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Abstract: Lightweight UAVs equipped with deep learning models have become a trend, which can
be deployed for automatic navigation in a wide range of civilian and military missions. However,
real-time applications usually need to process a large amount of image data, which leads to a
very large computational complexity and storage consumption, and restricts its deployment on
resource-constrained embedded edge devices. To reduce the computing requirements and storage
occupancy of the neural network model, we proposed the ensemble binarized DroNet (EBDN) model,
which implemented the reconstructed DroNet with the binarized and ensemble learning method,
so that the model size of DroNet was effectively compressed, and ensemble learning method was
used to overcome the defect of the poor performance of the low-precision network. Compared
to the original DroNet, EBDN saves more than 7 times of memory footprint with similar model
accuracy. Meanwhile, we also proposed a novel and high-efficiency hardware architecture to realize
the EBDN on the chip (EBDNoC) system, which perfectly realizes the mapping of an algorithm
model to hardware architecture. Compared to other solutions, the proposed architecture achieves
about 10.21 GOP/s/kLUTs resource efficiency and 208.1 GOP/s/W energy efficiency, while also
providing a good trade-off between model performance and resource utilization.

Keywords: autonomous navigation engine; binarized deep neural network; energy efficiency; paral-
lel computing; FPGA

1. Introduction

Over the past few years, deep convolutional neural networks (DCNNs) have been
extensively studied and applied due to their excellent performance [1], especially in the
challenging field of computer vision, such as image classification [2,3], object detection [4,5],
and instance segmentation [6,7]. Unfortunately, high computational cost and power con-
sumption severely restrict the deployment of large-scale DCNNs on embedded mobile
devices with limited resources and energy [8,9]. Therefore, more and more efforts focus
on how to reduce the memory footprint and computational complexity of the DCNN
models as much as possible while maintaining acceptable accuracy [10–12]. The research
of Reference [13] shows a tempting and extreme binarized quantization scheme, which
quantizes both weights and activations into 1-bit, and theoretically can reduce the model
size by 32 times and significantly decrease the execution time compared to their floating-
point counterparts.

Recently, many impressive works have been dedicated to the research of small au-
tonomous unmanned aerial vehicles (UAVs) system which was equipped with DCNN
models, aiming at making the UAVs avoid obstacles and drive autonomously in complex
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road environments (e.g., urban block), and remarkable results have been successfully
achieved [14–16]. For instance, DroNet [14] is a residual convolutional neural network
(CNN) which can predict the collision probability and control the flight angle of UAV.
Autonomous UAVs will make a great contribution to social logistics, which brings great
speed and convenience [17–20]. However, it is still a huge challenge to deploy large-scale
DCNNs on chip in real-time applications with high computational performance require-
ments, due to the closed-loop control system based on DCNNs has high memory footprint
and computational complexity [8]. Therefore, the DCNN based on binary spiking data
coding has become a very promising solution, which can meet the design requirements
of system on chip (SoC) in terms of lightweight, high energy efficiency, and inference
performance. However, the binarized DCNNs with 1-bit weights and activations suffer
from an unavoidable drop in the performance of accuracy owing to their weak ability of
feature extraction and representation. Moreover, there will have been a further decrease in
model accuracy because DCNNs that integrate control and vision computing have more
complex outputs.

While a series of methodologies to improve the model performance of binarized
DCNNs have recently been proposed in References [21–23]. Ensemble method [24] is a
good way to tackle the challenges mentioned above, and is inspired by Reference [22],
which discusses and compares the improvement of accuracy between a model in which
data representation has more bits and another one with more single-bit networks. Our
EBDN model considers aggregating several parallel reconstructed binarized DroNets to
improve the performance accuracy of UAV system comparing to a single binarized model
and it can simultaneously sense obstacles and control steering angle, which is very similar
to the biological control mechanism of the brain [25]. Meanwhile, this paper presents a
hardware architecture design of the ensemble binarized DroNet (EBDN) model for real-
time UAV autonomous navigation engine, which integrates the capacity of perception
and control. In addition, it is the novel approach developed for the deep neural network
acceleration via model compression for efficient FPGA implementation.

In this paper, a novel and efficient architecture is proposed to implement EBDN on
chip (EBDNoC) which is an extended version of our conference paper [26] that only verified
on MNIST small dataset. In summary, this paper makes the following new contributions:

• We propose an EBDN model, which overcomes the accuracy bottleneck of a single
network by integrating several binarized DroNets with ultra-low memory footprint,
and can dramatically speed up the inference process of the model when compared to
full precision neural networks. Moreover, the proposed method can be easily extended
to other CNN designs.

• For our proposed EBDNoC system, we design a dedicated on-chip hardware stream-
ing architecture with a fully pipelined data path and configurable degree of parallelism
for ensemble architectures.

• We also evaluate the performance of our proposed hardware architecture on FPGA
achieving comparable system throughput, energy and resource efficiency, while can
provide the trade-off between model performance and hardware resource.

More detailed information will be explained in the rest of this paper, which is orga-
nized as follows. Section 2 introduces the related work about QNNs and FPGAs. Section 3
describes the proposed EBDN model. We demonstrate the hardware architecture design
of EBDNoC in Section 4. Section 5 shows the comparable experiments and evaluations.
Conclusions will be given in Section 6.

2. Related Work
2.1. Quantized Neural Networks

The scale of DCNN models and the amount of parameters required are expanding,
which bring challenges to the deployment and application of deep neural network in the em-
bedded edge devices. In response to these situations, the quantized neural network (QNN)
methods can be useful for deep neural network acceleration and model compression.
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In order to compress DCNN models and represent features by low precision, Wu et al. [27]
proposed a quantization neural network architecture (Q-CNN) based on K-means clustering
algorithm, which achieved better quantization results by reducing the estimation error
of output response of each layer, and proposed an effective training scheme to suppress
the multi-layer cumulative error after quantization. Vanhoucke et al. [28] proposed 8-bit
fixed-point technology, by using the linear fixed-point method, the training speed of the
model is increased by 2.5 times on the premise of little impact on the accuracy of the
model. Gupta et al. [29] used stochastic rounding for network parameters, through 16-bit
fixed-point representation, which can reduce the memory and floating-point operation and
keep the classification accuracy. Dettmers [30] proposed an 8-bit approximation algorithm,
which compresses the gradient value and activation value represented by the 32-bit floating
point value to 8-bit, and reduced the error by dynamically determining the range of the
exponent and decimal places. The Dorefa-net proposed by Zhou et al. [31] used low-bit
gradients and activation values to train low-bit network connection weights, and realized
the quantization of connection weights, activation functions, and inverse gradients.

The above quantization works are based on multi-bits, and there is also another series
of methods on binary quantization neural networks which use only 1-bit in the inference
stage, such as BinaryConnect [23] and XNOR-Net [21]. The quantization weights of Bi-
naryConnect in the forward and backward of DCNNs used 1-bit fixed point instead of
32-bit floating-point. XNOR-Net provides an effective implementation of convolution
operation by reconstructing a full precision filter with a single scale factor. The inference
process of DCNNs they proposed allows hardware calculation to simplify multiplication
operations and accumulation operations into XNOR bitwise operations and SHIFT op-
erations. Although great progress has been made in binary neural network (BNN), it
still faces huge performance loss compared with the full precision network, especially for
lightweight networks.

2.2. DCNNs Deployed on FPGAs

Considering the DroNet inference stage, the traditional method [14] generally uses
wireless network for image transmission and remote control after the base station com-
pletes the calculation, which greatly reduces the reliability and imposes restrictions on
the maximum control distance. Therefore, Palossi et al. [16] proposed the deployment
method of DroNet on the GAP8 chip to implement the navigation engine on MCU, but its
parallelism is still not high enough and the computing efficiency is insufficient.

Recently, compared with CPU and GPU platform devices, FPGAs have become the
accelerators [32] at the edge side for deep learning tasks because of their high performance,
low power consumption, and reconfigurability. Song et al. [33] proposed a general purpose
accelerator that tames the diversity of CNNs through using kernel-partition method. In
terms of computing resources and transmission bandwidth aspects, Zhang et al. [34] pro-
posed a design space exploration technique to increase the system throughput. Lu et al. [35]
implemented a fast Winograd algorithm on FPGA, which can reduce the use of floating-
point resources and greatly decrease the complexity of convolution operations. The study
of Reference [36] proposed a specific hardware architecture to accelerate CNN dataflow,
which maximizes resource utilization while minimizing the data communication.

In order to store the parameters directly on the chip memory without bandwidth
restrictions, many studies aimed at accelerating binary neural networks are also pro-
posed [37–40], they directly quantized both the weights and the activations into {−1, 1},
and replace multiplier accumulator (MAC) computation with XNOR-Popcount operation.
FBNA architecture as the first fully binarized convolutional neural network accelerator
was proposed in Reference [41], in which all layers are binarized, even including the input
layer and padding.

In this work, we proposed the ensemble binarized DroNet (EBDN) model, which
aggregates several single-bit networks to ensure accuracy performance and saves storage
resources. The proposed circuit architecture of the EBDN model realized a high compu-
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tational performance and ultra-low power consumption, which get benefit from its fully
pipelined data structure and general-purpose parallelism design.

3. The Proposed Model

This section introduces the proposed network model, which is based on reconstructed
DroNet model and combines both the methods of binarized and ensemble learning. We
will describe the critical approaches separately.

3.1. Perception-Control Integrated Model

DroNet is introduced into our proposed EBDN model, which was initially presented
by Loquercio et al. [14] and whose essential network topology is a lightweight residual
CNN with two forked output layers. To realize autonomous visual navigation of UAV in
the complex urban environment, DroNet skillfully controls the forward velocity of the UAV
by collision probability of one output layer and utilizes steering coefficient of another layer
after low-pass filtering to command the UAV’ yaw angle in flight. Finally, a non-uniform
UAV system consists of a laptop that runs DroNet model and a commercial Parrot drone.
The bidirectional communication between the laptop and the drone was realized through
WIFI, which achieves wireless image transmission rate of 20 frames per second (FPS) from
drone to laptop and transmits the control commands after processing the image from
laptop to drone.

Our EBDN model is a perception-control integrated neural network based on DroNet,
with two residual blocks [42] and two separated fully-connected (FC) layers, as is shown in
Figure 1. Classification task for collision-avoidance and regression task for prediction of
desired steering angle share all the parameters of the entire network except for the final
outputs. Before the convolution (CONV) layer of each residual block, the input data will
be normalized based on the distribution characteristics of batch feature data by the batch
normalization (BN) operation [43], and then followed by a ReLU nonlinear function to
enhance the fitting ability of network [44]. Residual networks become easier to optimize by
adding shortcut connections, which have only a single residual convolutional (RCONV)
layer. To achieve visual navigation and avoid the collision risk in UAVs systems, as is
shown in Figure 2, two publicly available datasets Udacity (https://www.udacity.com/
self-driving-car, accessed on 25 March 2020) for autopilot and Collision (http://rpg.ifi.uzh.
ch/dronet.html, accessed on 25 March 2020) for collision prediction were used for training
our model.

Figure 1. Network topology of EBDN model, in which essential architecture is a 6-layer network with 2 residual blocks and
two separate fully-connected layers for judgement of steering angle and prediction of collision probability, respectively. The
f as indicated above is the pooling or convolution kernel’s size, and the s is the corresponding stride.

https://www.udacity.com/self-driving-car
https://www.udacity.com/self-driving-car
http://rpg.ifi.uzh.ch/dronet.html
http://rpg.ifi.uzh.ch/dronet.html
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Figure 2. The sky blue box contains Udacity images which uses to learn and control steering angles,
the orange box includes no-collision and corresponding collision frames which are collected to predict
the probability of collision.

The two outputs of EBDN model, collision probability pt and predicted coefficient of
steering ct, are, respectively, applied to adjust the forward velocity vt and steering angle θt
of UAV at the moment. The velocity constrained within [0, vmax] will gradually increase to
the maximum velocity with the decrease of collision probability. Furthermore, in order to
filter out noise and obtain a smooth and continuous velocity, the low-pass filter is adopted
into the approach which can be written as:

vt = α(1 − pt)vmax + (1 − α)vt−1. (1)

In fact, the predicted steering coefficient ct with a range [−1, 1] needs to be mapped to
the actual steering angle in a range [−π

2 , π
2 ] before it can be used to command the UAV,

which can be expressed as follows:

θt = β
π

2
ct + (1 − β)θt−1, (2)

where the default α and β are set to 0.7 and 0.5, respectively, and the maximum speed vmax
can be set according to the experimental road environment.

Mean square error (MSE) and binary cross entropy (BCE) loss functions were used
for training steering and collision prediction, respectively. However, simple superposition
between two kinds of loss during the training process will greatly affect the optimization
effect of training. Since the initial gradient of the regression task is much larger than that of
the classification task, the learning approach of EBDN model will pay more attention to
the loss of the classification task in the later stage of training, which can be represented by
the following:

Ltot = LMSE + max(0, 1 − exp−decay(epoch−epoch0))LBCE, (3)

where the default epoch0 and decay factor decay are, respectively, set to 10 and 1
10 in initial

stage, and the weight of MSE loss is always 1. Moreover, more adjusted training details
about EBDN are in Section 5.

3.2. Binarized Neural Network

Complex feature information can be extracted for difficult deep neural network tasks
owing to the large-scale DCNN. Nevertheless, the large-scale DCNN model has more diffi-
culty deploying on power-hungry and resource-limited embedded platforms due to the ex-
ponentially increasing resource requirements. Aiming at achieving high-performance and
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resource-efficient computing of perception-control integrated DCNN on the chip or edge
device, the binarized way for data representation is introduced to drive the EBDN network.

After binarized network, we can fully store all weights on chip memory, and then
convert −1 and 1 to 0 and 1 by affine transformation, respectively, which can convert
original MAC operations to hardware-friendly XNOR and Popcount operations, i.e., per-
forming bitwise XNOR between weights and inputs, and counting the number of 1 s in the
intermediate result after XNOR operation. The convolution of above-mentioned binarized
network with n input channels and m output channels can be defined as:

Ym =
n

∑
i=1

sign(xi)� sign(wi) + bm, (4)

where � indicates XNOR operation, xi and wi, respectively, are i-th feature map input and
associated weight, and bm is the neuron bias. The operation of batch normalization (BN)
and binarized activation function follows the CONV layer, and fact(Y) is the sign function
which is defined as:

Yact = fact(Y) = sign(Y) =
{

+1 Y ≥ 0
−1 Y < 0

. (5)

This means that we can realize the nonlinear activation in the hardware architecture
only by taking out the sign bits of intermediate results. The original definition of batch
normalization operation is as follows:

Ybn =
γ(i)
(

Ym − µ(i)
)

√[
σ(i)
]2

+ ε
+ β(i), (6)

where σ, µ denote standard deviation and moving mean value of each i-th mini-batch (i.e.,
CONV layer’s outputs), and the trainable parameters γ, β represent scaling and shifting
factor, which are used to adjust the variance of numerical distribution and the position of
numerical mean, respectively. To facilitate hardware implementation, we can combine BN
operation and activation, which can be expressed as:

Z = sign(Ybn) = sign
(

γ

(
Ym − µ

σ

)
+ β

)
, (7)

where the Ybn represents the output result of BN layer, according to Reference [39], and
Equation (7) can be equivalently transformed into the following expression:

Z = sign
(

γ

σ

(
Ym +

(
−µ +

σ

γ
β

)))
. (8)

In the inference phase, the γ and the σ constants parameters always keep positive, so
that we just need to calculate the integer bias (−µ + (σ/γ)β), which called BN bias. In this
way, we only need to use an adder to implement the BN and activation operations in the
hardware circuit design.

3.3. Ensemble Learning Method

Due to the ultra-low computational complexity and memory requirements, binarized
DCNNs have opened a new window for more embedded mobile devices to deploy the
large-scale deep learning models. However, the accuracy of the binarized DCNN with
1-bit weights and activations will be severely decreased owing to its weak representation
ability. In order to improve the performance of model accuracy, a binary ensemble neural
network (BENN) has been proposed in Reference [22], which aggregates multiple single-
bit binarized DCNNs using ensemble learning methods (e.g., bagging and boosting) to
achieve better performance than multi-bit quantization networks. BENN also significantly
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enhanced the inherent stability and robustness of the original weak binarized DCNN, which
was mainly reflected in the large fluctuation of training accuracy and model overfitting.

The bagging of ensemble method is introduced into our proposed model. The schematic
diagram of bagging-based EBDN model is illustrated in Figure 3. In order to follow bag-
ging’s bootstrapping principle [45], the M training samples of each EBDN model are
randomly sampled and replaced from the total training dataset D, which are assumed to
be an independent and identically distributed samples. After the independent training of
K, we can get K weak EBDN models. In the inference stage, we use two different voting
mechanisms, combined with the opinions of the k-EBDN model, to get the final prediction
results. One is soft voting, which obtains the best output after averaging the probabilities
of all predictive models, and the other is to select the labels with a majority of agreement
as the final result, called hard voting.

Figure 3. Schematic diagram of EBDN model. Each EBDN performs a separate training on each
sample set generated by the bagging method and finally fuses all outputs through an ensemble
mechanism to obtain the final results.

We evaluate the performance of bagging method on 64-128-128 binarized multilayer
perceptron (BMLP) for MNIST digital handwriting dataset, which is a three-layer fully
connected neural network, and then we compare two voting mechanisms with different
number of aggregated BMLPs in terms of model accuracy. As shown in Figure 4, The
prediction accuracy of the model using soft voting was higher than that of the hard voting
method. When BMLPs were aggregated from 1 to 8, the prediction accuracy increased from
95.5% to 97.7%. Nevertheless, our hardware architecture supports both hard voting and soft
voting to meet the various task requirements of different networks, such as classification
and regression.

Figure 4. The accuracy of 64-128-128 BMLP models on MNIST when we change the number of
aggregated BMLPs from 1 to 8.
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We combine the bagging and binarized methods on the DroNet to form a unique
EBDN model which is more suitable for deployment on edge devices, in which details of
performance analysis and evaluation will be described in Section 5. Two hardware-friendly
characteristics of the proposed EBDN model are as follows:

1. Compared to the original full-precision model, the EBDN model achieves a similar
accuracy on Udacity and Collision datasets with much less memory footprint, which
dramatically reduces the power consumption of the hardware. In addition, the
binarized method eliminates the original inefficient CONV operation and replaces it
with high energy-efficiency bitwise operation.

2. The flexible configurable number of subnetworks provides a trade-off between per-
formance and resources for on-chip implementations, and, in fact, our network is
suitable for many applications beyond the autonomous navigation of UAVs system
mentioned in this paper.

4. Hardware Architecture Design

This section presents the hardware architecture of EBDNoC, an innovative data-
stream-based fully pipelined circuit architecture for deploying ensemble networks. We will
address the key details of the proposed architecture.

4.1. Overall Architecture

The EBDNoC consists of several key components: two high-performance ARM Cortex-
A9 processors, a EBDNoC neural network co-processor and other peripherals, including
video direct memory access (VDMA) controller, off-chip memory system, and I/O periph-
erals. As shown in Figure 5, a Parallel pipeline-based architecture was used in EBDNoC
co-processor, which primarily consist of K independent EBDN pipelines (EBDNPs) and
a bagging processing element (PE). Each EBDNP performs the inference operation of
one EBDN model which is defined as a subnetwork of the ensemble system, the bagging
PE is responsible for aggregating the output results of K EBDNPs in the inference stage.
Considering resource utilization and power consumption, we implemented the bagging
method by integrating multiple parallel EBDNPs rather than reusing one EBDNP, which
can load the parameters of different EBDN models from the block RAM (BRAM) memory
at each inference phase, and it calculates the final outputs after each EBDN’s inferences
are completed.

Figure 5. The overall architecture of EBDNoC, which mainly consists of two ARM cores, a neural
network co-processor, and other peripherals. EBDNoC co-processor uses several Parallel pipelines to
complete the ensemble calculation of the EBDN model. The bagging PE is in charge of aggregating
the parallel outputs of EBDNPs.
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Each EBDNP has several computing arrays (CAs) cascaded through multiple PEs.
Every CA is dedicated to the computation of corresponding macro-layer of EBDN model,
commonly including CONV, BN, non-linear activation, and pooling operations. The
residual computing arrays (RCAs) implement the inference of RCONV layer on the bypass
of EBDN with the same circuit architecture as CA. ARM processor is used to flexibly
configure the architecture of all CAs and control them through the Advanced eXtensible
Interface (AXI) BUS. Benefiting from the low memory footprint of the EBDN model, all the
parameters and intermediate results of the EBDN model are stored in the on-chip memory,
which can eliminate the access bandwidth limitations of off-chip memory, greatly save
power consumption, and improve system throughput.

Moreover, the I/O peripherals (e.g., controller area network (CAN) or universal
asynchronous receiver/transmitter (UART)) mounted on the AXI BUS can build a EBDNoC
prototype system, such as autonomous navigation UAV application. When the EBDNoC
system is applied to image related tasks, it is controlled by ARM CPU and utilizes the video
direct memory access (VDMA) IP core to complete high-speed and stable frame buffer,
which is used to process image data transmission between the off-chip memory with very
large capacity and the EBDNoC co-processor to improve the work efficiency of system.

4.2. Computing Array

The internal block diagram of CA is illustrated in Figure 6. All sub-modules adopt fully
pipelined data path organization to reduce path delay and improve processing throughput.
Meanwhile, we have implemented universality and configurability for the designs of our
accelerator, which is controlled by the controller connected to the AXI BUS in each layer’s
calculation. Different processing elements load the input feature maps (ifmaps) from the
feature map buffer of last layer in a ping-pong way, and then compute the output feature
maps (ofmaps) for each independent channel, and finally write the intermediate results
to the feature map buffer for the next layer calculation. The most critical component of
CA is P highly paralleled PE units, which are in charge of the computation of CONV and
FC layer of EBDN model. The CA has several parts: convolution data cache (CDC) unit,
CONV unit, and BAP (batch normalization, activation, and pooling) unit. We will reuse P
PEs for multi-channel CONV computation, assuming that the CONV output channel of

a macro-layer is Cout, and then
Cout

P
computations are needed to get all the intermediate

feature maps.

Figure 6. The block diagram of computing arrays, which consist of CDC unit, CONV unit, and BAP unit. The CDC unit is
applied to cache input feature maps from last layer and generate convolution calculation data, CONV unit is responsible for
convolution operation, the operations of batch normalization, activation, and pooling are performed in BAP unit.

4.2.1. Convolution Data Cache

The CDC unit is used to buffer the input data and generate the calculation data
required by the subsequent CONV unit, which is composed of Nin shift register buffer
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corresponding to the channels of ifmaps and each buffer contains sequential F rows of
length Rin. To increase reconfigurability of the CDC unit, both Nin and F are designed as
configurable parameters, and the parameter Rin can also be configured according to the
ifmap size of each layer. F represents the convolution kernel’s size; therefore, a streaming
structure is used to push the pixel data into the register buffer of every clock, and, after the
F rows of ifmaps arrives, we can send the data to the CONV unit every clock. For another,
if the architecture is not streaming, we can also load F rows of ifmaps from the feature
map buffer per clock. In this case, we can further increase Rin to improve the bandwidth
of system at the expense of a few register resources. For example, we can set the Rin to
56 when F is 3 and the size of ifmap is 28 × 28; in the first cycle, the ifmaps’ first six lines
are required to calculate ofmaps’ first four lines so that it increases the bandwidth twice
as much as when Rin is 28. For FC layer, we only need to flatten register buffers into a
one-dimensional vector and feed it into the CONV unit.

4.2.2. CONV Unit

To accommodate different quantization bits convolution calculation, the CONV unit
is composed of BCONV unit and MCONV unit, which are responsible for the convolution
operation of single bit and multi bit, respectively. The BCONV unit maps the original
MAC operations of convolution to XNOR and Popcount operation. Figure 7 illustrates the
structure of XNOR-Popcount module and the detailed logic implementation of Popcount-
36 submodule. The cached data and weights are firstly computed by the XNOR gate array
and sliced up several vectors of length 36, or maybe 25 for first layer because the size of
convolution kernel is 5, and then followed by Popcount-36 array in which each Popcount-
36 module calculates the Popcount value of an intermediate vector. The Popcount-36
operation depends on the 6-input 3-output look-up tables (LUTs) to make sufficient use
of FPGA device resources at utmost. A Popcount-36 module consists of 6 LUTs, each of
which performs a Popcount operation of a subvector of length 6. Subsequently, the value
of each bit is calculated separately by the LUT similarly, and the weighted sum is obtained
according to the bit weights by shifters and adder. It’s obvious that the vector length of
the XNOR-Popcount module will be Lxp = Nin × F2 in the best case, which means that
a PE can handle all the channels’ CONV windows of the previous layer at once. After
the XNOR-Popcount operations, the intermediate results are send to the following shifter
and accumulator. An accumulator is required for arbitrary network model because of PE
cannot always complete the calculation at once for some networks which have the feature
map with a large number of channels.

Figure 7. The overall architecture of XNOR-Popcount computing circuit unit, and the right purple
block represents its internal architecture of Popcount-36(25) submodule.
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In addition, the PE with shifter and accumulator can meet the requirements of multi
bit calculation, for example, the quantization precision of some layers is more than 1 bit,
and the shifter can realize N shifts according to the binary bit weight to achieve the
function of multiplier. The last operation is to send the previous results into the adder tree
for accumulation.

4.2.3. BAP Unit

The BN operation is accomplished by multiplier factor and integer addition, and,
although we still utilize multipliers to achieve the multiplication between the factor α and
previous result, we improve the reusability of PEs of each layer as much as possible, so that
the multipliers remain at a low level. The binarized and ReLu activation can be selected
by Ac_en signal according to the quantized bit. Then, the activation outputs flow into the
Pooling unit, and it has a data cache module similar to the CDC unit, which is used to
generate feature window data for pooling operations. It is noteworthy that the BAP unit
can convert the max-pooling operation into a boolean OR operation when the activation
value is only 0 or 1.

4.3. Memory System Design
4.3.1. Quantization Strategy

A hybrid quantization strategy over all parameters we execute in EBDN model is
given in Table 1 after we analyzed the training and feedforward process of its network. We
choose a fixed representation Q = (BI,BF), using BI bits stand for the integer part, including
sign bit and BF bits for the fractional part. 1-bit quantization method are implemented in
the backbone network except for the first and last layer, and the RCONV layers, which
can maintain the performance of the model with extra negligible resource and memory
costs, because these layers have comparatively low computational and storage complexity.
We only applied bias in the last two FC layers since we found that the bias term of
CONV operation had almost no effect on model accuracy. Although there are many
quantization layers over 1-bit, our hybrid quantization strategy still limits our model size
to a dramatically small memory space, just 0.02 MB.

Table 1. Quantization strategy for all parameters of each layer on EBDN model.

Layer Weight Activation CONV Bias BN Bias Multiplier
Factor

Mem.parameters
(bits)

1 (CONV) (0, 8) (8, 0) (0, 0) - - 6400
2 (CONV) (1, 0) (1, 0) (0, 0) (16, 0) (16, 0) 10,240
3 (CONV) (1, 0) (1, 0) (0, 0) (16, 0) (16, 0) 10,240

3 (RCONV) (0, 8) (8, 0) (0, 0) - - 8192
4 (CONV) (1, 0) (1, 0) (0, 0) (16, 0) (16, 0) 19,456
5 (CONV) (1, 0) (1, 0) (0, 0) (16, 0) (16, 0) 38,912

5 (RCONV) (0, 8) (8, 0) (0, 0) - - 16,384
6 (FC) (0, 8) (8, 0) (0, 8) - - 25,096
6 (FC) (0, 8) (8, 0) (0, 8) - - 25,096
Total - - - - - 0.02 (MB)

4.3.2. Feature Map Buffer

Due to the PEs’ reuse of each CA, we must store the output feature maps of the
previous layer for the CA module of the next layer to read repeatedly. As shown in
Figure 8, the double-buffered mechanism is adopted in the storage architecture of feature
map buffer (FMB), which can make the latter CA module read the feature maps like a
pipeline operation to improve system processing speed. Inspired by Reference [41], we
apply the odd-even padding operation by initializing the cache to corresponding value
(±1) when the system is initialized because, compared with zero-padding, it can improve
the performance of the model to a certain extent. Then, in the write phase, we only need to
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write the data one by one to the real feature maps area of cache specified by the controller,
and the read address starts at 0 in the read phase. For example, when the size of the
output feature maps requires 5 and the input feature size is 3, we need to have a padding
operation with ±1 value around the input feature maps, and the initial read address and
write address are 0 and 6, respectively.

Figure 8. The structure of feature map buffer. The w_bu f _sel and r_bu f _sel signals are the choice
signals for the write buffer and the read buffer, respectively.

4.3.3. Memory Organization for Weights

All network parameters are stored in on-chip memory to eliminate the bandwidth
limitations of external memory access, benefiting from the low memory footprint of the
proposed EBDN model. Separate block RAM (BRAM) on the Xilinx ZYNQ device is used
to store the CONV weights of each macro layer, while distributed RAM (DRAM) is used to
store other parameters that take up less space, such as BN bias and multiplier factor. The
width of each CONV weights memory block is equal to the sum of the P parallel PE widths
of the current macro-layer (i.e., Lxp × P), and the depth is equal to the number of cyclic

computations
Cout

P
, which is mainly to extract multiple PE parameters with one clock to

improve computing efficiency and processing speed. The organization of other parameters
memory is similar.

4.4. Bagging PE

Figure 9 shows the hardware architecture of the bagging processing element (PE),
which consists of soft voting (SV) unit and hard voting (HV) unit. The SV unit is respon-
sible for computing the parallel outputs of steering angle from these CA modules, and
it calculates the average value of steering angle after K accumulations. Meanwhile, we
can allocate weights to each output according to the performance of each EBDN model, to
obtain a better performance of the final result.

The HV unit performs the counting operation on the collision probability output of
the EBDN model belonging to 0 or 1. In particular, to avoid all models with the same
voting rights, the input of the accumulator has the weight we assign to each EBDN model
based on its performance rather than 1. Finally, the weighted output is compared with the
0.5 threshold to get the final collision probability output.
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Figure 9. The hardware architecture design of bagging PE.

5. Experiments and Results

In this section, the evaluation experiments can be divided into three parts. Firstly, we
evaluate the performance of the EBDN model compared with other networks and then
make a comparison between FPGA implementation and CPU, GPU platforms. Finally,
we discuss and evaluate the efficiency of hardware architecture implemented on Xilinx
Zynq 7Z100 FPGA device (Xilinx, San Jose, CA, USA), including throughput, resource
utilization, and power consumption by testing and simulating on Vivado-2017 (Xilinx, San
Jose, CA, USA).

5.1. Evaluation of EBDN Model

The bagging method was used to train and test the ensemble binarized DroNet on
a publicly available dataset; it combines the Udacity’s dataset and the collected images
which are associated with the collision probability according to the distance from the
obstacles. The binarized neural network computing the gradient by floating-point value
in the training process while binary value in the feedforward process, which leads to the
slow convergence speed of loss function. Therefore, we improve the number of epochs for
training from 100 to 200. Besides, to match the new training epochs, the initial decayed
epoch epoch0 and decay factor decay of BCE term’s weight in the mixed loss function that
be expressed as Equation (3) were set as 20 and 1

20 , respectively.
Referring to Reference [46], we adopted Adam optimizer, in which the initial learning

rate is 1−3 and the learning rate decay per epoch was set as 1−5. Based on these training
settings and environments, multiple subnetworks are independently trained, and then were
integrated the output of all subnetworks into one. We evaluated the steering regression task

using explained variance ratio (EVA = 1 − Var[yture−ypred ]

Var[yture ]
) (EVA) and root-mean-squared

error (RMSE) metrics, and the collision prediction task using average accuracy and F-1
score (F − 1 = 2 × precision×recall

precision+recall ).
In addition to the binarized and ensemble methods, several details about network

structure differ between the EBDN model and the original DroNet. The first difference is
that we put the activation function after the CONV layer instead of before it, according
to the rearrangement for binarized network’s macro-layer proposed in Reference [23].
Secondly, through comparative experiments, it is found that there are a large number of
weights close to 0 in the third residual block convolution layers of DroNet. The sparsity
of network will bring a small amount of network performance improvement, but with
the doubling of the amount of computation, so the residual layer is removed in order to
reduce hardware memory costs. The third is that we replace the original input image size
of 200 × 200 with 100 × 100, which is convenient for unified implementation and hardly
sacrifices the model accuracy.
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Figure 10 shows the variation in the performance measurements of the EBDN model
with the increasing number of aggregated weak subnetworks. Steering regression task is
very difficult for low precision network model, but, with the help of ensemble learning
technology, the performance of a single low precision network can still be improved very
effectively. For the collision prediction task (i.e., classification task), we can clearly see
that there is also a very significant improvement on both average accuracy and F-1 score
metrics. In fact, as shown in Figure 10, the performance of regression task gains tend to
level off when there are more than two subnetworks, which gives us a better trade-off
between performance and resource consumption; thus, we can achieve a appreciable and
practicable performance with only a few subnetworks.

Figure 10. The performance of EBDN model variation as the number of aggregated subnetworks
from 1 to 8. (a) EVA metric; (b) RMSE metric; (c) classification accuracy; (d) F-1 score.

As shown in Table 2, we compared our design with some classic models on model
accuracy, memory footprint and inference speed. To ResNet-50 model [42], although the
accuracy is better than all designs, our model achieves 41 times FPS and about 620 times
lower cost of memory, its large memory footprint severely limits its deployment on embed-
ded devices. Compared with VGG-16 [47], we achieve better performance about 24 times
FPS and 179 times lower memory. For Giusti et al. [48], our design gets 12 times FPS
and much better accuracy with less usage in memory footprint. Moreover, too low model
performance can be very dangerous in real-time applications of UAVs. We only use 13%
memory cost and achieve 14 times FPS and the similar accuracy with original DroNet [14].
All of the models mentioned above use the precision of 32-bit floating-point, while we have
quantified our model in a hybrid approach of 1-bit and 8-bit for the hardware acceleration
of EBDN model with low cost and high efficiency, so that our design can be easily applied
to embedded devices. PULP-DroNet [15] is implemented with GAP8 SoC platform that has
slightly higher performance. Compared with it, our design only uses quarter memory and
get 16 times FPS, which shows the better potential in more complex scenarios with high
demand for real-time computing capability. Overall, the proposed EBDN model hardly
loses accuracy, while performance and memory cost are better than other models.
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Table 2. Comparison with other full precision models on performance of steering regression task and
collision prediction task.

Model [48] [42] [47] [14] [15] EBDN (Ours)

EVA 0.672 0.795 0.712 0.737 0.748 0.712
RMSE 0.125 0.097 0.119 0.109 0.111 0.114

Avg. accuracy 91.2% 96.6% 92.7% 95.4% 95.9% 95.6%
F-1 score 0.823 0.921 0.847 0.901 0.902 0.900

Num. Layers 6 50 16 8 8 6
Memory (MB) 0.221 99.182 28.610 1.221 0.610 0.16

Precision 32-bit 32-bit 32-bit 32-bit 16-bit 1-bit, 8-bit
Speed (FPS) 23 7 12 20 18 285

Device Intel
Core i7

Intel
Core i7

Intel
Core i7

Intel
Core i7 GAP8 SoC Zynq 7Z100

5.2. Comparison with CPU and GPU

In this subsection, we have achieved 285 frames/s on FPGA device with very low
resource consumption to meet the needs of real-time applications and make a comparison
between FPGA platform and three general platforms, including Intel Xeon Platinum
8269CY, Nvidia GTX2080 Ti, and Nvidia Jetson TX2. Both CPU and GPU evaluate the
performance of DroNet with 32-bit floating-point precision on PC. The power consumption
of the CPU comes from the Thermal Design Power (TDP) parameter on the data sheet, the
GPU’s power is reported by nvidia-smi command, and then the power of TX2 and FPGA
are obtained from on-board testing. We use FPS (frame/s) and FPS per watt (FPS/W) to
represent the computing efficiency and energy efficiency, respectively. As shown in Table 3,
our design gets a better performance of FPS about 9 times, and over 200 times lower power
efficiency than CPU. For GPU platforms, although they achieved high FPS better than CPU,
their computing energy efficiency is not efficient enough compared to FPGA.

Table 3. Comparison with CPU and GPU platforms.

Device Intel Xeon
Platinum 8269CY

Nvidia
GTX2080 Ti

Nvidia
Jetson TX2 Zynq 7Z100

Technology 14 nm 12 nm 16 nm 28 nm
Clock Freq. (MHz) 2.5 K 1.35 K 1.3 K 100

Precision 32 bits float 32 bits float 32 bits float 1 bit, 8 bits fixed
FPS (frame/s) 32.2 167.1 56.8 285.3

Speedup 1.0× 5.19× 1.76× 8.86×
Power (W) 205 53 4.56 6.48

Energy efficiency (FPS/W) 0.16 3.15 12.46 44.03

5.3. Performance of Hardware Architecture

To evaluate the performance of our proposed hardware architecture design, the com-
parison between different scale CNN hardware implementations and the proposed design
is shown in Table 4. We choose different CNN hardware designs from different CNN mod-
els, input image sizes and quantization strategies, and the selected small-scale networks
in Reference [49] have only small input feature size (32 × 32), which can take advantage
of low-precision design, such as 1-bit, to reduce storage resources consumption and im-
prove system throughput. Therefore, most of the previous FPGA designs of binary neural
network accelerators were limited to using very small data sets for verification, such as
MNIST or Cifar-10. For large-scale deep network FPGA implementations [35,50,51], they
choose to quantize the precision to 8 or 16 bits to ensure the accuracy of network. In this
paper, the backbone of EBDN model is quantized using 1-bit weight and activation, and the
input-output layer uses 8-bit precision. Then, we have analyzed the performance of EBDN
model, which aggregated two subnetworks, because the system can achieve an excellent
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balance between model performance and hardware resource utilization, and the resource
consumption is also a linear multiple of single subnetwork.

Table 4. Performance comparison of the proposed design with other previous CNN hardware architecture designs.

Zhao [49] Cho [40] Zhang [50] Lu [35] Li [51] Ours

FPGA Device XC7Z020 XCZU7EV XC7Z035 ZCU102 XC7Z100 XC7Z100
Frequency (MHz) 143 371 200 200 200 200

LUTs 46.9 K 4.8 K 82 K 600 K 136.9 K 43 K
DSPs 3 2 192 2520 1152 12

BRAMs N/A 89 369 1824 912 286
Image Size 32 × 32 224 × 224 1024 × 1024 224 × 224 416×416 100 × 100

CNN Model Cifar10 VGG-16 YOLOv2 Alexnet VGG-16 EBDN
Precision 1-bit, 2-bit 1-bit 8-bit 16-bit 16-bit 1-bit, 8-bit

Throughput
(GOPS) 207.8 177.68 111.5 854.6 452.8 439.1

Power (W) 4.7 0.711 5.96 23.6 19.52 2.11
Resource efficiency

(GOPS/kLUTs) 4.43 37.02 1.36 1.424 3.31 10.21

Power efficiency
(GOPS/W) 44.2 250 18.71 36.2 23.20 208.1

As presented in Table 4, the proposed design gets the performance of 439.1 average
GOPS throughput with 208.1 GOPS/W energy efficiency. Compared to Reference [40],
despite the large-scale network structure and binarized CNN architecture design, the
throughput is still lower than our implementation; meanwhile, the BNN structure design
of Reference [40] cannot support the other deep networks due to its weak scalability.
Next, we further compare with the multi-bit quantization deep networks. In terms of
References [35,50], its throughput outperforms the proposed design at the expense of the
huge consumption of LUT resources. The research in Reference [35], whose hardware
design is implemented by the Winograd algorithm, achieves 1.9 times throughput better
performance than the proposed design result in the highest LUTs consumption and lower
resource efficiency. The frequent off-chip memory access of the large-scale design in
References [35,50,51] is the bottleneck of their design optimization, which are greatly
limited by transmission bandwidth. Furthermore, the 8-bit and 16-bit precision designs
consume much more DSPs than our proposed design in this paper.

Therefore, the proposed hardware architecture achieves comparable resource effi-
ciency and energy efficiency performance owing to the novel ensemble binarized design
and fully pipelined data path optimization. Meanwhile, the proposed design can provide
a good trade-off between model performance and hardware resources by configuring
parallelism or aggregating different number of subnetworks, which can be easily extended
to other CNN structure.

6. Conclusions

This paper proposed the EBDN model, which is a perception-control integrated deep
binarized DroNet model with a high energy efficiency and low hardware resource cost
for visual navigation of UAV application. With the addition of binarized and ensemble
learning methods, our algorithm methodology can not only bring the low storage and
computational complexity but also overcome the challenge of poor performance of the
low-precision model. The proposed EBDN model saves more than 13% of the memory
footprint while achieving comparable performance with other state of the art models.

Aiming at the EBDN model, we proposed a high energy-efficiency and low-cost
data-flow-driven hardware streaming architecture with high performance full-pipelined
design on EBDNoC system, and implemented the prototype system of hardware design on
Xilinx Zynq 7Z100 FPGA device with medium-scale resources. The proposed hardware
design achieved area-efficiency and energy-efficiency of about 10.21 GOPS/kLUTs and



Sensors 2021, 21, 3407 17 of 19

208.1 GOPS/W, respectively. Although our processor does not achieve the highest perfor-
mance term, our hardware design can provide a trade-off between system throughput and
resource consumption by setting different PE parallelism of each layer and configuring
different number of subnetworks. Our future work will focus on multi-sensor-based and
multi-channel visual navigation and diversified driving control model to fully utilize the
system throughput of hardware architecture, and the reconfigurable design of network
topology on hardware implementation.
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