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Curcumin has been shown to inhibit the growth of various types of cancer cells; however, at concentrations much above the clinically
achievable levels in humans. The concentration of curcumin achieved in the plasma after oral administration in humans was estimated
to be around 1.8mM. Here, we report that treatment of BxPC-3 human pancreatic cancer cells with a low and single exposure of
2.5mM curcumin for 24 h causes significant arrest of cells in the G2/M phase and induces significant apoptosis. Immunoblot studies
revealed increased phosphorylation of H2A.X at Ser-139 and Chk1 at Ser-280 and a decrease in DNA polymerase-b level in
curcumin-treated cells. Phosphorylation of H2A.X and Chk1 proteins are an indicator of DNA damage whereas DNA polymerase-b
plays a role in the repair of DNA strand breaks. Normal immortalised human pancreatic ductal epithelial (HPDE-6) cells remained
unaffected by curcumin treatment. In addition, we also observed a significant increase in the phosphorylation of Chk1 at Ser-345,
Cdc25C at Ser-216 and a subtle increase in ATM phosphorylation at Ser-1981. Concomitant decrease in the expressions of cyclin B1
and Cdk1 were seen in curcumin-treated cells. Further, curcumin treatment caused significant cleavage of caspase-3 and PARP in
BxPC-3 but not in HPDE-6 cells. Silencing ATM/Chk1 expression by transfecting BxPC-3 cells with ATM or Chk1-specific SiRNA
blocked the phosphorylation of ATM, Chk1 and Cdc25C and protected the cells from curcumin-mediated G2/M arrest and
apoptosis. This study reflects the critical role of ATM/Chk1 in curcumin-mediated G2/M cell cycle arrest and apoptosis in pancreatic
cancer cells.
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Pancreatic cancer is the fourth leading cause of cancer-related
deaths in the United States (Jemal et al, 2005). The poor prognosis
in pancreatic cancer is due to the reduced response of patients to
chemotherapy and/or radiation therapy. Curcumin (diferuloyl-
methane) is a major constituent of turmeric powder, which is
extracted from the rhizomes of the plant curcuma longa. Many
pharmacological and clinical studies support the fact that
curcumin has chemopreventive and antiproliferative activity
against a variety of human cancers including pancreatic cancers
(Ammon and Wahl, 1991; Li et al, 2004; Lev-Ari et al, 2006; Mitra
et al, 2006; Reddy et al, 2006; Wang et al, 2006; Aggarwal et al,
2007; Bachmeier et al, 2007; Hauser et al, 2007; Shankar and
Srivastava, 2007; Wahl et al, 2007). In addition, curcumin is also
pharmacologically safe as it is a naturally occurring compound
used as a food-colouring agent and in traditional medicines to
treat various diseases in Asian countries (Ammon and Wahl, 1991;
Goel et al, 2008). Epidemiological studies also support the notion
that populations from East Asian countries where the consumption
of curcumin is high are at a reduced risk to various types of

cancers including pancreatic cancer (Ammon and Wahl, 1991;
Goel et al, 2008) as compared with the populations of Western
countries (Mukhopadhyay et al, 2001; Sinha et al, 2003). Previous
reports have documented that curcumin has anti-inflammatory,
antimicrobial, antioxidative, immunomodulating and antiathero-
genic properties (Mukhopadhyay et al, 2001; Miquel et al, 2002;
Banerjee et al, 2003). Inhibition of cell growth and induction of
apoptosis is the common mechanism by which curcumin shows its
anticancer effects. Accumulating evidence suggests the involve-
ment of multiple-signaling pathways by which curcumin causes
growth suppression of human cancer cells (Cheng et al, 2001;
Hidaka et al, 2002; Bharti et al, 2003; Kim et al, 2003; Shishodia
et al, 2003; Blasius et al, 2006; Lev-Ari et al, 2006; Mitra et al, 2006;
Park et al, 2006; Tan et al, 2006; Aggarwal et al, 2007; Aoki et al,
2007; Deeb et al, 2007; Fahey et al, 2007; Lin et al, 2007, 2008;
Marı́n et al, 2007; Shankar and Srivastava, 2007; Srivastava et al,
2007; Weir et al, 2007; Binion et al, 2008; Freudlsperger et al, 2008;
Ji et al, 2008; Kasinski et al, 2008; Mackenzie et al, 2008; Shankar
et al, 2008; Sun et al, 2008). Phase I clinical trials of curcumin
demonstrated encouraging chemopreventive effects in patients
with high-risk or pre-malignant lesions. It is also non-toxic to
humans up to the dose of 8 g day�1 (Cheng et al, 2001; Sharma
et al, 2004).

Although the anticancer effects of curcumin have been
documented in various types of cancers, no evidence is available
on curcumin-mediated cell cycle regulation in pancreatic cancer.Revised 4 March 2009; accepted 19 March 2009
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We show herein a novel mechanism by which curcumin
causes G2/M cell cycle arrest and apoptosis in pancreatic cancer
cells at concentrations that are very close to plasma-achievable
concentrations of curcumin in humans. Our studies also identify
Chk1 as a novel molecular target of curcumin in pancreatic
cancer cells.

MATERIALS AND METHODS

Chemicals

Curcumin, RNase A, propidium iodide and antibody against
b actin were purchased from Sigma-Aldrich (St Louis, MO, USA).
Heat inactivated fetal bovine serum and RPMI-1640 medium was
obtained from Mediatech Cell Grow (Herndon, VA, USA).
Electrophoresis reagents were from Amresco (Solon, OH, USA).
Antibodies against phospho –ataxia– telangiectasia-mutated
(ATM) (Ser-1981), ataxia–telangiectasia-mutated Rad3 related
(ATR) (Ser-428), check point kinase-1 (Chk1) (Ser-345, 317, 296
and 280), check point kinase-2 (Chk2) (Thr-68), cell division cycle
(Cdc25C) (Ser-216), H2A.X (Ser-139) as well as against total
protein of ATM, ATR, Chk1, Chk2, Cdc25C, Cdk1, CyclinB1,
cleaved fragments of caspase-3, poly(ADP-ribose) polymerase
(PARP) and human-specific Signal Silence Chk1-SiRNA kit were
procured from Cell Signaling Technology Inc. (Danvers MA,
USA). Human-specific ATM-SiRNA was procured from
Santa Cruz Biotechnology Inc. (Santa Cruz, CA, USA). Transfec-
tion reagent (TransIT-TKO) was from Mirus Bio Corporation
(Madison, WI, USA), whereas, antibody against DNA polymerase
b-1 was obtained from Lab Vision Corporation (Fremont, CA,
USA). Chemicals for cell culture such as penicillin/streptomycin
antibiotic mixture (PSN), sodium pyruvate, HEPES buffer,
opti-mem I-reduced serum medium were purchased from GIBCO
BRL (Carlsbad, CA, USA). Cell death detection apoptosis
ELISA kit was the product of Roche Applied Science (Mannheim,
Germany), whereas enhanced chemiluminiscence reagent for
western blotting was purchased from Perkin Elmer (Waltham,
MA, USA).

Cell culture and proliferation assays

BxPC-3 cells (a well-differentiated epithelial pancreatic adenocar-
cinoma cell line obtained from a male Caucasian donor having
mutant p53 and wild-type K-ras) were obtained from American
Type Cell Culture. A monolayer culture of BxPC3 cells was
maintained in RPMI-1640 medium supplemented with 10% fetal
bovine serum, 4.5% glucose, 10% sodium pyruvate, 10% HEPES
and antibiotics in a humidified incubator with 5% CO2 and 95%
air. Normal human pancreatic ductal epithelial cells (HPDE-6)
were a generous gift from Dr Ming-Sound Tsao (Toronto, Canada).
The long-term culture of pancreatic ductal epithelial cells derived
from normal and benign adult human pancreata was achieved by
infection with a retrovirus containing the E6 and E7 genes of the
human papilloma virus 16 (Furukawa et al, 1996; Ouyang et al,
2000). HPDE-6 cells were maintained in keratinocyte-SFM serum-
free medium supplemented with 4 mM L-glutamine and adjusted to
contain 0.2 ng ml�1 EGF, 30 mg ml�1 BPE and 1% (v v�1) PSN
(Furukawa et al, 1996; Ouyang et al, 2000). A stock solution of
curcumin was prepared in dimethyl sulfoxide (DMSO), which was
subsequently diluted in medium so that the concentration of
DMSO was less than 0.1%. BxPC-3 and HPDE-6 cells were treated
with varying concentrations of curcumin for 24 h. The effect of
curcumin on survival of BxPC3 cells was determined by
Sulforhodamine B assay as described earlier (Zhang et al, 2006;
Sahu and Srivastava, 2009). The plates were read at 570 nm with a
Bio Kinetics plate reader EL-800 from BioTek Instrument Inc.,
(Winooski, VA, USA).

Cell cycle analysis

The effect of curcumin on cell cycle distribution was assessed by
flow cytometry after staining the cells with propidium iodide.
Briefly, 0.3� 106 cells (BxPC-3 and HPDE-6) were plated and
allowed to attach overnight. The medium was replaced with fresh
complete medium containing the differing concentrations of
(0, 2.5, 5 and 10 mM) curcumin or DMSO. After incubating for
specified times, cells were collected using 0.05% trypsin, washed
two times with cold PBS and fixed with ice-cold 70% ethanol
overnight at 41C. The cells were then treated with 80 mg l�1

RNase A and 50 mg l�1 propidium iodide for 30 min as described
earlier (Srivastava and Singh, 2004). The stained cells were
analysed using a Coulter Epics XL Flow Cytometer.

Western blot analysis

BxPC-3 and HPDE-6 cells were treated with varying concentrations
of curcumin (0, 2.5, 5 and 10 mM) for 24 h. Whole cell extracts were
prepared as described earlier (Zhang et al, 2006; Sahu and
Srivastava, 2009). Lysates containing 20–40 mg of proteins were
subjected to SDS–PAGE followed by transfer of proteins to a
PVDF membrane. After blocking with 5% nonfat dry milk for 1 h
at RT, membranes were incubated overnight at 41C with the
desired primary antibody (1 : 1000 dilution). Membranes were
washed with TBS 0.1% Tween-20 for 20–30 min followed by
incubation in a secondary antibody linked to HRP. Immuno-
reactive bands were visualised using an enhanced chemilumines-
cence kit according to the manufacturer’s instructions. The same
membrane was reprobed with the antibody against b-actin
(1 : 50 000 dilution) as an internal control for equal protein loading.

Apoptosis determination

Apoptotic cell death was determined by probing with caspase-3 and
PARP-cleaved antibodies and by cell death detection ELISA kit as
described earlier (Shi et al, 2008; Zhang et al, 2008). Cell death
detection is based on a quantitative sandwich-enzyme immuno-
assay principle using monoclonal antibodies directed against DNA
and histones. Briefly, BxPC-3 cells were seeded in 96-well plates and
transfected either with ATM or Chk1-SiRNA followed by treatment
with 2.5mM curcumin for 24 h. The plates were read at 405 nm
against sample and at 490 nm for blank on EL800 ELISA plate
reader, Bio Tek Instruments. Each sample was analysed in triplicate
and the average values were subtracted from the background values.

Transfection with ATM or Chk1-SiRNA

BxPC-3 cells were transiently transfected either with ATM or
Chk1-SiRNA to silence constitutive ATM or Chk1 expression.
Briefly 0.3� 106 cells were transfected either with 50 nM ATM-
SiRNA or 100 nM Chk1-SiRNA in opti-mem-reduced serum
medium using Mirus TransIT-TKO transfection reagent for 24 h.
Following transfection, cells were treated with DMSO or curcumin
(2.5mM) for 24 h. Transfected cells were either processed for cell
cycle or western blot analysis.

Densitometric scanning and statistical analysis

The intensity of immunoreactive bands was determined using a
densitometer (Molecular Dynamics, Minneapolis, MN, USA)
equipped with Image QuaNT software. Results are expressed as
means±s.e.m. of at least two independent experiments, each
conducted in triplicate. Data for cell death ELISA and cell cycle
were analysed by non-parametric ANOVA followed by Bonferroni’s
post hoc analysis for multiple comparisons. All statistical calcula-
tions were performed using InStat software and GraphPad Prizm
4.0. Differences between control and curcumin treatment were
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analysed by 1-way ANOVA. Differences were considered signifi-
cant at Po0.05.

RESULTS

Antiproliferative effect of curcumin

We first determined the optimum dose of curcumin required to
inhibit the proliferation of BxPC-3 cells. Treatment of BxPC-3 cells
with increasing concentrations of curcumin for 24 h significantly
reduced the survival of cells with an IC50 of 5±0.5 mM (Figure 1A).
On the other hand, survival of normal HPDE-6 cells was minimally
affected by curcumin treatment even at concentrations that were
highly toxic to BxPC-3 cells.

Curcumin causes G2/M cell cycle arrest

To gain further insight into the mechanism of the growth
inhibitory effects of curcumin, BxPC-3 cells were treated with
different concentrations of curcumin and analysed for cell cycle
distribution. As shown in Figure 1C, as compared with DMSO-
treated cells, 2.5mM curcumin treatment caused significant arrest

of cells in the G2/M phase, whereas higher concentrations of
curcumin-induced extensive apoptosis. However, curcumin treat-
ment did not cause any change in the cell cycle distribution of
normal HPDE-6 cells (Figure 1D).

Curcumin causes DNA damage and induces apoptosis

To determine the DNA-damaging effect of curcumin, cell lysates
were analysed by western blotting. Phosphorylation of H2A.X at
Ser-139, Chk1 at Ser-280 and Ser-296 are the indicators of the
presence of DNA double-strand breaks. We observed an increased
phosphorylation of H2A.X at Ser-139 and Chk1 at Ser-280
(Figure 2A), whereas no phosphorylation of Chk1 at Ser-296 was
observed in control and treated cells (data not shown). At the same
time, our results show that curcumin treatment decreased
expression of DNA polymerase b (Figure 2A). DNA polymerase
b plays a crucial role in the repair of DNA strand break. We also
observed an increase in the cleaved fragments of caspase-3 and
PARP in curcumin-treated BxPC-3 cells, indicating apoptosis
(Figure 2C). Nevertheless, we did not observe phosphorylation of
H2A.X or Chk1 or cleavage of caspase3/PARP by curcumin
treatment in HPDE-6 cells (Figure 2B and D).
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Figure 1 Effect of curcumin on the proliferation and cell cycle distribution of BxPC-3 and HPDE-6 cells. BxPC-3 human pancreatic cancer cells and normal
HPDE-6 cells were treated with different concentrations of curcumin for 24 h. The effect of curcumin on the proliferation of these cells was analyzed by
Sulforhodamine B assay. The values are mean±s.e.m. of 3 independent experiments (each conducted in triplicate) (A and B). BxPC-3 and HPDE-6 cells
were treated with different concentrations of curcumin and its effect on the cell cycle distribution was evaluated by flow cytometry as described in the
Materials and Methods (C and D). The values are means±s.e.m. of 2 independent experiments (each conducted in triplicate). *Different from control,
Po0.05.
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Curcumin treatment modulates expression of G2/M cell
cycle regulatory proteins

DNA damage generally leads to the activation of the ATM/ATR
pathway (Molinari, 2000; Abraham, 2001; Lukas et al, 2001; Huang
et al, 2008). To further delineate the molecular mechanism of
curcumin-mediated G2/M arrest, we determine its effect on the
key-signaling proteins of this pathway. Treatment of BxPC-3 cells
with 2.5mM curcumin increased the phosphorylation of ATM at
Ser-1981 without any change in the protein level. We did not
observe any change in the phosphorylation of ATR at Ser-428 or
Chk2 at Thr-68 in curcumin-treated cells (data not shown). On the
other hand, substantial phosphorylation of Chk1 at Ser-345 and
Cdc25C at Ser-216 was observed in BxPC-3 cells treated with
curcumin. For example, 2.5 mM curcumin caused about 6-fold
phosphorylation of Chk1 at Ser-345 and 2 fold phosphorylation of
Cdc25C at Ser-216 respectively when compared with their
respective controls. Protein expression of Chk1 and Cdc25C,
however, remained unaltered during the treatment (Figure 2D).
The activation of Cdk1/Cyclin B1 complex is the rate-limiting
factor for the cells to enter into mitosis, whereas its inactivation
leads to G2/M arrest (Jackman et al, 2003). Exposure of BxPC-3
cells with 2.5 mM curcumin for 24 h significantly reduced the
expression of Cdk1 and Cyclin B1 as compared with DMSO-treated
control cells (Figure 2D). These results suggest the possible
involvement of ATM/Chk1/Cdc25C and downregulation of Cdk1
and cyclin B1 in curcumin-mediated G2/M cell cycle arrest.

Silencing of ATM or Chk1 protein expression attenuate
G2/M arrest and apoptosis by curcumin

Next we raised a question whether activation of ATM or Chk1
by activating phosphorylation plays any direct role in curcumin-

mediated cell cycle arrest and apoptosis. To address this question,
we transiently transfected BxPC-3 cells with either ATM or Chk1-
SiRNA and then subjected the cells to curcumin treatment for 24 h.
Cells were then analysed for cell cycle distribution by flow
cytometry and apoptosis by cell death detection ELISA assay. Our
results demonstrate that silencing ATM or Chk1 expression
completely prevents G2/M cell cycle arrest and protects the cells
from curcumin-induced apoptosis (Figure 3A and B). However, it
was rather surprising that transfection of cells with ATM-SiRNA
alone significantly reduced the percentage of cells in G2/M phase.
The explanation for this paradox is not clear at this point and
warrants further investigation.

To further see whether blocking ATM or Chk1 activation can
prevent the modulation of G2/M regulatory proteins by curcumin,
cells were transfected with ATM or Chk1-SiRNA followed by
treatment with 2.5mM curcumin for 24 h. Our results show that
silencing ATM significantly blocked curcumin-mediated activation
of ATM at Ser-1981, Chk1 at Ser 345, Cdc25C at Ser 216 and
modestly blocked the downregulation of the expression of Cdk1
and Cyclin B1 (Figure 4A). A substantial attenuation was observed
in the cleavage of caspase-3 and PARP in ATM-silenced curcumin-
treated cells as compared with curcumin treatment alone
(Figure 4A).

Similar to ATM, silencing Chk1 by Chk1-specific SiRNA,
curcumin-mediated phosphorylation of Chk1 at Ser-345 and
Cdc25C at Ser-216 was completely prevented (Figure 4B). The
protein level of Cdc25C remained unaltered whereas curcumin-
mediated downregulation of Cdk1 and cyclin B1 expression was
substantially blocked and was equivalent to the control level
(Figure 4B). In addition, cleavage of caspase-3 and PARP by
curcumin was also significantly blocked in Chk1-silenced cells
(Figure 4B). Taken together our results suggest the involvement of
ATM/Chk1 in curcumin-mediated G2/M arrest and apoptosis.
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Figure 2 Curcumin treatment causes DNA damage and induces apoptosis in BxPC-3 but not in normal HPDE-6 cells. BxPC-3 cells were treated with
different concentrations of curcumin for 24 h. Cells were lysed and the total lysate was prepared as described in the Materials and Methods. Representatives
immunoblots show the effect of curcumin treatment in BxPC-3 cells on the expression or phosphorylation of H2A.X (Ser-139), Chk1 (Ser-280), DNA
polymerase b (A), cleaved fragments of caspase-3 and PARP (B), p-ATM (Ser-1981), p-Chk1 (Ser-345), p-Cdc25C (Ser-216) and protein expression of
ATM, Chk1, Cdc25C, Cdk1, Cyclin B1 (D). The effect of curcumin was also evaluated in normal HPDE-6 cells on p-H2A.X (Ser-139), DNA polymerase b,
full length and cleaved fragments of caspase-3 and PARP (C). Each blot was stripped and reprobed with anti-b-actin antibody to ensure equal protein
loading. Intensities of immunoreactive bands were quantified by densitometric scanning.
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DISCUSSION

For maintenance of a normal cell cycle, cells possess cell cycle
check points as control mechanisms to ensure proper execution of
cell cycle events by protecting dividing cells from potentially fatal
consequences of DNA damage (Singh and Khar, 2006; Tse et al,
2007). During DNA damage, cells are blocked in G2/M phase to
provide time to repair damaged DNA (Molinari, 2000; Abraham,
2001), or lead to apoptotic cell death in case of severe DNA damage
(Huang et al, 2008).

Several studies have indicated that curcumin induces cell cycle
arrest and apoptosis in various human cancer cells (Park et al,
2006; Tan et al, 2006; Srivastava et al, 2007; Weir et al, 2007;
Lin et al, 2008; Mackenzie et al, 2008; Sun et al, 2008). This study
investigates the mechanism of DNA damage-mediated cell cycle
arrest by curcumin in pancreatic cancer cells. We observed an
increase in the phosphorylation of H2A.X at Ser-139, Chk1 at
Ser-280 and a downregulation of the DNA polymerase-b enzyme,
indicating the presence of DNA double-strand breaks. On the other
hand, normal HPDE-6 cells did not show any DNA damage
incurred by curcumin treatment.

We demonstrate that curcumin treatment causes G2/M cell
cycle arrest at a low concentration of 2.5 mM; whereas higher
concentrations (5–10 mM) of curcumin-induced extensive apopto-
sis in BxPC-3 cells as detected by cleavage of caspase-3 and PARP.
However, normal HPDE-6 cells were minimally affected by
curcumin treatment even at concentrations that were highly toxic
to BxPC-3 pancreatic cancer cells. The proximal transducer
kinases ATM and ATR both possess the functional properties of
a sensor. ATM is phosphoinositide 3-kinase-related kinases that
play an important role in cell proliferation and DNA repair
(Huang et al, 2008). DNA damage check points are predominantly
associated with the activation of ATM whereas ATR is activated by
stalling of the replication fork induced by UV, nucleotide
imbalance, and DNA cross-linking (Lukas et al, 2001; Chen et al,
2008). During this process, ATM undergoes autophosphorylation
on Ser-1981 and is recruited at the sites of DNA damage

where it initiates a series of signaling cascades through the
phosphorylation of multiple DNA damage response cell
cycle proteins including Chk1 at Ser 345 and Ser 317/Chk2 at
Thr-68 (Molinari, 2000; Abraham, 2001; Lukas et al, 2001).
Our results clearly demonstrate the activation of ATM by
phosphorylation at Ser-1981 by curcumin treatment. We, however,
did not observe the activation of ATR by curcumin. These data are
in line with the previous published study where kotomolide, a
butanolide constituent isolated from the leaves of C. kotoense
induced cell cycle arrest and apoptosis through the activation of
ATM in non-small cell lung cancer A549 cells (Huang et al,
2008). To show the involvement of ATM in curcumin-mediated
cell cycle arrest, we selectively silenced the expression of ATM
protein by ATM-specific SiRNAs. Silencing ATM expression
significantly abrogated the activation of ATM at Ser-1981, Chk1
at Ser-345 and Cdc25C at Ser-216 in curcumin-treated cells
and substantially prevented the cells from undergoing G2/M arrest
and apoptosis.

Chk1, upon activation, phosphorylates Cdc25C at Ser-216
leading to inactivation of Cdk1– Cyclin B1 complex, which in turn
leads to G2/M arrest (Molinari, 2000; Abraham, 2001; Lukas et al,
2001). Two check point kinases, Chk1 and Chk2, although being
structurally different from each other in serine/threonine kinases,
share overlapping functions (Jackman et al, 2003; Herman-
Antosiewicz and Singh, 2005; Sidi et al, 2008; Wang et al,
2008a, b). Over the past many years, an enormous effort has been
made to gain insights into cell cycle checkpoint functions. Chk1 is
an established transducer of ATR and ATM-dependent signaling in
response to DNA damage. In addition to nuclear localisation, its
presence on interphase centrosomes negatively regulates entry into
mitosis by preventing premature activation of cyclin B-cdk1
complex during unperturbed cell cycles (Tyagi et al, 2005). In
human cancers, dysfunction in this checkpoint is considered a
serious pathologic hallmark of neoplastic transformation (Chen
et al, 2008). Various chemotherapeutic agents and ionising
radiation, which are used to treat cancer, have been shown to
activate Chk1 (Chen et al, 2008).
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Figure 3 Role of ATM/Chk1 in curcumin mediated G2/M cell cycle arrest and apoptosis. BxPC-3 cells were transiently transfected either with ATM-
SiRNA or Chk1-SiRNA followed by treatment with or without 2.5 mM curcumin for 24 h. Control cells received DMSO only. Cells were collected and
analysed for cell cycle distribution by flow cytometry (A). In a separate experiment, cells were plated in 96 well plates and transiently transfected either with
ATM or Chk1-SiRNA followed by treatment with or without 2.5 mM curcumin for 24 h. Cells were lysed and analysed for apoptosis by the cell death
detection ELISA method according to the manufacturer’s protocol (B). The values are means±s.e.m. of 2 independent experiments (each conducted in
triplicate). Data were analyzed by non-parametric ANOVA followed by Bonferroni’s post hoc analysis for multiple comparisons. Differences between tested
groups were analysed and considered significant at Po0.05 from control.
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We observed significant activation of Chk1 by phosphorylation
at Ser-345 with curcumin treatment. These results are in agreement
with previous studies where diallyl trisulfide, resveratrol and
lithium caused G2/M cell cycle arrest by activation of Chk1 in
human prostate (Herman-Antosiewicz and Singh, 2005), ovarian
(Tyagi et al, 2005) and hepatocellular (Wang et al, 2008a, b)
carcinoma cells. However, no change in the activation of Chk1 at
Ser-317 and Chk2 at Thr-68 was demonstrated by curcumin
treatment. We further observed the phosphorylation of Cdc25C at
Ser-216 and reduced expression of Cdk1/Cyclin B1 by curcumin
treatment as shown earlier in other experimental models (Tyagi
et al, 2005; Chen et al, 2008). To further strengthen the role of

Chk1 in G2/M regulation, Chk1 protein expression was specifically
silenced in BxPC-3 cells by Chk1-SiRNAs. Silencing Chk1
expression significantly abrogated the activation of Chk1 at
Ser-345, Cdc25C at Ser-216 and expression of Cdk1 and Cyclin
B1 in curcumin-treated cells and substantially prevented the cells
from undergoing G2/M arrest and apoptosis, suggesting that Chk1
plays an important role in curcumin-induced cell cycle arrest and
apoptosis. Although our results are consistent with several
published reports (Herman-Antosiewicz and Singh, 2005; Tyagi
et al, 2005; Chen et al, 2008), a recent study made slightly
conflicting observations. This study observed that abrogation of
curcumin-mediated activation of Chk1 and G2/M cell cycle arrest
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Figure 4 Involvement of ATM/Chk1 in curcumin induced G2/M arrest and apoptosis. BxPC-3 cells were transiently transfected either with ATM-SiRNA
(A) or Chk1-SiRNA (B) followed by treatment with or without 2.5 mM curcumin for 24 h. Control cells received DMSO only. Total cell lysates
were prepared and samples were separated on 10% SDS-PAGE. Samples were analysed to evaluate the expression of phospho-ATM (Ser-1981), Chk1
(Ser-345), Cdc25C (Ser-216) and protein expression of ATM, Chk1, Cdc25C, Cdk1, Cyclin B1 and cleaved fragments of caspase-3 and PARP. Each blot was
stripped and reprobed with anti-b-actin antibody to ensure equal protein loading. Intensities of immunoreactive bands were quantified by densitometric
scanning. Possible mechanism by which curcumin induces G2/M arrest and apoptosis in BxPC-3 cells (C).
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induced apoptosis in hepatoma cells (Wang et al, 2008a, b). The
reason for this discrepancy could be attributed to the cell-specific
effect of curcumin. We found that the curcumin-mediated effect
was specific to pancreatic cancer cells as the normal HPDE-6 cells
show no change following curcumin treatment. On the basis of
these findings, a possible mechanism by which curcumin induces
G2/M arrest and apoptosis in BxPC-3 cells is summarised in
Figure 4C.

Curcumin has been used in Asian countries as a dietary spice, a
food-colouring agent and for the treatment of variety of ailments,
including biliary disorder, anorexia, cough, diabetic wounds,
hepatic disorders, rheumatism and sinusitis (Furukawa et al,
1996; Sharma et al, 2004). Although many in vitro studies have
demonstrated the potential chemotherapeutic effects of curcumin
against a variety of cancer cells, its clinical implementation has
been a challenge because of its short half life and low
bioavailability after oral administration (Cheng et al, 2001; Ireson
et al, 2001; Singh and Khar, 2006). Cheng et al (2001) observed
an average peak plasma concentration of 0.51–1.77mM

(188–652 ng ml�1) after an oral administration of 4–8 g curcumin
per day in patients with pre-malignant lesions. It is important to
point out that the inhibitory concentration of 2.5 mM curcumin in
our model is very close to the clinically achievable plasma
concentration of curcumin in humans suggesting its potential for
the management of pancreatic cancer.

In addition to the effectiveness of curcumin alone, it is being
currently evaluated in combination therapy (Koo et al, 2004;
Kamat et al, 2007; Kunnumakkara et al, 2007; Lev-Ari et al, 2007;
Patel et al, 2008). Kunnumakkara et al (2007) demonstrated that
curcumin can potentiate the antitumour effects of gemcitabine by
suppressing the proliferation and angiogenesis in an orthotopic
model of pancreatic cancer. They observed that the ability of
curcumin to decrease the expression of NF-kB-regulated gene
products VEGF, Cyclin D1, c-Myc, ICAM-1, MMP-9, COX-2,
survivin, Bcl-2, IAP1 and Bcl-xl in the tumours was enhanced in
the combination treatment (Kunnumakkara et al, 2007). On the
other hand, Lev-Ari et al (2006) showed that the antitumour

activity of curcumin was associated with the decreased expression
of EGFR, COX-2 and ERK in pancreatic cancer cells . These effects
were pronounced in the cells P34-expressing COX-2 as compared
with low COX-2-expressing Panc-1 cells (Lev-Ari et al, 2006).

Limited studies on curcumin in humans have been documented
recently (Sharma et al, 2004; Dhillon et al, 2008). Sharma et al
(2004), in a phase I clinical trial explored the pharmacology of
curcumin in patients with colorectal cancer and suggested that
curcumin could be used as an oral cancer preventive or therapeutic
agent . Similarly, in a very recent study, Dhillon et al (2008) in a
phase II clinical trial in patients with advanced pancreatic cancer
concluded that 8 g of curcumin given orally was well tolerated and
in spite of its limited absorption showed biological activity in some
patients . Our preclinical studies also support these clinical studies
on curcumin.

To conclude, our present observations state that curcumin
treatment potentially inhibits the proliferation of BxPC-3
human pancreatic cancer cells by DNA damage-mediated G2/M
cell cycle arrest by the activation of ATM/Chk1/Cdc25C and
inhibition of cyclin B1/Cdk1 expression. Our results indicate Chk1
as a novel molecular target of curcumin in pancreatic cancer cells.
Nevertheless, further studies are needed to determine the
mechanism of DNA damage and pinpoint other pivotal regulators
of the signaling pathways mediated by curcumin in human
pancreatic cancer cells.
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