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Abstract: Schistosomiasis is the most important helminthiasis worldwide in terms of morbidity and
mortality. Most of the infections occurs in Africa, which about two thirds are caused by Schistosoma
haematobium. The infection with S. haematobium is considered carcinogenic leading to squamous cell
carcinoma (SCC) and urothelial carcinoma of the urinary bladder. Additionally, it is responsible for
female genital schistosomiasis leading to infertility and higher risk of human immunodeficiency virus
(HIV) transmission. Remarkably, a recent outbreak in Corsica (France) drew attention to its potential
re-mergence in Southern Europe. Thus far, little is known related to host-parasite interactions that
trigger carcinogenesis. However, recent studies have opened new avenues to understand mechanisms
on how the parasite infection can lead cancer and other associated pathologies. Here, we present
a historical perspective of schistosomiasis, and review the infection-associated pathologies and
studies on host–parasite interactions that unveil tentative mechanisms underlying schistosomiasis-
associated carcinogenesis.
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1. Introduction

Schistosomiasis or Bilharziosis is a neglected tropical disease (NTDs) caused by di-
genean parasites of genus Schistosoma. These metazoan parasites belong to the Phylum
Platyhelminthes, Class Trematoda, and the genus Schistosoma includes five species infecting
humans: Schistosoma haematobium [1], Schistosoma mansoni [2], Schistosoma japonicum [3],
Schistosoma intercalatum [4], and Schistosoma mekongi [5]. The German pathologist Theodor
Bilharz was the first to describe the parasite in 1851 [1]. In the course of post-mortem
examinations carried out on Egyptian soldiers in Cairo, he described a putative parasite
responsible for injuries in a letter to his mentor in Germany appointing them to the genus
Distomum. In 1858, Weinland [6], remarking substantial and distinct differences between
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the novel parasite and the species of the genus Distomum, proposed a new genus: Schisto-
soma (from Greek schistos = split and soma = body). In honour to Theodor Bilharz, Cobbold
in 1859 [7], proposed the amendment of the genus Schistosoma for Bilharzia. The name
schistosomiasis prevails nowadays despite the frequent references to the disease as bil-
harziasis, in French and Portuguese medical literature. During the same year, Harley
and Cobbold reported that the human infection occurred percutaneously [7,8]. Manson
in 1902 [9], suggested the existence of two distinct species of Schistosoma and few years
later, in 1908, schistosomiasis was detected for the first time in Brazil. The great con-
tribution of Pirajá da Silva was the identification of two distinct species S. haematobium
and S. mansoni [10]. The infections with these two species were finally established by
Leiper in 1915 [11] who determined that the life cycle of the parasite included a freshwater
snail as intermediate host. Concomitantly, in Asia, the rash of Kabure or the Katayama
syndrome had been described in 1847, in a village near Hiroshima, in Japan. However, S.
japonicum was only described in 1904, following the Katsurada incident [3]. Fujinamie and
Nakamura in 1909 [12], studied the route of transmission of this species in the vertebrate
host, exposing dogs and cats in the rice fields where human cases had been described.
Subsequently, eggs were observed in faeces of those animals and when necropsied, 40 days
after infection, adult worms were collected from the mesenteric veins of the portal system,
confirming the presence of the parasite. S. japonicum has historically been described as
the only zoonotic species of the genus Schistosoma [13]. However, recent findings have
confirmed natural hybridization occurring in the human host among different schistosome
species, including S. haematobium, S. bovis, and S. curassoni, with the latter two being agents
of intestinal schistosomiasis in cows, sheep, and goats [14]. Moreover, evidence show that
hybrid schistosomes are responsible for the recent schistosomiasis outbreak in Corsica [15].

During the Napoleonic invasion of Egypt, 1799–1801, French troops become infected
by S. haematobium. French military physicians attributed the haematuria to the sweating
and climate of Egypt, or as the “revenge of the Pharaohs”. During World War II, more than
1300 American soldiers become infected by S. japonicum during the invasion of Leyte in
the Philippines. A few years later, during the preparatory military training for the invasion
of Taiwan, executed in the Yangtze River basin, soldiers of the People’s Republic of China
Red Army were exposed to S. japonicum. Many soldiers had developed Katayama fever,
an occurrence that prompted the postponement of the planned amphibious assault on
the island [16].

In the 1970s, Praziquantel (PZQ) was developed by Bayer [17,18], a pyrazino-
isoquinoline derivative that displayed a powerful activity against parasitic flatworms,
including schistosomes. Even though it has been more than 40 years since its development,
PZQ continues to be the key drug against schistosomiasis. During the first decades of
the 21st century, mass drug administration (MDA) programmes against schistosomiasis
that rely on PZQ were launched in endemic regions in Africa, Latin America, and the Mid-
dle East [19,20]. For instance, in 2018 alone, ~235 million people received PZQ tablets [21].
Consequently, the global disease burden has dropped. However, the long-term efficacy
for optimal morbidity control or transmission elimination by MDA approaches is still
controversial, in particular in regions where people live under deficient or non-existent
sanitation conditions and are constantly exposed to the parasite. Moreover, reliance on
only a few drugs, and their mass-administration is likely to drive the development of drug
resistance [22]. Nowadays, more than 90% of the cases of schistosomiasis occur in Africa,
two-thirds of which are caused by Schistosoma haematobium [23–25]. Indeed, the actual num-
ber of cases of urogenital schistosomiasis (UGS) may far exceed that previously predicted.
Moreover, female genital schistosomiasis increases the risk of human immunodeficiency
virus (HIV) transmission [26–28] and a recent outbreak of urogenital schistosomiasis in
Corsica confirms its re-emergence in Europe [29,30]. In addition to directly damaging devel-
opment, health and prosperity of infected populations, the chronic infection with S. haema-
tobium eventually leads to squamous cell carcinoma (SCC) of the urinary bladder [31].
Thus far, little is known about the interaction host-parasite that triggers carcinogenesis.
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In 2009 schistosome species moved into the post-genomic era, as the first draft
genomes for S. mansoni and S. japonicum were published [32,33], and a few years later
the S. haematobium genome was released [34]. In the last decade, a remarkable functional
technology development has occurred, from culture system refinements [35,36], the use of
functional tools, such as transgenesis and genome editing [37–40], to single cell transcrip-
tomics [41], has accelerated the discovery of targets for novel control strategies

2. Urogenital Schistosomiasis: Pathogenesis and Cancer

Urogenital schistosomiasis (UGS) is caused by egg-laying S. haematobium worms
dwelling within the veins draining the main pelvic organs, including the bladder, uterus,
and cervix. The infectious stage of parasite, larvae cercariae that emerge from freshwater
snails infect humans through direct skin penetration. The worms migrate into the circu-
lation, mature and lodge within the venous plexus of the bladder, where they reproduce,
and females release up to 3000 eggs per day. Only half of these eggs are excreted in the urine
to propagate the parasite’s life cycle, whereas the remaining eggs become entrapped within
capillary beds of the pelvic end organs, especially in the bladder, ureters, and genital tract.
UGS is characterized by chronic immune mediated disease. The continuous inflamma-
tory reaction to the eggs leads to parenchymal tissue destruction, inflammation, fibrosis,
granulomata, and ultimately to fibrotic nodules termed sandy patches (Figure 1) [42].
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Figure 1. (A) Cystoscopy view of the posterior bladder mucosa with UGS lesions, granulomas, ulcers
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and SCC of the bladder (expression of sialyl-Lea).

The lesions induced by the entrapped eggs lead to bladder and ureteral inflammation
and hematuria in >50% of cases, in addition to organ deformities such as narrowing of
the ureters. Secondary urinary tract and renal infections, hydronephrosis, and ultimately
renal failure were observed in millions of people [42]. Importantly, bladder cancer is a
frequent and dire complication of chronic UGS. The incidence of SCC associated to UGS
is estimated in 3–4 cases per 100,000 [43]. Untreated patients often develop schistosome-
related bladder cancer. The tumors are found in a relatively younger age group, commonly
present as well differentiated SCC locally advanced and have poor overall survival [44,45].
The severity and frequency of UGS sequelae are related to the intensity and duration
of the infection [46–48]. Genetic alterations, chromosomal aberrations, and cytological
changes have been described in carcinomas associated with UGS [42,46,49]. N-nitroso
compounds have been implicated as tentative etiologic agents in the process of bladder
carcinogenesis [50]. Elevated levels of DNA alkylation damage in carcinomas associated
with UGS and a high frequency of G to A transitions in the H-ras gene and in the CpG se-
quences of the p53 tumor suppressor gene have also been reported [46,48]. These outcomes
indicate that UGS-associated SCC arises through a progressive accumulation of genetic
changes in epithelial cells. Positive correlation between UGS and increased the levels
of oxidative stress accompanied by continuous DNA damage and repair in urothelial
carcinomas has been observed by several groups [51–53]. More recently, we have shown
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that schistosome eggs co-cultured with informative human cell lines promote proliferation
of the urothelial cells (HCV29 cell line) but inhibit cholangiocytes (H69 cells). Moreover,
the TP53 pathway was significantly downregulated, and the estrogen receptor was pre-
dicted to be downregulated in urothelial cells exposed only to S. haematobium but not
S. mansoni eggs [54].

3. Evidence of Chemical Carcinogenesis as Initiator of Bladder Carcinogenesis
Associated with Urogenital Schistosomiasis

An oestrogen-DNA adduct mediated pathway in UGS-associated bladder cancer
has been postulated [52,55–57]. S. haematobium eggs and adult worm lysates stimulate
cellular proliferation, interfere with apoptosis, increase oxidative stress, and induce a
genotoxicity on HCV-29 cells, derived from urothelial cells [52,58,59]. In addition, we
have identified and characterized oestrogen-like metabolites in the lysates and secretions
of S. haematobium worms and eggs [58], and in sera and urine of UGS cases [52,56,58].
Remarkably, the downregulation of the oestrogen receptor predicted to occur in urothelial
cells exposed to live eggs seem to have been species-specific, i.e., only S. haematobium eggs
induced this effect in cells, but not the S. mansoni eggs [54].

Inspired by the chemical carcinogenesis phenomenon described for several types of
cancer [60], we have hypothesized that reactive metabolites derived from schistosomes
might be involved in the SCC carcinogenesis associated to UGS [55,57]. Hydroxylation of es-
trogens forms the 2- and 4-catechol estrogens involved in further oxidation to semiquinones
and quinones, including the formation of the catechol estrogen-3,4-quinones, and the major
carcinogenic metabolite of estrogen have been reported [52,56]. These electrophilic com-
pounds can react covalently with macromolecules including DNA to form the depurinating
adducts that eventually generate mutations in proto-oncogenes and/ or tumor suppressors
consequently leading to carcinogenic progression [55,57]. We also have reported alterations
in p53 in most schistosome-associated bladder tumors, irrespectively of their histopatho-
logical nature [61]. In addition, the Ki-67 overexpression was less evident in pre-malignant
lessons compared to its overexpression in already established urothelial and squamous
cell carcinomas [61]. Estrogen receptors mediate cell proliferation, increasing errors during
the DNA replication [62,63].

Oestrogen metabolite species were detected as main constituents of urine from differ-
ent groups of individuals with UGS [56]. The mass spectrometric profile of urine samples
of 40 patients with UGS revealed the presence of seven specific metabolites. Nevertheless,
these metabolites were more pronounced in individuals without non-malignant lesions
compared to cases with UGS-related cancer [56]. This evidence suggests that DNA oxi-
dation is more evident in former cases that the latter ones. Could this be an indicative of
the initiation/progression of carcinogenesis? The study of these molecules not only informs
about the basic pathophysiology of the cancer associated with the infection, but also offers
translational avenues such as the identification of the molecules as tentative biomarkers.
The molecules derived from 8-oxodG or estrogen derivatives (Figure 2) might be traced as
urine biomarkers for the early detection and progression of bladder cancer [56]. 8-oxodG
is a representative marker for DNA oxidative damage during oxidative stress [64–66],
the detection of 8-oxodG in urine samples suggests that DNA damage occurs during UGS.
These reactive oxygen species induce oxidation, nitration, halogenations, and deamina-
tion of biomolecules, including nucleic acids, with the formation of toxic and mutagenic
products [51]. It is important to note that this study has some limitations, such as a lower
number of samples and the comparison with a database of healthy individuals [66] in-
stead of individuals from endemic areas. Further investigations are warranted to validate
this evidence.
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of catechol estrogen derivatives with host DNA. On other hand, 8-oxodG derivatives may be a result of liberation of
nitrogenous bases from DNA and/or its oxidation.

4. Urine Proteome in Urogenital Schistosomiasis

The urine proteome profiling of patients with UGS alone, UGS-related bladder cancer,
and bladder cancer without infection highlighted the activation of distinct molecular path-
ways. Purified urine proteins separated by sodium dodecyl sulfate-precast polyacrylamide
gel electrophoresis (SDS-PAGE) and analysed by mass spectrometric (GeLC-MS/MS) fol-
lowed by protein-protein interaction analysis revealed Th2-type immune response and
oxidative stress as the most prevalent biological processes in UGS samples. On the other
hand, UGS-related bladder cancer was associated with proteins involved in inflammation
and negative regulation of endopeptidase activity whereas in the case of bladder cancer
without infection, proteins were mainly associated with metabolism, cell adhesion, tumor
growth and metastasis, and immune response. This study showed the role of Th2-type
immune response and chronic inflammation as major drivers of schistosome induced car-
cinogenesis and revealed a set of proteins that should be further explored in a multimarker
strategy for the early diagnosis of schistosome-related bladder cancer [67].

The Schistosoma japonicum genome, revealed shared sequences with humans for
mammalian-like receptors for insulin, progesterone, cytokines and neuropeptides, suggest-
ing that host hormones or endogenous parasites analogues might coordinate parasite devel-
opment and maturation and that Schistosoma modulates host immune responses through
inhibitors, molecular mimicry and other invasion strategies [68]. Genome sequencing and
analysis of S. haematobium proteome also showed molecules linked to immunomodulation
such as inhibition of antigen processing and Th2 responses [34,69]. Similarly, quantita-
tive photocytometry analysis of tissue samples from UGS-related bladder cancer using
T cells specific antibodies showed an unbalanced Th1/Th2 relation in which Th2 was
upregulated and dominated [70]. Both inflammation and alternative complement pathway
activation are upregulated in this situation. A prolonged inflammatory response might
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lead to increased DNA mutation rates, due to previous alterations in suppressor genes
such as TP53 (expressed by accumulation of p53 in the urothelium) and overall genetic in-
stability, characterized by high levels of 8-nitroguanine and 8-hydroxy-2′-deoxyguanosine
(8-oxodG) [56,60,71].

The consonance of data obtained in the proteomic and spectrometric studies supports
the hypothesis that most cancers may have origin from a biological and/or chemical
insult that trigger a sequence of events that culminate with formation of a pre-cancerous
niche [72] better understanding of the mechanisms underlying immunomodulation during
chronic schistosomiasis and UGS-related carcinogenesis will provide new insights to
optimize treatment strategies of schistosomiasis and prevention or treatment of UGS-
related bladder cancer.

5. Alterations in the p53 Pathway Associated with UGS-Associated Bladder Cancer

Loss of p53 function leads to alteration of cell proliferation, cell longevity and re-
sistance to cytotoxic drugs [73]. The functional changes of this gene suppressor (TP53),
broadly, mutations that besides reducing the concentration of MDM2 (i.e., a transcriptional
target of p53) favour the transcription and protein phosphorylation of p53 and form the ba-
sis of the loss of capacity. Normal p53 is degraded quickly after its synthesis; the same is
not checked in the form dictates, as amended, the mutated p53 that features an increased
half-life, favouring its intracellular accumulation. The expression of p53 in urothelial
carcinomas is intense and involves both cell clones of malignant cells as well as adjacent,
apparently normal urothelial cells of the mucosa [61].

What is the role of p53 in UGS-associated bladder cancer? The studies covering
this issue showed that the tumor suppressor protein p53 was overexpressed in bladder
urothelial mucosa in individuals with UGS or SCC-associated to UGS. What is the meaning
of this finding? First, it is essential to compare these findings with the most frequent pattern
of expression of p53 in normal bladder urothelium. p53 is expressed between 1 and 37%
of cases in only 5% of urothelial cells and scattered. In synthesis, the expression of this
protein in physiological situations is infrequent and transitory [74,75]. TP53 is not only
overexpressed in bladder urothelial mucosa of individuals with UGS-bladder cancer but
also in those with only UGS; thus, could this be considered as a biomarker of malignant
transformation of the bladder tissue associated with the S. haematobium infection?

The expression of p53 in cells of the urothelium and the occurrence of mutations of
TP53 gene in comparative studies suggest that the profuse expression of p53 is associ-
ated with mutations in the TP53 gene [73,76–82]. The expression of p53 was studied in
malignancies associated or not to S. haematobium infection in urothelial and squamous
cells. The expression of p53 was significantly higher in little differentiated tumors however,
the expression of p53 prevailed in locally advanced tumors in UGS [61].

Badawi et al. [82] found that patients with UGS, presented a high number of DNA
lesions associated with the action of alkylating agents. The mutations occurred simul-
taneously with disruption of the DNA repair mechanisms; more, described that these
mutations were caused by G-transitions the H-ras gene and CpG sequences on the TP53
gene. Finally, Abdulamir et al. [83] found that p53 expression was more frequent in malig-
nant tumors associated with UGS than other tumors of the bladder. Also, Kamel et al. [84]
referred that any clinical case of squamous metaplasia and hyperplasia in bladders, not
associated with UGS, has increased expression of p53. Our results support these earlier
findings. Increased p53 expression was detected in cases with cystitis without tumor,
in cases with malignant neoplasms, squamous cell, and urothelial or mixed carcinoma,
and in cases with apparently normal mucosa adjacent to the tumor. The expression of
p53 in UGS patients, either with associated bladder cancer or not, was high, involving
a large number of adjoining cells, suggesting accumulation of p53 at nuclear level [61].
This pathophysiological event occurs when the p53 gene was mutated and there is no
degradation of the protein. In these circumstances the role of p53 is disturbed, which
allows the accumulation of changes in DNA and its transmission to daughter cells. In the
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absence of repair and apoptosis, new mutations may follow, an environment conducive
for malignant transformation. In in vitro experiments we showed a downregulation of
the p53 pathway in urothelial cells exposed to either live S. haematobium or S. mansoni eggs.
However, the genes that led to this overall downregulation of the pathway were different
for each of the two schistosome species [54]. In synthesis, the concatenation of all these
molecular events in the UGS patients support a relevant role to S. haematobium in initiation
of bladder carcinogenesis, may be mediated by oestrogen metabolites, followed by chronic
inflammation, fibrosis, and changes in the tissue microenvironment including mutations
in key tumor suppressor genes and proto-oncogenes. In addition, strong evidence based
on animal models of Schistosoma haematobium infection support the role of p53 in the de-
velopment of UGS-associated SCC. The animal model of the infectious disease developed
by Michael Hiseh is based on the injection of S. haematobium eggs directly to the bladder
of the mouse. This led to urinary tract fibrosis, bladder dysfunction and other alterations
of morphology consistent with human UGS [85,86]. Using this model in transgenic mice,
Honeycutt and colleagues [87] found that alteration in the p53 signalling in the urothelium
might affect the normal tissue homeostasis during UGS.

6. Biomarker Candidates for UGS and SCC of the Bladder?

Biomarkers for early detection and prognosis of malignancy induced by UGS are
needed. Promising candidates, notably (1) oestrogen-like and (2) 8-oxodG related metabo-
lites highlighted herein, appear worthy of validation in larger population-based studies.
In addition, we caution that the malignant lesions included here included both UCC
(urothelial cell carcinoma) and SCC. Mixed urothelial cancer with squamous features,
such as some cases in individuals with UGS and bladder cancer (either SCC or urothelial
cancer cell) described in [56], may display a distinct pathophysiology compared to UGS
related ‘pure’ SCC, and the literature clearly indicates that UGS is a risk factor for SCC
but not UCC [48,52]. Accordingly, investigations of larger populations may also facili-
tate the identification of metabolites that characterize the discrete pathogenesis of SCC
and UCC.

7. Conclusions

Despite all the efforts schistosomiasis remain a great concern for public health in
developing countries. S. haematobium is considered a carcinogenic biological agent and
bladder cancer is one of the direst complications affecting individuals from young age.
What should be the focus of research on schistosomiasis? We believe that the research
should focus on three main components: (1) understanding the host–parasite interactions
(e.g., immune response elicited by infection); (2) mechanisms underlying the UGS-related
carcinogenesis; and (3) novel control strategies for both schistosomiasis and associated
carcinogenesis. Further studies in vitro and in vivo using animal models will shine a light
on these components.
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