. For each calendar week, we also calculate the number of these validation cases that were

actually reported as part of the initial case counts from the first week and the number that were

reported in each of the following 6 weeks. These weekly reporting data were constructed to

mimic weekly “official” case reports. We will refer to these constructed “reports” throughout,
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but it should be understood that these are hypothetical weekly reports rather than officially-

released governmental statistics. A subset of the resulting case counts are shown in Fig A in S1

Text. In Fig 1a, we show that only a very small proportion (� 5%) of eventually-reported cases

were included in the initial case “report” (i.e., officially reported within 1 week of diagnosis).

The vast majority of cases were reported in the following six weeks.

2.2 Seasonal influenza-like illness in the United States, 2010–2019

We also consider publicly-available data on influenza-like illness (ILI) in the United States

between 2010 and 2019 compiled as part of the U.S. Outpatient Influenza-like Illness Surveil-

lance Network (ILINet). Both validation and officially-reported real-time data (i.e., data that

were available up to d weeks after the initial case report) are available at https://github.com/

cmu-delphi/delphi-epidata using the Delphi API [15]. Validation data were defined as the case

counts for each calendar week that were reported as of June 13th, 2021. In modeling of ILI

cases, it is common to break up the data recorded by calendar year into flu seasons, where

weeks are re-defined relative to the start of the season. For our analysis, we identified the start

of each 35-week flu season as the 40th week in the calendar year as defined by the Morbidity

and Mortality Weekly Report (i.e., MMWR week 40) produced by the US National Notifiable

Diseases Surveillance System [16]. For example, the 2018–2019 season spans the end of 2018

and the beginning of 2019. In addition to the total number if ILI cases nationally, we also

downloaded data stratified by state from 2010 through the 2018–2019 season. Real-time

reporting data were available for the 2017–2018 and 2018–2019 seasons and also for the 2016–

2017 season for some states. Florida was excluded from analysis due to the lack of real-time

reporting data provided by the Delphi API. ILI cases occurring after the 2018–2019 season

were not included in this analysis to avoid inclusion of COVID-19 diagnoses.

A mild amount of case reporting delay was evident for these data, where roughly 70–90% of

eventually-reported cases were reported initially (Fig 1b). There was a clear seasonal trend in

reporting at the national level, where more recent seasons had a higher proportion of valida-

tion cases reported initially. Unlike the dengue fever data, we did not obtain disease diagnosis

and reporting dates for individual patients; rather, we considered the total number of reported

cases for each week. Due to excluded providers or other reasons, it was possible for real-time

case counts to be larger than the validation counts. Therefore, the discrepancy between the

Fig 1. Proportion of eventually-reported cases that were reported in each week1. 1 Estimates of πts(d) − πts(d − 1), obtained using Eq 6 and stratified by season/year.

https://doi.org/10.1371/journal.pcbi.1010115.g001
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real-time reported and validation case numbers was due to a combination of under-reporting

(i.e., not-yet-reported cases) and over-reporting (cases currently reported that were eventually

excluded). This phenomenon was particularly evident in the 2017–2018 season data for Ver-

mont, where the number of reported cases often decreased as the number of weeks since the

initial report increased (Figs B-C in S1 Text).

3 Methods

In this section, we develop the notation and describe various methods for handling reporting

delay in general. Table A in S1 Text provides a summary of the notation. Suppose we consider

time series data of reported cases for an infectious disease of interest, where cases are reported

across multiple calendar time-points t for each of multiple disease seasons s. For example, we

may consider data on weekly case reports of seasonal influenza-like illness diagnoses, reported

across several seasons. Throughout this paper, we will use “week” to refer to the calendar time-

point within each season and “year” to refer to the disease seasons, but these methods can be

applied to more general time-scales. For a given calendar week t in a given year/season s, the

first reported case counts are often inaccurate, and the final “validation” counts result from

revisions at later dates. Let d denote the number of weeks since the first reported case counts

for a given calendar week. The number of weeks since the week’s first report will also be called

the “lag” in reporting. Define Nts(d) to be the reported case counts for week t in season s
reported with lag d, where Nts(0) corresponds to the very first report and Nts(1) corresponds

to the final/validation case counts.

In this paper, we provide and compare strategies for forecasting future validation case

counts using error-prone real-time reported case data, Nts(d). For example, we may want to

obtain a forecast of validation cases at calendar time t = 5 for season s (denoted N5s(1)) using

the most recently-reported data for the previous 4 calendar weeks (N1s(3), N2s(2), N3s(1), and

N4s(0)) along with case data from past seasons. The impact of and correction for reporting

delay will naturally depend on how accurate the real-time case data is. Let πts(d) denote

expected proportion of validation cases for calendar week t in season s that are reported by lag

d weeks as follows

ptsðdÞ ¼ E
NtsðdÞ
Ntsð1Þ

� �

; ð1Þ

where Nts(d) and Nts(1) may be viewed as random variables with data realizations Nts(d) and

Nts(1). A value of πts(d) less than 1 indicates under-reporting and a value greater than 1 indi-

cates over-reporting, relative to the validation counts. As d!1, we expect that πts(d)! 1

and Nts(d)! Nts(1). The reporting factor for week t and season s at lag d is defined as 1

ptsðdÞ
.

We emphasize that this reporting factor is a function of the lag week d, and we will assume

there is some threshold τ such that πts(d) = 1 for all d> τ. We will not know the reporting fac-

tors in practice, and additional work will be needed to estimate the degree of reporting error

and to account for reporting delay in the analysis.

In the remainder of this section, we describe a general two-stage strategy for addressing

reporting delay, including (stage 1) estimating reporting factors and (stage 2) forecast model-

ing, accounting for under- or over-reporting. First, we will describe several conceptual strate-

gies for how to implement forecast modeling while addressing reporting delay given estimates

of the reporting factors. Then, we will provide corresponding strategies for estimating report-

ing factors. These methods are summarized in Fig 2. We provide an extension of these meth-

ods for forecasting proportions rather than case counts in S1 Text Section 10.
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Fig 2. Summary of methods for handling reporting delay.

https://doi.org/10.1371/journal.pcbi.1010115.g002
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3.1 Conceptual strategies for handling reporting delay

In this section, we provide several conceptual strategies for handling reporting delay. In imple-

menting each of these methods, we assume that the forecasting model structure is fixed before-

hand. Several of these methods require estimates of πts(d). We discuss how to obtain these

estimates in the next section.

Rescaling of real-time data. One general strategy for correcting reporting delay is to use

the most recently-reported case counts, Nts(d), and assumptions about the relationship between

real-time and validation data (i.e., assumptions about πts(d)) to predict Nts(1) as follows:

N̂ tsð1Þ ¼
NtsðdÞ
ptsðdÞ

; ð2Þ

where πts(d) is replaced with an estimate [6]. Rescaling strategies are often used to correct for

general case under- or over-reporting in disease modeling literature, but a key difference from

simple rescaling approaches is that the correction factors are functions of the lag d and possibly

t, s, and additional covariates. Given a prediction N̂ tsð1Þ from Eq 2, we can then fit our fore-

casting model using N̂ tsð1Þ in place of the real-time data.

Modeling real-time data with mean model offset. The rescaling method involves pre-

processing the real-time data to obtain predictions of the validation data for week t in season s.
Then, the predictions are input into the forecast modeling pipeline. An alternative strategy

involves specifying a forecasting model for the real-time data directly, accounting for the

reporting delay in the model structure [3, 9]. Usual implementations involve specifying a

model for the incremental cases reported for a given calendar week across lag times d, condi-

tional on the cases reported up to lag time d − 1 [9]. These incremental case models are linked

together into a chain that ultimately can be used to predict future values for Nts(1). Letting

nts(d) = Nts(d) − Nts(d − 1) be the data realization of the random incremental counts nts(d)

reported on lag week d, we can model the random incremental counts using a negative bino-

mial or Poisson regression model with the following mean structure:

logðEðntsðdÞÞÞ ¼ logðEðNtsð1ÞÞÞ þ logðytsðdÞÞ; ð3Þ

where yts(d) = πts(d) − πts(d − 1) corresponds to the expected proportion of eventually-reported

cases that are reported on lag week d. This model has the same mean structure as a corre-

sponding model for the validation case counts, Nts(1), but with an offset term. A key limita-

tion of this formulation is that yts(d) must be greater than zero; in other words, we can only

apply this method when we have positive increments. In general, however, we may have over-

reporting of cases in addition to under-reporting. Using logic in S1 Text Section 3, we instead

propose modeling the cumulative counts directly using a negative binomial or Poisson regres-

sion model with mean structure as follows:

logðEðNtsðdÞÞÞ ¼ logðEðNtsð1ÞÞÞ þ logðptsðdÞÞ: ð4Þ

This mean structure formulation requires only that πts(d) > 0 for all d> 0. Individual incre-

ments, however, may increase or decrease. In implementing mean model offset approaches

like Eq 3, researchers often estimate πts(d) and the disease model parameters jointly and specify

a prior distribution for yts(d) or πts(d) (e.g., [3]). To make the estimation strategy more com-

patible with existing out-of-the-box software, however, we propose pre-estimating πts(d) and

then fitting the disease model treating log ðp̂tsðdÞÞ as a fixed offset in the mean model. Alterna-

tive distributional assumptions for Nts(d) may also be considered (e.g., lognormal as in [17]),

but this offset-based method is limited to settings where mean counts are modeled using some

PLOS COMPUTATIONAL BIOLOGY Addressing delayed case reporting in infectious disease forecast modeling

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010115 June 3, 2022 7 / 26

https://doi.org/10.1371/journal.pcbi.1010115


type of log link function. Compartmental susceptible-infectious-recovered models, for exam-

ple, are not compatible with this method.

Imputation of validation case counts. The rescaling method involves replacing the real-

time data with a predicted value of Nts(1) prior to disease modeling. However, this approach

does not capture the uncertainty in this prediction. Recasting this approach in a missing data

framework, the rescaling method predicts Nts(1) using the expected value of Nts(1) given the

observed data. It is well-known in the missing data literature, however, that so-called condi-

tional mean imputation may result in under-coverage of model parameters [18]. Similarly, we

could see under-coverage of resulting disease model forecasts.

To address this challenge, we can perform disease modeling based on draws or imputations
of the validation data (e.g., [7, 11]). In order to keep the handling of reporting delay separate

from the disease modeling, we propose obtaining M multiple imputations/draws of the valida-

tion data for the current season up to the current calendar time. Fixing these imputations, we

can then fit the forecasting model to each of the M imputed datasets and obtain M forecasts

(e.g., 1-week forecasts) and corresponding standard errors. We then combine results across
imputed datasets using Rubin’s multiple imputation combining rules [18]. Additional details

about this algorithm can be found in S1 Text Section 4.

Many different approaches can be used to define a distribution for imputing validation case

counts given the available data. Using results from the actuarial literature as in S1 Text Section 3,

we propose imputing validation case counts from the following truncated normal distribution:

Ntsð1ÞjNtsðdÞ � TruncNormal
NtsðdÞ
ptsðdÞ

;
j1 � ptsðdÞj
ptsðdÞ

2
NtsðdÞ; l; u

 !

; ð5Þ

where πts(d) is replaced with an estimate and where truncation limits l and u restrict imputed val-

ues to be greater than Nts(d) if πts(d)< 1 and less than Nts(d) if πts(d)> 1. A key property of this

distribution is that the variance of the imputed validation data decreases as πts(d) increases,

meaning that imputed Nts(1) will be closer to Nts(d) when the expected amount of reporting

error is small. The truncated normal distribution in Eq 5 will have expectation different than
NtsðdÞ
ptsðdÞ

due to non-symmetric bounds. In Fig E in S1 Text, we demonstrate that the percent error in this

expectation relative to
NtsðdÞ
ptsðdÞ

is small, particularly in settings with a large amount of reporting

error.

A primary limitation of the multiple imputation approach is that it requires the forecasting

model to be fit multiple times. For many slow estimation methods, this may not be feasible.

When the forecasting model involves Markov Chain Monte Carlo (MCMC) estimation (e.g.,

some Bayesian models), however, a simple alternative is to handle the missing data within the

MCMC estimation algorithm, where a single imputed value for each missing Nts(1) is gener-

ated using Eq 5 within each MCMC iteration as in Hohle et al. (2014) [7]. Parameters are then

drawn within each iteration, conditioning on the imputed validation data. The resulting poste-

rior forecast distributions can then be used directly.

Exclusion of most recent data reports. In some cases, the most recently reported real-

time data may be too error-prone to contribute meaningfully to forecasting given the informa-

tion available to the forecaster. In this setting, we propose excluding the most recently reported

data from modeling and forecasting.

3.2 Estimating reporting factors

For many of the methods described in Section 3.1, the challenge of handling reporting delay

boils down to specification of a relationship between the real-time and validation data, i.e.,
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πts(d). Below, we describe several different strategies for estimating πts(d) using either real-

time case reports for past seasons or by leveraging external data to directly nowcast Nts(1).

Reporting factors as a function of lag only. A common assumption in the literature is

that the reporting factors are constant in t and s. Using data from past seasons/weeks in which

both real-time and validation data are available, we estimate the inverse reporting factors as

p̂tsðdÞ ¼ p̂ðdÞ ¼
P

i;jNijðdÞ
P

i;jNijð1Þ
; ð6Þ

with p̂ðdÞ ¼ 1 for all d greater than some fixed threshold, τ. An equivalent estimator has been

been explored in detail elsewhere (e.g., [9, 19]). More sophisticated estimation strategies using

parametric assumptions for π(d) can also be used, as discussed in England and Verrall (2002)

[9]. An alternative strategy for estimating π(d) would be to average
NtsðdÞ
Ntsð1Þ

across s and t.
Although not shown, simulations demonstrated that this proportion averaging approach

tended to produced unstable p̂ðdÞ with larger variability.

Reporting factors based on regression modeling of real-time data. The estimator in Eq

6 assumes that the reporting factor depends on d only, but we can imagine settings where the

reporting may vary across seasons (s) and/or within seasons (t). Additionally, we may have

covariates X predictive of the difference between real-time and validation case reports (e.g.,

number of patients tested for the disease or disease-related Google search volumes). In this set-

ting, we propose estimating πts(d) indirectly by modeling the validation case counts as a func-

tion of available data, the lag d, the season s, the week t, and/or covariates X. For example, we

may fit a Poisson regression model with a log link, adjusting for lag, season, week, and X and

using the log of the available counts as an offset in the mean model. See S1 Text Section 6 for

an example. Through this model, we can incorporate seasonality and inter-/intra-season

trends into our estimation fo πts(d). Let function f represent the estimated mapping between

the real-time data and the validation data. We can estimate the inverse reporting factors as

p̂tsðdÞ ¼
NtsðdÞ

f ðNtsðdÞ; XÞ
; ð7Þ

where p̂tsðdÞ ¼ 1 for d> τ and where N̂ tsð1Þ ¼ f ðNtsðdÞ; XÞ.
The above strategy for estimating πts(d) does not require reporting information for individ-

ual people; rather, it uses aggregate case counts by week t and lag d. In many modern nowcast-

ing applications, however, line-list data with dates of disease diagnosis and reporting for

individual people are available (e.g., [4]). In this setting, we can view the time between disease

diagnosis and reporting as a time-to-event outcome, perhaps incorporating censoring or trun-

cation. Classical modeling strategies for event time outcomes can be applied to estimate a

delay distribution as a function of person-level predictors, which can then be aggregated to

obtain estimates of πts(d) overall. Approaches for handling settings where baseline disease

diagnosis or symptom onset dates are unknown for patients in the historical dataset have been

explored elsewhere [13, 14, 20].

Reporting factors using “local” real-time data. The previously-described methods lever-

age past season data on the relationship between real-time and validation case counts to esti-

mate reporting factors. However, these methods may perform poorly if reporting in the

current season differs substantially from reporting in previous seasons in an unpredictable

way (i.e., not easily predicted based on past-seasons’ reporting trends). In this setting, we

would like to use real-time data from the most recent weeks to estimate reporting factors that

better capture current reporting practices. The challenge, however, is that validation data are

not yet available for recent weeks.
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We propose using the changes in available case counts across d to obtain a conservative esti-

mate of πts(d) as follows:

p̂tsðdÞ ¼
Pt� d� 1

i¼t� K NisðdÞ
Pt� d� 1

i¼t� K Nisðt � iÞ
; ð8Þ

where the numerator contains past weeks’ available data and the denominator contains the

most recently-reported data for the previous K weeks. Define τ to be the lag value after which

we assume true πts(d) = 1 for all d> τ. For this estimator, we define p̂tsðdÞ ¼ 1 for d>min(K,

τ). K can take any positive integer value, but we recommend setting K = τ in practice.

The estimator in Eq 8 is conservative in that it is biased toward 1 relative to the true πts(d)

when reporting is such that (1) Nts(j)� Nts(j + 1) for j� 0 (monotone under-reporting) or (2)

Nts(j)� Nts(j + 1) for j� 0 (monotone over-reporting). This bias comes from using the most

recent case counts rather than the corresponding validation values in the denominator.

Despite this bias, Eq 8 may provide a more accurate estimate of πts(d) than the previously-

described approaches when the current weeks’ reporting is very different from reporting in

past seasons.

We could further generalize this local estimation strategy to incorporate seasonality, covari-

ate associations, and/or residual autocorrelation to estimate πts(d). We propose viewing histor-

ical observed values of πts(d) and local estimated values from Eq 8 as themselves a time series

that can be used to forecast πts(d) for each fixed value of d. For example, we can construct a

time series of observed/estimated values of πts(0) for prior weeks, fit an ARMA (S1 Text Section

5) model to some function of πts(0) (e.g., logit(πts(0))) adjusting for any covariates or seasonal-

ity we want to account for, and obtain a one-week-ahead forecast to estimate unknown πts(0)

for the current week. In this way, we can simultaneously combine historical information on

seasonality and other trends while leveraging information on reporting from the recent past.

When applied to our real data examples, this approach did not yield improved performance

over Eq 8, so we did not evaluate this approach in additional detail. However, we hypothesize

that there may be other infectious disease settings where this generalization could provide

additional flexibility and corresponding improvements in forecast performance. Kline et al.

(2021) [21] provides a related approach for modeling increments in reported COVID-19 cases

as a function of reporting lag and day of week with an autoregressive structure.

Reporting factors based on proxy shrinkage. The preceding methods assume some prior

information is available about the relationship between the real-time and validation case

counts. For many diseases however, historical data on validation case counts are readily avail-

able but the real-time reports for past seasons are either unavailable or incomplete. In this set-

ting, we propose leveraging external data sources to estimate πts(d).

Suppose we have historical data on the relationship between validation case counts Nts(1)

and some external data, collectively denoted pts, that are associated with Nts(1). Examples of

external data include Google search volumes, social media mentions (e.g., from Twitter), and

Wikipedia searches [22, 23]. Using these historical data, we fit a nowcast model for validation

case counts given pts. This model could be complicated and include data from many different

sources, incorporate penalization, etc. Let g denote the mapping between pts and model-pre-

dicted validation case counts. These predictions may be viewed as an error-prone proxy for the

current season validation cases.

Using this external data model proxy, we propose estimating the validation case counts as a

weighted average of the proxy and the observed real-time data as follows

N̂ tsð1Þ ¼ wdgðptsÞ þ ð1 � wdÞNtsðdÞ; ð9Þ
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and we estimate corresponding inverse reporting factors as p̂tsðdÞ ¼
NtsðdÞ

N̂ tsð1Þ
. For large d, we

expect Nts(d) and Nts(1) to be very close. Therefore, we will define weights wd such that wd!

0 as d!1 and impose wd = 0 for all d> τ. As the number of lag weeks increases, the shrink-

age estimator will put more and more weight on the observed data. In a related method,

Osthus et al. (2019) [10] proposed defining wd ¼
o

dþ1

� �2

with ω = 0.75. The choice of weight

and performance of this method will depend on the degree of reporting delay and how well the

proxy model g predicts the validation case counts.

Sensitivity analysis. All of the above methods for estimating reporting factors require

either historical real-time data or a good proxy for the validation case counts based on external

data. In practice, we may not have either available. In this case, one approach for implementing

the methods in Section 3.1 is to perform multiple parallel analyses assuming different plausible

reporting mechanisms in a sensitivity analysis framework. This approach can be used to evalu-

ate the robustness of forecasts to assumptions about the delay mechanism.

On drawing reporting factors. Thus far, we have proposed a two-stage analysis proce-

dure where we first estimate reporting factors πts(d) and then apply the methods in Fig 2a to

obtain forecasts. However, this approach does not account for uncertainty in the estimated val-

ues for πts(d). Jones et al. (2020) [24] and others have highlighted the potential for poor perfor-

mance of rescaling or multiplier strategies as in Eq 2 when a single estimate of πts(d) is used

without accounting for uncertainty. In Bayesian forecast modeling, a common solution is to

build reporting delay into the model structure and forecast assuming a prior distribution for

πts(d) rather than fixing its value (e.g., [3]). All of the methods discussed in Section 3.1 be simi-

larly modified to incorporate uncertainty in estimated πts(d). As shown by our simulation

results, however, concerns raised about uncertainty propagation for rescaling methods can be

substantially mitigated by implementing imputation strategies as in Eq 5.

4 Application to dengue fever and seasonal influenza forecasting

We considered data on dengue fever cases in Puerto Rico (1990–2009) and for seasonal influ-

enza-like illness (ILI) cases in the United States (2010–2011 through 2018–2019 seasons). Our

goal was to evaluate how the quality of disease forecasts is impacted by the handling of report-

ing delay. With the exception of the mean model offset method, all of the methods in Fig 2 for

handling reporting delay can be applied in conjunction with any forecasting model. For dem-

onstration, we considered two reasonable forecasting model settings: an auto-regressive mov-

ing average (ARMA) model for log-cases (e.g., [25]) and a Bayesian Gaussian process-based

model (hereafter, referred to as Inferno from Osthus (2021) [26]). Both models assumed a log

link mean structure. Additional details about these forecast models are provided in S1 Text

Section 5.

4.1 Obtaining weekly forecasts, accounting for reporting delay

For each week after the first two seasons, we constructed an artificial dataset consisting of the

real-time and historical observations that would have been available to use for forecasting.

First assuming that reporting does not vary over t and s, we estimated reporting factors p̂ðdÞ
from Eq 6 using the previous 2 years’ data. To allow estimated reporting factors to vary by t
and s, we also estimated p̂tsðdÞ indirectly as in Eq 7 by fitting a Poisson regression model with

a log link to the prior observed validation data, including d, s, and a 3-degree natural spline of t
as predictors and treating the available data log(Nts(d)) as an offset. Additional details and

diagnostics can be found in S1 Text Section 6.1. Finally, we estimate “local” πts(d) using Eq 8

and the previous K weeks’ real-time reported data (using K = 15 for ILI and K = 6 for dengue
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fever). As an additional sensitivity analysis, we also estimate “local” πts(d) across a range of K
values between 2 and 100 for each dataset.

Fixing these reporting factors and using either an ARMA(2,2) or Inferno forecasting model

structure, we then fit the forecasting model using each of the rescaling, model offset, and impu-

tation methods in Section 3.1. For ARMA, the imputation method was implemented using 10

imputed datasets and Eq 5. For Inferno, imputation using Eq 5 was implemented within a

Bayesian MCMC estimation algorithm. We also fit the forecasting model to the observed real-

time data without correction and after excluding the most recent 1–3 weeks of data. To bench-

mark the performance of these methods, we also fit the forecasting model using the validation

data. Inferno model estimation was based on 2500 MCMC iterations after a burn-in of 2500

iterations. Results are also provided for an ensemble based on an equal weight linear combina-

tion of forecasts from the 13 methods (excluding validation data analysis).

For each forecast fit, we obtained a prediction for the validation case counts for the current

week (nowcast) and for 1 and 4 weeks ahead (forecasts). We also calculated corresponding

50%, 67%, 95%, and 99% prediction intervals. For the Inferno model, ensemble forecasts and

corresponding prediction intervals were obtained using the stacked draws across methods. For

the ARMA model, we obtained 2500 draws of predicted log-case counts using the Gaussian

prediction distribution for each of the methods. Ensemble forecasts and prediction intervals

for the validation case counts were then obtained using these stacked draws. We repeated this

process for each calendar week of available data. We then summarized the predictive perfor-

mance using the metrics described in Section 4.2, aggregating across all calendar weeks and

seasons for each dataset and forecast model structure separately.

4.2 Performance metrics

We evaluated the performance of the various methods based on properties of nowcasts (i.e.,

predicted validation values for the current week) and 1 and 4 week forecasts (i.e., predicted val-

idation case counts for future weeks). Absolute prediction error for a given nowcast/forecast

was defined as the absolute difference between the model estimate and the validation case

counts. For assessing the accuracy of the point and interval estimates jointly, we calculated the

weighted interval score from Bracher et al. (2021) [27] as follows:

WISðyÞ ¼
1

K þ 0:5
0:5jy � f̂ tsj þ

XK

j¼1

rj

2
ISðlj; uj; yÞ

" #

ð10Þ

ISðlj; uj; yÞ ¼ ðuj � ljÞ þ
2

rj
ðlj � yÞIðy < ljÞ þ

2

rj
ðy � ujÞIðy > ujÞ; ð11Þ

where K is the number of intervals (in our case, 11), ρ = (0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1,

0.05, 0.02), uj and lj are the upper and lower confidence/credible interval limits corresponding

to level 1 − ρj, and f̂ ts is the median of the nowcast/forecast distribution. These values of ρ were

chosen to match the quantiles used by the US COVID Forecast Hub (https://

covid19forecasthub.org/). We evaluated the WIS using the validation values. We also calcu-

lated the empirical coverage of the 95% prediction intervals using the forecasts and validation

case counts across all calendar weeks.

4.3 Results

Prediction error and coverage. Fig 3 presents the average absolute nowcast/forecast

errors for the dengue fever and US national ILI outcomes along with corresponding coverages

PLOS COMPUTATIONAL BIOLOGY Addressing delayed case reporting in infectious disease forecast modeling

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010115 June 3, 2022 12 / 26

https://covid19forecasthub.org/
https://covid19forecasthub.org/
https://doi.org/10.1371/journal.pcbi.1010115


of 95% prediction intervals. Weighted interval scores are presented in Fig G in S1 Text. For

both datasets and forecast model structures, analysis of the observed data without correction

resulted in large undercoverage (2–60%) and higher prediction error relative to analysis of the

validation data. Compared to uncorrected analysis of the observed data, the exclusion method

(1–3 weeks) resulted in improved coverage and similar or reduced prediction error across all

endpoints for the dengue fever data. In contrast, the exclusion method resulted in similar or

increased prediction error in the national US ILI data.

The rescaling, offset, and imputation methods uniformly resulted in higher coverage and

similar or reduced prediction error relative to uncorrected observed data analysis for the den-

gue fever and US national ILI data. For the dengue fever data, the imputation methods tended

to give better coverage than the rescaling methods (e.g., around 65% vs nearly 90%). In general,

the rescaling method can be unstable (i.e., produce high error) in the dengue fever data, partic-

ularly for the Inferno forecast model (Fig H in S1 Text). As described in S1 Text Section 7, this

is due to a combination of very high under-reporting and a low disease rate, which results in

Fig 3. Performance of nowcasts and forecasts in the Puerto Rico dengue fever and national US influenza-like illness data across all weeks 1. 1 Results

for dengue fever are aggregated across each of 50 weeks in 18 seasons (1992–2009). Results for US national influenza are aggregated across 35 weeks in 7

seasons. The ensemble method corresponds to an equal-weight linear combination of all methods except validation data analysis. “Model” indicates that

reporting factors were estimated via regression and allowed to vary by t and s. “Lag” indicates that reporting factors were estimated via Eq 6. “Local”

indicates that reporting factors were estimated via Eq 8. Relative absolute biases are calculated relative to the largest value in each column.

https://doi.org/10.1371/journal.pcbi.1010115.g003
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rescaled validation estimates that are very sensitive to small fluctuations in the observed case

counts. Both the mean model offset method and the imputation method resulted in stabler

nowcasts/forecasts in this setting.

The equal weight ensemble method attempts to produce more stable forecasts than any

individual method by borrowing information across many methods. For both the Inferno den-

gue fever model and both ARMA and Inferno national influenza models, the ensemble estima-

tion resulted in similar or better coverage than any of the individual methods, particularly for

nowcasts. Resulting nowcast and forecast errors were generally between errors from the exclu-

sion and rescaling/offset/imputation methods for the ILI data and similar or smaller than

errors for other methods for the dengue fever data. Across both datasets, there is little evidence

of improved forecast/nowcast performance for model-based vs. lag-based estimation of report-

ing factors. However, we observed lower forecast biases when reporting factors were estimated

using local reporting data. We did not formally assess the performance of proxy-based report-

ing factor estimation for these data.

In Figs I-J in S1 Text, we present the relative accuracy of several methods across individual

weeks during follow-up. We find that the relative performance of uncorrected data analysis

tended to improve for the dengue fever data when validation case counts were very small, sug-

gesting that the correction methods may over-correct in this setting. Similarly, uncorrected

analysis of the US national ILI data gave improved relative performance shortly after the sea-

son peak for seasons with sharp decreases in cases, suggesting that the correction methods

may be less able to adapt to these rapid decreases in validation case counts. Fig M in S1 Text

provides bias and weighted interval scores across methods, focusing on weeks near the season

peaks and minima.

Comparative rankings. We then calculated the proportion of weeks across seasons in

which each of 7 methods performed best in terms of weighted interval scores for 1 week fore-

casts. For this analysis, we focused on local estimation of πts(d) as it generally resulted in simi-

lar or better performance than the same methods using lag-based or model-based estimation.

If all methods performed equally, we would expect each method to be the best performer

about 14% of the time (95% confidence interval of [12%,16%] for dengue fever and state-level

ILI and [10%,18%] for national ILI, assuming independent trials). As shown in Fig 4, however,

we saw that corrected analysis tended to outperform uncorrected analysis of the observed data

for dengue fever and US national ILI data. For these data sources, these results suggest that we

are almost always better off performing some kind of correction strategy to handle the report-

ing delay. Among the correction methods, the imputation and offset methods tended to have

similar or better performance than the other methods in terms of 1-week forecast interval

score rankings for the national influenza-like illness datasets. In contrast, the exclusion and

rescaling methods had the best performance in the dengue fever data.

Uncorrected analysis results for state-level ILI tell a different story than seen for national

US ILI and dengue fever, where analysis of the observed state ILI data without correction had

the best weighted interval score performance at least 17%+ of the time. As shown in Figs K-L

in S1 Text, the relative performance of the delay correction methods varied between states, but

the imputation-based correction method tended to have the best performance on average. For

the Inferno model, uncorrected analysis outperformed all correction methods on average (low-

est forecast weighted interval score 25% of the time).

Unlike in the dengue fever and national ILI data, the reporting delay mechanism sometimes

changed substantially between seasons for individual states (Figs B and C). Although not

shown, this resulted in reduced forecast performance for the strategies that relied on past sea-

son reporting data to correct delay in the current season. As shown in Fig N in S1 Text, the

local πts(d) estimation method produced much better estimates of the inverse reporting factors
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for the current season. This serves as a cautionary note against using lag-based and model-

based πts(d) estimation methods when past season information on reporting practices is poorly

representative of the current season.

For all datasets, we observed better comparative performance for naive observed data analy-

sis with the Inferno model than with the ARMA model. This was due to (1) a tendency for the

observed data Inferno model to perform particularly well relative to the other methods in

weeks where the validation case counts were very low (Figs I, J, and O in S1 Text) and (2)

poor ARMA forecast performance across the board when analysis was based on real-time

observed data (Fig P in S1 Text). These results suggest that ARMA forecast models may tend

to perform poorly when applied to real-time data subject to a large amount of reporting error.

Weeks K used for local πts(d) estimation. In the analyses presented in Fig 3, we apply the

local estimation strategy in Eq 8 with K set equal to τ, the number of weeks beyond which we

assume πts(d) = 1. However, any positive integer value for K could theoretically have been cho-

sen. In Figs Q-S in S1 Text, we present the πts(0) estimates and corresponding nowcast/fore-

cast performance obtained as a function of K for the dengue fever, national US ILI, and

Vermont ILI datasets. We demonstrate that the estimate in Eq 8 looks more and more like the

simple lag-based estimate using Eq 6 as K becomes large. The best nowcast and forecast perfor-

mance was generally seen for K near τ, with larger K resulting in particularly large increases in

prediction errors for the Vermont data.

Fig 4. Proportion of weeks in which each of 4 methods performs best in terms of 1-week forecast weighted interval scores. 1 Results

for Dengue fever in Puerto Rico are aggregated across all 50 weeks in 18 calendar years (1992–2009). Results for US national influenza

are aggregated across 35 weeks in 7 seasons (2012–2013 through 2018–2019). Results for US state-level influenza are aggregated across

35 weeks in 49 states (excluding Florida) for the 2018–2019 season.

https://doi.org/10.1371/journal.pcbi.1010115.g004
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5 Performance of methods for simulated real-time data

The analyses in Section 4 provide intuition on the performance of the various reporting delay

correction methods in three real data settings. A key limitation of several of the methods

explored in Section 4 is that they require high-quality data on real-time case reports from past

seasons along with corresponding assumptions about how reporting varies across and within

seasons. Since reporting delay for the current season is not well-understood at the time of fore-

casting in practice, it is important to evaluate the impact of these assumptions and violations

on method performance. To further develop our intuition for when these methods will and

will not perform well, we conducted a simulation study.

5.1 Simulation set-up

We simulated validation disease counts to mimic observed disease rates of dengue fever in

Puerto Rico between 1990 and 2009 as follows:

1. Let βts be the three-week moving average of the validation case counts in the actual dengue

fever data, and let τt be the average of Nts(1)/βts across all seasons. Define θts = βts
� τt to be

the mean disease rate in the simulated data.

2. We generated 200 simulated versions of the validation data for each t and s by drawing

from a negative binomial(r, p) distribution with p ¼ r
rþyts

and r = 100. The hyperparameter r
was chosen to mimic the variability in actual dengue fever validation data.

Fig Va in S1 Text provides a visualization of the resulting case counts across these 200 sim-

ulated datasets. For each simulated dataset, we then generated real-time data for each calendar

week under different assumed reporting mechanisms. All reporting mechanisms followed the

reporting profiles in Fig Vb in S1 Text, which were parameterized by constant a between 0.05

and 1 representing the proportion of eventually reported events reported at lag 0. We consid-

ered the following simulation scenarios:

1. Constant: reporting was constant in t and s and corresponded to a = 0.05.

2. Vary by week: reporting varied by t and was constant in s. a initially increased from 0.05 to

1 during weeks 1 to 25 in each season and then decreased from 1 to 0.05 thereafter.

3. Large improvement between seasons: reporting substantially improved in the last season,

with a = 0.05 for 1990–2008 and a = 0.50 for 2009.

4. Large worsening between seasons: reporting substantially worsened in the last season, with

a = 0.50 for 1990–2008 and a = 0.05 for 2009.

5. All season combinations: Each strata of 10 simulation replicates was assigned a different

value for a between 0.05 and 1. Within each strata, reporting (i.e., a) was constant in s and t.

For each set of simulated validation data, we also simulated 4 external proxy variables such

that pts = 2 log(Nts(1) + 0.1) + ets, where ets� N(0, σ2) and where σ2 took values in (0.01, 1, 4,

16). These error rates corresponded to correlations between transformed pts and Nts(1) of

0.99, 0.80, 0.50, and 0.13.

In order to clarify general properties of the various methods, we also repeated the above

simulation procedure with data simulated to mimic observed disease rates of national US

influenza-like illness for the 2010–2011 to the 2018–2019 seasons. Detailed results for ILI are

presented in S1 Text Section 9, and we focus on the results for dengue fever-like data in the

main paper.
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5.2 Performance under Scenarios 1–4 in the simulated dengue fever 2009

season

In this simulation study, our goal was to compare the performance of each of the reporting

delay correction methods when the reporting factor estimates were correctly specified (Sce-

nario 1 and model-based πts(d) for Scenario 2) and when they were mis-specified (lag-based

πts(d) for Scenario 2 and Scenarios 3–4). For this exploration, we focused our attention on the

first 100 simulated datasets corresponding to 2009.

For each calendar week in 2009 and simulated datasets under Scenarios 1–4, we applied the

procedure described in Section 4.1 to construct an artificial real-time dataset that would have

been available for forecasting. For each artificial dataset, we applied the methods in Fig 2

exactly as we did in the actual dengue fever data, but this time we repeated this analysis across

100 simulated versions of the data. We obtained nowcasts, forecasts, and corresponding 95%

prediction intervals, and we summarized these nowcasts/forecasts using the performance met-

rics in Section 4.2. We then aggregated these metrics across the 100 simulated datasets and 50

calendar weeks in 2009 for each of the simulation scenarios.

Fig 5 presents the average absolute nowcast and forecast prediction errors and correspond-

ing coverage of 95% prediction intervals obtained from applying the methods with a ARMA

(2,2) forecast model. Weighted interval scores are shown in Fig W in S1 Text. We summarize

these results for each of the 4 simulation scenarios below.

Reporting factors constant (Scenario 1). All reporting correction strategies resulted in

lower prediction error and higher coverage relative to analysis of the observed data without

correction (e.g., coverages < 10% for uncorrected analysis compared to coverages over 90%).

We also see improvements over observed data analysis in terms of weighted interval scores for

all reporting correction methods. The exclusion methods produced higher nowcast and fore-

cast errors on average relative to the other correction methods. This indicates that the most

recently reported cases can contribute useful information for nowcasting/forecasting even in

the presence of extreme under-reporting as long as the reporting factors are correctly specified.

Imputation methods resulted in higher nowcast and forecast coverage than the rescaling and

model offset methods, although this coverage was overly conservative (greater than 95).

Model-based estimation of πts(d) resulted in a small increase in prediction error relative to lag-

based estimation. More flexible estimation of πts(d), therefore, may come with some small

price in terms of prediction error when reporting is truly constant across t and s. Local estima-

tion of πts(d) resulted in small additional increases in prediction error and weighted interval

scores.

Reporting factors vary by week (Scenario 2). When reporting factors truly varied within

each season, correction methods using model-based estimates of πts(d) outperformed use of

lag-based estimates, which incorrectly assumed reporting did not vary over s or t. However,

the difference in performance was modest, even in this setting with extreme intra-season varia-

tion in reporting. The local πts(d) estimation method performed well in this setting, with

higher coverages than the model-based method but also with slightly higher prediction error

and weighted interval scores. As before, the exclusion method resulted in higher nowcast error

than the other correction methods, but the exclusion method did provide better coverages

than the rescaling, offset, and imputation methods.

Large reporting factor change between seasons (Scenarios 3–4). When reporting for the

current season was very different than the previous seasons, reporting factor estimation using

past season data (lag-based and model-based) resulted in poor estimates of the current season

under-reporting. When the current season under-reporting was much better than previous

seasons, use of past-season reporting factors resulted in over-correction and over-estimation of
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the validation case counts, and we saw huge prediction errors and low coverage (e.g., 10–60%)

resulting from very poorly specified estimates of πts(d) for the rescaling, offset, and imputation

methods. When the current season under-reporting was much worse than previous seasons,

use of past-season reporting factors resulted in under-correction and under-estimation of vali-

dation case counts, but resulting prediction errors were still less than those from analysis of

Fig 5. Performance of proposed methods for handling reporting delay in 2009 across 100 simulated datasets using ARMA models1. 1 Results are

aggregated across all 50 weeks in 100 replicate seasons. Each result, therefore, represents aggregates 5000 nowcasts or forecasts. When reporting factors

varied across seasons, π2007 = π2008 = (0.01, 0.05, 0.55, 0.85, 0.95, 0.98, 1) and π2009 = (0.04, 0.54, 0.84, 0.0.94, 0.97, 0.99, 1). The ensemble method corresponds

to an equal-weight linear combination of all methods except validation data analysis and exclusions of 4 and 5 weeks’ data. “Model” indicates that reporting

factors were estimated via regression and allowed to vary by t and s. “Lag” indicates that reporting factors were estimated via Eq 6. “Local” indicates that

reporting factors were estimated via Eq 8. Relative absolute biases are calculated relative to the largest value in each column. Model-based πts(d) estimation

assumes reporting factors vary across weeks but incorrectly models how reporting factors vary across weeks.

https://doi.org/10.1371/journal.pcbi.1010115.g005
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uncorrected observed data. Combined, these results indicate that we may be better off under-

estimating the degree of under-reporting than severely over-estimating it.

In contrast to the model-based and lag-based methods for estimating πts(d), the local esti-

mation method performed well with much higher coverages (e.g.,< 20% vs 95% for 1 week

forecasts) and much lower prediction errors for both Scenarios 3 and 4. The exclusion meth-

ods also had good performance. To summarize, the best performing methods were those that

did not rely on past season data for handling of under-reporting.

5.3 Performance as a function of the reporting rate (Scenario 5)

Previous simulations demonstrate that all methods can perform well in ideal settings when

reporting factors are correctly specified. However, the methods relying on reporting factor

estimates can run into trouble when the reporting factors are poorly specified. We now sup-

pose that we do not have good historical data from which to estimate these reporting factors.

This may be the case, for example, if we are forecasting a newly-emerging disease. We want to

evaluate how other methods (e.g., the exclusion method and the rescaling method with πts(d)

estimated using proxy shrinkage) perform for data with different amounts of under-reporting.

We considered simulation Scenario 5, where the true reporting mechanism for each season

was varied between a = 0.05 (strong under-reporting) and a = 1 (no under-reporting). Report-

ing correction, estimation, and forecasting proceeded as before. Performance diagnostics were

aggregated across weeks within each season and stratified by the true value of a. Each result,

therefore, represents an aggregation across 50 weeks in each year and across 10 simulated data-

sets, resulting in 500 repeated comparisons.

Exclusion method performance as a function of a. In Fig X in S1 Text, we provide pre-

diction errors and weighted interval scores for 1 week forecasts in 2006–2009 based on the

uncorrected observed data, the validation data, and results from the exclusion method after

excluding between 1 and 5 weeks of recent data. Results are shown as a function of true a. For

the exclusion method, there is a trade-off: excluding recent data may avoid some bias due to

inclusion of error-prone real-time data but will lose out on the information in the most recent

data, which may also negatively impact forecast efforts. For roughly a> 0.50, the forecast error

due to throwing out information outweighed the error due to including the real-time data, and

prediction error for the exclusion method was higher than uncorrected analysis. For roughly

a< 0.50, exclusion tended to outperform uncorrected analysis of the observed data, particu-

larly in terms of weighted interval scores. These results may help guide decisions for whether

or not to throw out the recent data as a function of the plausible range for a.

Performance of proxy shrinkage reporting factors as a function of a. Fig Y in S1 Text

provides a similar exploration for the rescaling method with πts(d) estimated using proxy

shrinkage based on proxies of varying quality (i.e., correlation with Nts(1)). The proxy shrink-

age method was implemented defining wd ¼
o

dþ1
where ω took values 0.5 or 1. When the corre-

lation between the proxy and the validation data was very small (e.g.,<0.15), proxy shrinkage

served to increase prediction error relative to uncorrected observed data analysis. It also

increased weighted interval scores relative to uncorrected analysis unless the degree of under-

reporting was very high (e.g., a< 0.3). When the proxy correlation was high (e.g., 0.80), rescal-

ing using proxy shrinkage reduced prediction error relative to uncorrected analysis and

reduced weighted interval scores when the degree of under-reporting was moderate to high

(e.g., a< 0.7). Any advantage of incorporating the proxy to address reporting delay depends

on (1) the amount of reporting error and (2) the quality of the proxy. As a conservative rule-

of-thumb, we suggest applying the proxy shrinkage method only if a< 0.5 and the proxy is of

sufficient quality (e.g., correlation > 0.50).
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Sensitivity analysis with rescaling method. In settings where the degree of reporting

error may be comparatively modest but we still want to evaluate the impact of under-reporting

on forecasts, a sensitivity analysis approach may be appealing. In performing a sensitivity anal-

ysis, we calculate performance metrics across different assumed values for the reporting fac-

tors. In Fig 6, we performed such an analysis across the simulated datasets and across different

true and assumed values for a to demonstrate how coverage in 2008 and 2009 forecasts varied

as a function of assumed a. In practice, this exploration would be conducted a single time on

the observed data, where the true reporting mechanism would be unknown. Unsurprisingly,

we obtained the highest coverages when the value of a was correctly specified. Coverages were

fairly robust to mispecification of a when the true and working values of a were both fairly

high. When the true amount of under-reporting was very strong (e.g., a< 0.10), however, even

mildly misspecified a resulted in a large loss of coverage.

6 Discussion

Delayed reporting of infectious disease cases presents a challenge to forecasting efforts, and no

general recommendations for addressing reporting delay in the forecasting setting currently

exist. In this work, we synthesize many existing strategies for handling reporting delay into a

single unified framework and propose a two-stage estimation procedure that can be applied to

forecast modeling in general. In the first stage of the proposed estimation procedure, we lever-

age either (a) historical data on the accuracy of real-time reporting or (b) external data corre-

lated with disease rates (e.g., social media or Google trends) to estimate the amount of disease

under- or over-reporting. In the second stage, we describe how to implement forecast model-

ing, accounting for the over- or under-reporting using existing methods in the literature

(sometimes, with modification).

Fig 6. Coverage of 95% prediction intervals for 1 week forecasts across various assumed reporting profiles in 2008 and 2009 simulated datasets1. 1 Circled

coverages correspond to correctly-specified reporting factors.

https://doi.org/10.1371/journal.pcbi.1010115.g006
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We applied this methodology to address reporting delay in data on influenza-like illness

diagnoses in the US in 2010–2019 and data on dengue fever cases in Puerto Rico between 1990

and 2009 [3]. This analysis demonstrates the potential for improving forecast performance by

accounting for delayed case reporting. However, analysis of state-level influenza-like illness

data highlights the need for good estimates of the current season reporting mechanisms for

rescaling, mean model offset, and imputation methods; when reporting mechanisms are very

poorly specified, these correction methods can sometimes do more harm than good.

The comparative performance of the various methods was further evaluated through a sim-

ulation study. In ideal settings with correctly specified reporting mechanisms, the rescaling,

mean model offset, and imputation methods resulted in reduced forecast errors relative to

exclusion of the most error-prone recently reported data. This indicates that, even in the set-

ting with very high under-reporting, the observed data can contribute useful information for

forecasting when the reporting mechanism is well-understood. Caution is needed when apply-

ing the rescaling method in the setting where disease rates and anticipated inverse reporting

factors are low, since this method can be sensitive to small fluctuations in the observed case

data in this setting. The mean model offset and imputation methods provide additional stabil-

ity in this setting and tended to result in better forecast coverage than rescaling in general.

In implementing the rescaling, mean model offset, and imputation methods in this paper,

we used a fixed estimate of πts(d). However, this strategy does not account for our uncertainty

in the estimate of πts(d). One reasonable approach for addressing this issue is to view πts(d) as

an estimated parameter with a corresponding distribution (e.g., normal with mean p̂tsðdÞ and

variance based on estimate uncertainty) and apply the imputation correction method using

separate draws of πts(d) for generating each imputation. We did not implement this approach

in this paper, but we hypothesize that this approach could be useful in settings where there is a

lot of unexplained variability in past reporting data.

Several strategies were proposed for estimating πts(d). When past season data were available

and reporting varied predictably across weeks and seasons, the lag-based and model-based

estimation strategies in Eqs 6 and 7 performed well. In settings where the current season’s

reporting practices differed dramatically from past seasons, however, these methods failed to

capture current season reporting dynamics. To address this issue, we proposed an estimator

that uses the “local” recent real-time data from the past few weeks to estimate reporting factors

for the current week, providing more accurate estimates.

In practice, historical data on reporting delay may be unavailable or incomplete and report-

ing may be very poorly understood. In this setting, the strategy of excluding the most recent

data from forecast modeling produced more reliable forecast performance than methods that

used fixed estimates of πts(d) based on real-time data. However, this exclusion strategy involves

a trade-off between loss of information in recently reported data and protection against bias

caused by reporting delay. Our simulations suggest that the exclusion method is best applied

when the reporting error is high (e.g., when the initial case reports are less than 50% of the vali-

dation case counts).

In addition to excluding the most recent data, an alternative strategy is to leverage external

data to estimate the amount of under-reporting indirectly by independently predicting the val-

idation case counts. When these predictions are good enough, the comparison between these

predicted validation case counts (here, called proxies) and the observed cases provides insight

into reporting error. As with the exclusion method, this proxy approach features a trade-off

between providing information for estimating reporting errors and adding more noise into

the estimation. Through simulation, we evaluated how the performance of the proxy-based

estimation strategy varied as a function of the amount of reporting error and the quality of the

proxy (i.e., the correlation with validation case counts). We found that even poor proxies (e.g.,
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correlation 0.13) contributed some information to under-reporting correction when the

amount of under-reporting was very high. As the amount of under-reporting diminished, bet-

ter and better proxies were needed to improve on uncorrected analysis, particularly in the set-

ting of ILI forecasting.

Synthesizing the insights from our data analysis and simulations, we produced some gen-

eral recommendations for the handling of reporting delay in Fig 2b. These recommendations

provide guidance for handling delay in disease case reporting and may serve as a useful

resource to inform practical infectious disease forecasting efforts. Overall, our results clearly

demonstrate potential benefits of accounting for reporting delay to improve forecast perfor-

mance. However, the best-performing methods require either high-quality data on historical

reporting mechanisms or strongly predictive proxies of validation case counts. Historical

reporting data are often not recorded or not publicly available for many commonly-studied

diseases. This motivates additional thinking about disease reporting infrastructure, particularly

as new initiatives are underway to expand reporting and forecasting capabilities at the US

national level [28].

This work focuses on the problem of handling reporting delay and defines the “true” case

rates we want to predict as the eventually-reported validation case rates. In reality, many dis-

eases may be poorly or incompletely captured by official reporting mechanisms [29], as plainly

demonstrated by the COVID-19 pandemic. Given estimates of the amount of reporting error

relative to the unobserved “true” case counts, the rescaling, mean model offset, and imputation

methods discussed in this paper can be applied. The challenge is then to estimate the amount

of reporting error, a discussion of which is beyond the scope of this work. Alternatively, this

problem can be handled in a sensitivity analysis framework, where we can compare the robust-

ness of our forecasts across multiple plausible assumptions about the amount of reporting

error relative to the “true” case counts. Additional work is needed to leverage multiple data

streams to inform estimation of reporting error when the target is defined as the never-

observed “true” case counts.

Supporting information

S1 Text. Supporting information 1: Figures and Tables. Fig A: Comparing initially reported
and validation case counts for Puerto Rico dengue fever and US national influenza-like illness.
In all plots, the highest (black) curve corresponds to validation case counts. The lowest (red)

curve corresponds to the cases initially reported (lag = 0). Fig B: Reported ILI cases in Vermont
for each calendar week in the 2017–2018 and 2018–2019 flu seasons. Data for Vermont ILI

cases were downloaded on June 13th, 2021. Lines correspond to the first 35 calendar weeks in

the corresponding flu season. Fig C: Estimated proportion of validation cases initially reported
by state using data from the 2018–2019 season and data from the previous two seasons. Data

were downloaded on June 13th, 2021. Results from the current season may be viewed as the

“truth” here, but data analysis and forecasting is conducted using estimates from the previous

two seasons (except for local lag-based estimation). Table A: Summary of key notation. Fig D:

Diagram of Multiple Imputation Algorithm. Fig E: Percent error between truncated normal
expectation and E(Nts(1)|Nts(d)). Fig F: Comparison of regression model estimates of πts(d)

from Eq 7 based on historical real-time case reporting and the observed values of πts(d) = Nts(d)/

Nts(1) for national US ILI and for dengue fever in Puerto Rico. Model-based estimates of πts(d)

are obtained by fitting the regression model in Eq. h in S1 Text. to historical reporting data,

excluding the most recent 16 weeks (ILI) or the most recent 6 weeks (dengue fever) from the

estimation. Values along the black line indicate model-based estimates of πts(d) that closely

align with observed values of πts(d). Fig G: Weighted interval scores of forecasts in the Puerto
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Rico dengue fever and national US influenza-like illness data across all weeks. Results for dengue

fever are aggregated across each of 50 weeks in 18 seasons (1992–2009). Results for US national

influenza are aggregated across 35 weeks in 8 seasons (2012–2018). The ensemble method cor-

responds to an equal-weight linear combination of all methods except validation data analysis.

Relative weighted interval scores (WIS) are calculated relative to the largest value in each col-

umn. Fig H: Boxplots of performance metrics across all weeks. Fig I: Relative accuracy (1/abso-
lute prediction error, scaled across methods) of 1 week ahead forecasts across rolling 5 week
window for US National ILI. Results based on absolute prediction error for 5 week rolling win-

dow centered at plotted week. Results for 35 weeks per season are shown. The black line repre-

sents observed validation case counts for each week. Fig J: Relative accuracy (1/absolute
prediction error, scaled across methods) of 1 week ahead forecasts across rolling 5 week window
for Puerto Rico dengue fever. Results based on absolute prediction error for 5 week rolling win-

dow centered at plotted week. Results for 50 weeks per season are shown. The black line repre-

sents observed validation case counts for each week. Fig K: Relative accuracy (1/absolute
prediction error, scaled across methods) of 1 week ahead forecasts across rolling 5 week window
for state-level ILI in 2018–2019 season. Results based on absolute prediction error for 3 week

rolling window centered at plotted week. Results for 35 weeks per state are shown. Fig L: State-
level ILI: Proportion of 50 weeks in which each of 7 methods performs best in terms of nowcasts
and 1-week forecast weighted interval scores (ARMA model). Results for US national influenza

are aggregated across 35 weeks in the 2018–2019 season. Florida is excluded from this analysis

due to lack of data. Fig M: Forecast bias and weighted interval scores for 3 weeks just before and
just after season peak and for 3 weeks surrounding the season minimum/valley. Results based on

aggregating nowcast and forecast performance for 3 weeks just before and 3 weeks just after

each season’s peak. Results also provided after aggregating 4 weeks before and after season

minimum/valley. For ILI, the season valley corresponds to the minimum case counts within

the first 35 weeks of the flu season. Fig N: Estimated πts(0) obtained from different lag estima-
tion methods for state-level ILI in the 2018–2019 flu season. Data were downloaded on June

13th, 2021. The local lag method used data from the previous 15 weeks to estimate the inverse

reporting factors. The standard lag method used data from the previous 2 seasons to estimate

the inverse reporting factors. Observed inverse reporting factors for each week are also plotted.

Fig O: Relative accuracy (1/absolute prediction error, scaled across methods) of 1 week ahead
forecasts for dengue fever using real-time or validation data for modeling. Results based on abso-

lute prediction error for 5 week rolling window centered at plotted week. Results for 50 weeks

per season are shown. The black line represents observed validation case counts for each week.

Fig P: Dengue fever data nowcasts and forecasts from ARMA and Inferno modeling of observed
data, compared to validation and initial case reports. Fig Q: Impact of K on estimated πts(0)

using local estimation in dengue fever and national US ILI data (ARMA model) Local estimates

for πts(d) are obtained using Eq 8. Fig R: Impact of local estimation K on nowcast/forecast errors
in dengue fever and national US ILI data using rescaling method (ARMA model). Results based

on aggregation across 50 weeks (dengue fever) or 35 weeks (influenza) across all seasons. Local

estimates for πts(d) are obtained using Eq 8. Fig S: Impact of K for local πts(d) estimation for
forecasting Vermont ILI in the 2018–2019 season (ARMA model). Results based on aggregation

across 35 weeks in the 2018–2019 season. Local estimates for πts(d) are obtained using Eq 8.

Fig T: Simulations: average absolute prediction error for nowcasts and 1 week forecasts by pro-
portion of initially-reported cases in simulated 2009 dengue fever data. Results aggregated across

50 weeks and 10 simulation replicates for each proportion. Fig U: Data Analysis: nowcast pre-
diction error in actual dengue fever data for 2009. All values represent differences between now-

cast and true validation values. The gray line corresponds to equality with validation data. Fig
V: Visualization of simulated dengue fever data. Fig W: Median forecast weighted interval scores
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in dengue fever simulated data (ARMA models, Scenarios 1–4). Results correspond to the 2009

simulated data and are aggregated across 100 simulated datasets and 50 weeks. Relative

weighted interval scores (WIS) are calculated relative to the largest value in each column.

Fig X: Forecast performance of exclusion method by proportion of initially-reported cases in den-
gue dever simulated data (ARMA models, Scenario 5). Results aggregated across 50 weeks and

10 simulation replicates for each season/proportion. Fig Y: Forecast performance of rescaling
method with reporting factors based on proxy shrinkage by proxy quality and proportion of ini-
tially-reported cases in dengue fever simulated data (ARMA models, Scenario 5). Results aggre-

gated across 50 weeks and 10 simulation replicates for each season/proportion. Fig Z: Average
nowcast and forecast biases and coverage of 95% confidence intervals for US ILI simulated data
(ARMA models, Scenarios 1–4). Results correspond to the 2018 flu season simulated data and

are aggregated across 100 simulated datasets and 35 weeks. Relative biases are calculated rela-

tive to the largest value in each column. Fig AA: Median forecast weighted interval score for US
ILI simulated data (ARMA models, Scenarios 1–4). Results correspond to the 2018 flu season

simulated data and are aggregated across 100 simulated datasets and 35 weeks. Relative

weighted interval scores (WIS) are calculated relative to the largest value in each column.

Fig BB: Average absolute error for 1 week forecasts, scaled by season peak case counts. Results

aggregated across 35 weeks and 10 simulation replicates for each season/proportion. Fig CC:

Forecast performance of rescaling method with reporting factors based on proxy shrinkage by
proxy quality and proportion of initially-reported cases in ILI simulated data (ARMA models,
Scenario 5). Results aggregated across 35 weeks and 10 simulation replicates for each season/

proportion.
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