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A B S T R A C T

Background & purpose: Four dimensional Cone beam CT (CBCT) has many potential benefits for radiotherapy but
suffers from poor image quality, long acquisition times, and/or long reconstruction times. In this work we
present a fast iterative reconstruction algorithm for 4D reconstruction of fast acquisition cone beam CT, as well
as a new method for temporal regularization and compare to state of the art methods for 4D CBCT.
Materials & methods: Regularization parameters for the iterative algorithms were found automatically via
computer optimization on 60 s acquisitions using the XCAT phantom. Nineteen lung cancer patients were
scanned with 60 s arcs using the onboard image on a Varian trilogy linear accelerator. Images were reconstructed
using an accelerated ordered subset algorithm. A frequency based temporal regularization algorithm was de-
veloped and compared to the McKinnon-Bates algorithm, 4D total variation and prior images compressed sen-
sing (PICCS).
Results: All reconstructions were completed in 60 s or less. The proposed method provided a structural similarity
of 0.915, compared with 0.786 for the classic McKinnon-bates method. For the patient study, it provided fewer
image artefacts than PICCS, and better spatial resolution than 4D TV.
Conclusion: Four dimensional iterative CBCT reconstruction was done in less than 60 s, demonstrating the
clinical feasibility. The frequency based method outperformed 4D total variation and PICCS on the simulated
data, and for patients allowed for tumor location based on 60 s acquisitions, even for slowly breathing patients. It
should thus be suitable for routine clinical use.

1. Introduction

Four dimensional cone-beam CT (CBCT) is required for many clin-
ical tasks in radiotherapy, such as image guidance, 4D dose re-
construction, marker-less tumor tracking, and accurate volume assess-
ment of moving tumors. It has also been demonstrated to reduce setup
errors when compared with normal 3D CBCT [1]. However, long scan
times and poor image quality remain a challenge for its widespread
clinical use. Additionally, dedicated 4D protocols will typically have
poorer 3D image quality, due to reduced tube current [2]. Iterative
cone-beam CT reconstruction has been shown to allow for reduced
imaging dose and improved image quality [3]. For 4D CBCT, it can
dramatically reduce scan times [4]. On the other hand, reconstruction
times are quite long ranging from 5min to several hours in literature
[5]. Additionally, many algorithms require manual steps, such as seg-
menting the lung, which pose a challenge in a clinical setting. Recently
several groups have demonstrated impressive results by using regis-
tration based methods for 4D CBCT [5–12]. All of these methods are
however based on custom scan sequences taking anywhere between 2

and 8min. Reconstruction times range between 4min and 15 h, and
combined the fastest method takes about 9min from scan start to re-
constructed image [12]. This makes their routine use impractical in a
standard clinical workflow. Ideally, 4D reconstructions would be
available within a few minutes, based on a standard 60 s 3D acquisition.
In this work we present such an algorithm for 4D CBCT reconstruction,
which runs in less than 60 s on a modern Graphics Processing Unit
(GPU), and a new regularizer for improved temporal resolution. These
were compared with state of the art iterative methods. For all methods
regularization parameters were found automatically, via surrogate op-
timization.

2. Materials and methods

Iterative CBCT reconstruction is often treated as a regularized least
squares problem

− + Rx p xmin ‖ ( )‖ ( )
x

2W A (1)

where A is the projection transform, x is the (4D) image to be
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reconstructed and p are the log-transformed projections. W is either
the identity transform or (as in this work) a diagonal matrix containing
weights [13] to compensate for the offset detectors. Finally, R x( ) is the
(nonlinear) regularization function, such as total variation, given by
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in the standard 3D isotropic version. Here t is the phase index, in-
dicating that the total TV is the sum of the TV for the individual phases.
We investigated three different choices for regularization.

2.1. Sparse Frequency Regularization (SFR)

The following regulariser is proposed:

∑= + + +R λ TV λ TV λx x x x x( ) ( ) ( ) (|Re ( )| |Im ( )|)TV D ATV D t t3 3 D F FF F (3)

D denotes a box filter, downsampling the image by a factor of two in
the spatial dimensions. tF is the Fourier transform along the temporal
dimension. λTV , λATV and λF are unitless weights, controlling the
strength of each regularisation parameter. The total variation term
ensures that the images are sparse spatially, while the Fourier term
enforces that the change in each pixel can be represented with a few
Fourier coefficients. The use of total variation on multiple scales was
previously proposed by Huang et al. [14] where a Gaussian filter was
used as the scaling operator. Conceptually, the use of TV on several
resolution scales is also similar to what is done for Spatiotemporal
framelet (STF) [15], but only the first-order differential was included,
in the interest of retaining clinical reconstruction times.

2.2. 4D total variation

Several previous publications have demonstrated the effective use of
4D TV for CT reconstruction [5,8]. In this work 4D TV with isotropic TV
in the spatial domain (Eq. (2)), and anisotropic in the temporal di-
mension was implemented. Anisotropic TV was used as it significantly
reduces the memory requirements of the algorithm, as each 3D volume
can be updated separately. The regularizer is then given by

= +R λ TV λ TVx x x( ) ( ) ( )TV D TV D D t4 3 4 (4)

where TV x( )t is the temporal total variation, given by

∑= −+TV x x x( ) | |t
i j k t
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Again, λTV and λ D4 are unitless weights, controlling strength of the
regularisation.

2.3. Prior image constrained compressed sensing (PICCS)

PICCS [16] is an extension of standard 3D TV. First, a 3D image xp is
reconstructed using the standard Feldkamp-Davis-Kress (FDK) [17]
method. This is then used as a prior, and the regularization term be-
comes

∑= + −λ TV λ TVx x x x( ) ( ) ( )TV D
t

D t pPICCS 3 PICCS 3R
(6)

where xt is the 3D image corresponding to phase t of x . The motivation
behind PICCS is that most of the image is stationary, so the difference
term −x xt p should mainly contain zero. While the original article used a
constrained approach Lauzier et al. [18] established that the method
also worked well in an unconstrained setting. Again, λTV and λPICCS are
unitless weights controlling strength of the regularisation. For this
method, the prior image was also used as a starting guess, rather than

the standard zero filled image.

2.4. McKinnon-Bates

The McKinnon-Bates (MKB) algorithm [19] is a non-iterative algo-
rithm commonly used for 4D CBCT, and can be considered clinical
standard. In the first step of the algorithm a standard 3D image is re-
constructed using the FDK algorithm. For each time phase a correction
to the 3D image is calculated to produce the 4D image. The correction is
made by forwards projection the 3D image and subtracting the original
projections to create error projections. The FDK algorithm is then used
on the error projections to create the correction.

2.5. RTK ROOSTER

The RTK framework [20] is another open-source framework for
CBCT reconstruction, which is widely used in the field. We compare
with the state of the art 4D method ROOSTER [21] implemented in this
framework. We do not use the motion-aware version [8], as we do not
have the deformable vector fields required for this method. The reg-
ularization parameters used were =γ 0.0002time and =γ 0.0002space ,
which were found manually. We used 100 iterations as it resulted in the
best quality of images. We also included 10 iterations as in the original
paper, for comparison. All possible GPU acceleration was enabled, to
ensure the fastest runtime.

2.6. Patient scans

Nineteen consecutive lung cancer patients, treated with Stereotactic
Body Radiation Therapy (SBRT) were scanned using the onboard im-
ager on a Varian Trilogy linear accelerator as part of their treatment.
For further details on these patients, see Schmidt et al. [22]. The scans
consisted of 663 projections in °360 over 60 s, using an offset detector
array for extended field of view. The low-dose thorax protocol was
used, using a voltage of 110 kV, a current of 20mA and a pulse-length
of 20ms.

2.7. Extraction of breathing curves

In order to extract the respiratory phases from the projections, each
projection was registered to the next using the Demons deformable
image registration algorithm [23]. The mean deformation in the cra-
niocaudal direction was then integrated to provide a respiratory signal.
This was filtered to remove the low frequency contribution from the
rotation of the gantry and the high frequency contribution from cardiac
motion. Finally, the inhale peaks of the extracted breathing curve was
used to sort the projections into 10 respiratory phases using phase
binning. This method was chosen rather than the standard Amsterdam
Shroud [24], as the diaphragm was not consistently visible in all pro-
jections causing that method to fail.

2.8. Virtual XCAT phantom

To validate our approach and tune the regularisation parameters the
female XCAT 4D phantom [25] was used. A 1 cm-diameter spherical
lesion was added to the bottom half of the right lung. The default bone
thickness in XCAT is considerably greater than what was seen in our
patient cohort. Bone thickness was therefore reduced by 50% compared
to the XCAT default. The setup was designed to match clinical reality as
closely as possible. Distance between source and detector was 150 cm
and distance from source to isocenter was 100 cm. The detector was

×389.12 291.84 mm2 with an image resolution of ×1024 768 pixels. The
detector was offset with 144.97mm, equal to what is used in the
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clinical scans. 620 projections were obtained over a °360 arc. Scan
duration was 60 s, with a regular breathing period of 4 s, similar to our
patients. The projections were binned into 10 respiratory phases.

Ground truth images were created with the XCAT program. One
motion free image was created for each projection time point. The
images in the same respiratory bin were then averaged to provide a
‘best case’ ground truth. The voxel size was × ×375 375 375 μm3 which
was rebinned to × ×1.5 1.5 1.5 mm3.

2.9. Implementation

Reconstructions were performed on a NVIDIA Titan X GPU, with
12 GB of RAM. Implementation was done in the CUDA programming
language, and is freely available at https://github.com/dchansen/gt-
tomography.

To solve Eq. (1), an accelerated ordered subset (OS) algorithm was
used [26] (see Appendix). This is a modification of the algorithm pro-
posed by Kim et al. [27], adapted to allow for isotropic total variation
by combining it with the work of Arrow et al. [28]. The approach is
similar to the one recently presented by Xu et al. [29] for 3D CBCT, but
was developed independently. An important advantage of this algo-
rithm is that memory use can be kept low, allowing for the entire re-
construction to be done exclusively on the GPU without transferring
back and forth between GPU and system memory.

2.10. Selection of subsets

While OS algorithms are widely used for CT and 3D CBCT re-
construction, they have not previously been used in 4D CBCT, pre-
sumably due to the problem of convergence. OS algorithms split the
data into a N subsets, and then perform a step of an iterative algorithm
using only this subset. As the cost of an iteration is usually proportional
to the size of the data, this provides a theoretical N times speed up.
Recently, ordered subsets have been combined with Nesterov’s method
[27,30] for further speed up. The number of subsets used does however
greatly affect the stability of the algorithm. As 4D CBCT is already
tenfold undersampled (due to the 10 breathing phases), this makes the
exact strategy for selection of the subsets quite important. In this work,
projections were put into the subsets in a straightforward round-robin
approach, based on projection angle. As projections from the same
phase come in “bunches” of 3 or 4, this spreads the projections in each
bunch into different subsets. A relatively small number of subsets was
employed (6) to ensure algorithmic stability. Further increasing the
number of subsets would only yield a small improvement in perfor-
mance, as the regularization step becomes the performance bottleneck.

2.11. Forward and backward projection

The GPU implementation of the basic forward and backward pro-
jection (A and †A respectively) is based on our previously published
work [5], although significant optimizations were performed. For the
forwards projection, each image phase was loaded separately into a 3D
GPU texture. We used one GPU thread per projection pixel. Raytracing
was then performed by evaluating the line from the X-ray source to the
detector pixel at n equally spaced points through the volume, using
trilinear interpolation. For the backprojection, the projections be-
longing to each phase were loaded into a stacked 2D texture. A GPU
thread was used per image voxel and backprojection was performed by
finding the corresponding point on each projection and sampling with
bilinear interpolation. This approach is similar to what is used in other
GPU reconstruction frameworks such as RTK [20].

2.12. Parameters and evaluation

All images were reconstructed at a resolution of × ×1.5 1.5 1.5 mm3.
10 full iterations were chosen, based on previous experience with the
same algorithm for other applications [26]. To evaluate image quality
on the XCAT phantom, structural similarity (SSIM) was used [31]. SSIM
is a metric, ranging from zero to one, which evaluates the similarity of
two images. We used SSIM in 3D with =σ 2.25 mm (1.5 pixels), and
report the minimum value over all phases. As background artifacts were
not of interest in this study, the background is removed before eva-
luation, based on the ground truth. Based on this, for all algorithms, the
parameters (τ and the respective λs’) were found using 500 iterations of
surrogate optimization [32] using pySOT [33]. The found parameters
were then used for the patient scans.

3. Results

3.1. XCAT phantom

The optimal regularization parameters found for the three iterative
methods were of similar magnitude, with PICCS and TV4D having al-
most the same λTV (Table 1). All the iterative methods had a higher
SSIM than FDK and MKB, with the SFR method performs best, closely
followed by 4D TV (Table 1). This held true both on average, and for
the individual breathing phases (Fig. 1).

The ROOSTER method as implemented in RTK required over 20min
computation time to achieve competitive results, but matches the per-
formance of the SFR algorithm. In the reconstructed images the tradi-
tional MKB yields a high degree of streak artifacts and the 3D FDK
reconstruction exhibits a great deal of blurring, particularly visible at
the diaphragm (Fig. 2). Comparing the iterative methods, PICCS has the

Table 1
Reconstruction parameters and resulting SSIM. 4D indicates the regularization in the
temporal dimension (λ λ,D PICCS4 and λF respectively).

λTV λATV Temporal Runtime SSIMmin

TV4D 0.20 – =λ 0.62TV D4 45.3 s 0.912
PICCS 0.24 – =λ 0.13PICCS 49.4 s 0.903
SFR 0.12 0.42 =λ 0.49SFR 56.8 s 0 916.
FDK – – – – 0.858
MKB – – – – 0.786
ROOSTER (10 iterations) – – – 140 s 0.857
ROOSTER – – – 1344 s 0.915

Fig. 1. SSIM as a function of phase for the different reconstruction methods. Note that the
y-axis does not start at 0.
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best contrast in the static soft tissue, where the prior image is reliable. It
does however suffer from significant artifacts near the ribs, and the
contrast of the tumour is markedly reduced. TV has better tumour
contrast, but the relatively thin rib structures are more blurry. SFR
retains the good tumour contrast of TV, but has better contrast in the
soft tissue region and in the ribs. The cost of this is small artifacts near
the diaphragm, which also appear in PICCS and TV, but less markedly.
None of the methods are able to fully resolve the blood vessels in the
lung.

3.2. Patients

Three representative patients are included in the manuscript.
Images from all 19 patients are available in the Supplementary mate-
rial. Both patient 19 and 15 have a relatively fast breathing period of
2.9 s and 2.3 s respectively, whereas patient 11 has a much slower
cycle, of about 6 s (Fig. 3). Patient 11 (Fig. 4) shows the largest dif-
ference between the methods. PICCS provides an image with con-
siderable artefacts, and accurate tumour delineation is difficult. TV and
SFR are both able to resolve the image clearer. SFR generally displays a
sharper image however, and a greater degree of artifact suppression.
For patient 15 (Fig. 5), a similar situation can be observed, with PICCS
yielding a sharp image with motion artefacts, which cannot be seen
with SFR. For patient 19 (shown on Fig. 6), PICCS shows a larger degree
of motion artefacts, such as streaking (particularly visible in the axial
plane), but has a sharper definition of the static bone structures. TV
suffers less from the motion artefacts, but also has a more blurry image.

In comparison, SFR demonstrates better resolution, without reintrodu-
cing the motion artifacts.

In comparison with the XCAT phantom, a general trend is that soft
tissue contrast is worse in the real scans, where tissue types cannot be
distinguished. On the other hand, moving structures like blood vessels
are much better resolved.

4. Discussion

In this study we have demonstrated the possibility of using 4D
iterative reconstruction within one minute. On phantom data the fast
iterative methods outperformed non-iterative methods significantly,
and matched that of iterative algorithms more than 20 times slower.
When using the SSIM optimized parameters for patient scans PICCS
generally provided the sharpest images, but also the largest degree of
motion artefacts, including streaks. This is particularly pronounced in
patient 19, who also had the slowest breathing. The SFR method con-
sistently provides sharper images than TV across the three patients, but
without increased streaking and motion blur. That being said, the dif-
ferences are generally modest, and all three methods provide similar
image quality.

The ROOSTER method provided similar image quality to the itera-
tive methods used in this work. This is unsurprising, as the fundamental
mathematical problem solved in the ROOSTER method is the same that
is used in the TV4D method. It is however too slow to be used as part of
the daily CBCT scan prior to treatment, which is the main limitation of
that particular method. The long reconstruction time also means that
automatic parameter optimization is not feasible, and regularisation
parameters thus have to be found manually.

For radiotherapy, it is important that the tumour position is un-
biased. While verifying this is difficult without implanted markers, it
should be noted that PICCS only depends on the 3D FDK image, and the
projections in the corresponding phase. Artefacts would thus present
themselves as blurring, rather than a position bias. For the other
methods, they show no bias when compared with the PICCS methods.

Only a few papers have investigated 4D CBCT from standard 3D
acquisitions, presumably due to the challenges in retaining good image
quality. We have demonstrated that images which could be clinically
useful can indeed be obtained, which would be adequate for patient
positioning and evaluation of tumour size.

In patients, irregular breathing and general movement can cause
image artefacts. Even though this was not included in the digital
phantom, the parameters found through the automatic search trans-
lated well to the patient scans, even when the patient breathing cycle
did not match the sinosoidal 4 s curve used for the phantom.

It is an open question if the same parameters would perform as well
when used with different scan protocols or at different sites, however.
For longer acquisition times, it is likely that weaker regularization may
improve results, as the base image quality is better. Investigating this is
left as an exercise for the reader.

Fig. 2. Midventilation phase of the XCAT phantom. Top from left to right: Ground truth, 3D FDK, MKB. Bottom: PICCS, 4DTV and SFR.

Fig. 3. Extracted respiration curve for the three patient scans extracted with the method
described in Section 2.7. Note that the amplitudes extracted do not correlate directly with
the diaphragm motion amplitude.
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It is worth noting that patient 19 was reported as a failure case in a
previous work on iterative 4D CBCT [22], where the tumor could not be
distinguished. That the tumor is clearly visible in this work, for both
SFR and TV, which should mainly be ascribed to the use of automatic
parameter tuning, which was enabled by the fast reconstruction time.

Many papers have investigated 4D CBCT, but most rely on longer
acquisition times, ranging from 2 to 9min in duration [8,11,34–36].

A few other works have investigated 4D CBCT from 60 s acquisitions
such as Yan et al. [37] and Zhong et al. [12]. These works suffer from
the problem that they “simulate” a 60 s acquisition by subsampling a
longer (4–6min) acquisitions. This results in an acquisition where the
breathing phases are more evenly spread out between the projections
than in a true 60 s acquisition – resulting in a higher image quality. Qi
et al. [4] and Gao et al. [15] studied the performance of various

Fig. 4. Midventilation phase of patient 11 reconstructed using (from left to right) PICCS, 4D TV and SFR.

Fig. 5. Midventilation phase of patient 15 reconstructed using (from left to right) PICCS, 4D TV and SFR.
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algorithms for 4D CBCT on 60 s and 30 s data respectively, but in both
cases only on digital phantoms. To our knowledge, the only studies on
60 s data was then from our own group, where Christoffersen et al. [5]
investigated a new registration based algorithm and Schmidt et al. [22]
evaluated it on a larger clinical cohort. In comparison, this work
achieves a subjectively better image quality and reconstruction times
which are at least two orders of magnitude faster.

In conclusion, we have presented a fast method for iterative 4D
CBCT running in less than 60 s, and used it to compare two different
iterative methods with one new, based on Fourier analysis. We have
demonstrated that regularization parameters found via automatic op-
timization can translate well into clinical cases, and the parameters are
robust over a larger cohort of patients. The next stop would be to

perform clinical implementation research to introduce this into clinical
practice.
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Appendix – Algorithm

Algorithm 1. Momentum accelerated ordered subsets method with augmented Lagrangian multipliers for penalized weighted least squares
(PWLS).

1
2 function OS-MOM(f)
3 ←x 00

4 ←g 1† †A W WA ▷SQS diagonal preconditioner
5 ←t 10

6 for ←k 1 to iterations do
7 for ←l 1 to subsets do ▷Loop over subsets
8 ← + ×m l k subsets
9 ← −∗ −y f x gsubsets· ( )øm m

l l l
† 1A A ▷ ø: elementwise-division

10 ym DENOISE( ∗y g,m ) ▷Denoise using algorithm 2

11 ← + + − −t t t(1 1 4 · )m m m1
2

1 1

12 ← + −− −−
x y y y( )m m t

t
m m1 1m

m
1

▷ Momentum acceleration step

13 return xfinal

Fig. 6. Midventilation phase of patient 19 reconstructed using (from left to right) PICCS, 4D TV and SFR.
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Algorithm 2. Arrow Hurwicz denoising [28,38].

1 function DENOISE x g( , )0

2 ← −τ 101 3

3 ←γ 0.35

4 ←σ
τ

1 1
16 1

5 for ←k 1 to iterations do
6 ← +− −y σp xk k k k1 1K ▷ K calculates the finite difference

7 ←
⎛

⎝
⎜

⎞

⎠
⎟

+

+

yi
k

max 1 ,

i
k

σkα

i
k

σkα

p

p

1

1

8 ← − +∗ − τx x y x gøk k k k τ
λ

1 † 0k
K

9 ← ∗x x gøk k

10 ←
+

θk
γτ

1
1 2

11 ←+τ θ τk k k1

12 ←+σk σ
θ

1 k

k

13 return x( )finalP ▷ P sets all negative elements to 0

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.phro.2018.02.004.
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