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In mammals, the suprachiasmatic nucleus (SCN), the master circadian clock, is mainly 
synchronized to the environmental light/dark cycle. SCN oscillations are maintained by a 
molecular clockwork in which certain genes, Period 1–2, Cry1–2, Bmal1, and Clock, are 
rhythmically expressed. Disruption of these genes leads to a malfunctioning clockwork 
and behavioral and physiological rhythms are altered. In addition to synchronization of 
circadian rhythms by light, when subjects are exposed to food for a few hours daily, 
behavioral and physiological rhythms are entrained to anticipate mealtime, even in the 
absence of the SCN. The presence of anticipatory rhythms synchronized by food sug-
gests the existence of an SCN-independent circadian pacemaker that might be depend-
ent on clock genes. Interestingly, rabbit pups, unable to perceive light, suckle milk once 
a day, which entrains behavioral rhythms to anticipate nursing time. Mutations of clock 
genes, singly or in combination, affect diverse rhythms in brain activity and physiological 
processes, but anticipatory behavior and physiology to feeding time remains attenuated 
or unaffected. It had been suggested that compensatory upregulation of paralogs or 
subtypes genes, or even non-transcriptional mechanisms, are able to maintain circadian 
oscillations entrained to mealtime. In the present mini-review, we evaluate the current 
state of the role played by clock genes in meal anticipation and provide evidence for 
rabbit pups as a natural model of food-anticipatory circadian behavior.

Keywords: circadian rhythms, clock gene mutant, restricted feeding, food entrainment, corticosterone, PeR1 
protein

inTRODUCTiOn

The suprachiasmatic nucleus (SCN), located in the ventral forebrain lateral to the third ventricle, is 
the master circadian pacemaker necessary for the control of endogenous physiological and beha
vioral rhythms in mammals (1). At the cellular level, a group of genes, known as clock genes, are 
necessary to generate and sustain circadian rhythms controlled by the SCN. This clock mechanism 
is a transcription–translation autoregulatory feedback loop with the positive arm comprised of 
Clock and Bmal1 genes and their proteins. CLOCK and BMAL1 proteins form heterodimers that 
bind to Ebox enhancer elements in the promoter region of the Period (Per1–2) and Cryptochrome 
(Cry1–2) genes to activate their transcription. In turn, PER and CRY proteins constitute the negative 
arm of the loop. CLOCK and Bmal1 also activate the transcription of retinoic orphan receptor α, 
β, and REVERBα,β,γ, which form an auxiliary loop driving rhythmic Bmal1 transcription with 
activating and repressing actions, respectively.
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TABle 1 | Summary of the effects of clock genes mutations in circadian 
locomotor activity rhythms and food-anticipatory activity (FAA).

Clock gene Circadian 
alteration 
(locomotion)

FAA 
(locomotion, 
wheel-running)

Reference

ClockΔ19 Arrhythmic in DD Normal Pitts et al. (8)
Npas2 Normal Delayed Dudley et al. (9)
Bmal1 Arrhythmic in DD Normal Bunger et al. (10) and 

Pendergast et al. (11)
Bmal1 
(brain-
specific)

Shortened period 
in DD

Attenuated Mieda and Sakurai (12)

Per1 Shortened period 
in DD

Normal Zheng et al. (13) and  
Feillet et al. (14)

Per2Brdm1 Arrhythmic in DD Absent/normal Zheng et al. (15),  
Feillet et al. (14), and 
Pendergast et al. (16)

Per2 
(liver-specific)

Normal in DD Absent Chavan et al. (17)

Cry1–2 Arrhythmic in DD Attenuated van der Horst et al. (18) 
and Iijima et al. (19)

Rev-erbα Shortened period 
in DD

Attenuated Preitner et al. (20) and 
Delezie et al. (21)
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In mammals, light is the main entraining signal for circadian 
rhythms. However, food also can be a synchronizer. When rats 
are fed one meal per day, within a few days they display “food
anticipatory activity” [FAA (2–4)], with arousal and an increase 
in locomotor behavior occurring some hours before mealtime. 
August Forel was the first to describe this phenomenon around 
one century ago, showing that bees anticipate the time of morning 
meals (4). In rats, in addition to increase in locomotor behavior, 
there is also an increase in serum levels of corticosterone and core 
body temperature before mealtime (5).

Foodanticipatory activity exhibits circadian properties such 
as limits of entrainment close to 24 h, transient cycles following 
phase shifts and persistence during fasting conditions [Rev (3)]. 
Following the discovery of the SCN as the locus of the master cir
cadian clock, whether the SCN also served as the neural substrate 
of FAA was explored. Surprisingly, the anticipatory increase in 
locomotor activity, core body temperature, and corticosterone in 
foodentrained rats was not abolished by lesions of the SCN (5). 
This and subsequent experiments led to a search for the exist
ence of a foodentrainable oscillator (3) distinct from the SCN 
lightentrainable oscillator. Many neural loci and glands were 
examined as potential sites regulating FAA, including the adrenal 
gland, several brain regions in the hypothalamus (i.e., ventrome
dial, dorsomedial and paraventricular nuclei, lateral preoptic 
area), the parabrachial nuclei, olfactory bulb (OB), hippocampal 
formation, cerebellum, amygdala and nucleus accumbens, among 
others [Rev (6, 7)]. In all cases, lesions or excision failed to abolish 
FAA. These studies suggested that FAA lies in a specific, unknown 
locus or, perhaps more likely, consists of an organized, distributed 
system of interacting structures both at the central and peripheral 
levels (7). In the present overview, we provide evidence for a role 
of clock genes in FAA, providing a new strategy to explore this 
phenomenon.

CiRCADiAn GeneS RelevAnT TO FOOD 
AnTiCiPATiOn

Clock genes serve as key elements for the generation of circadian 
oscillations in the SCN. When one of these elements is rendered 
nonfunctional, alterations in behavioral and physiological 
rhythms appear. Because FAA is under the control of a circadian 
mechanism, it is logical to hypothesize that clock gene mutations 
might also affect FAA (Table 1).

One of the first studies pointing to a role for clock genes in 
FAA comes from studies of ClockΔ19 gene mutant mice (8). The 
circadian locomotor behavior of these mice is arrhythmic when 
animals are exposed to constant darkness (DD) conditions (22, 23).  
When exposed to restrictedfeeding schedules, ClockΔ19 mice 
show strong FAA and its persistence during food deprivation 
indicates that the Clock gene is not necessary for FAA. While this 
study suggested that Clock is not essential for FAA, it was later 
shown that the Npas2 gene can compensate for the loss of Clock, 
acting as a positive transcription factor in the SCN to maintain cir
cadian oscillations (24). This finding suggested that Npas2 might 
be implicated in the regulation of FAA. Indeed, Npas2 mutant 
mice exposed to temporally restricted feeding show altered FAA, 

requiring two or three more days to develop FAA relative to WT 
animals (9). Thus, Npas2 appears to be an important gene in the 
regulation of FAA. However, FAA does not disappear entirely in 
Npas2 mutant mice, indicating that other genes contribute to the 
maintenance of FAA.

As mentioned previously, the positive loop of the clockwork 
also includes Bmal1, a gene that is rhythmically expressed in the 
SCN and other peripheral oscillators (25). Global mutations of 
Bmal1 lead to arrhythmic behavior when animals are in DD con
ditions (10), while FAA is normal in these animals (11). However, 
in one study, Bmal1 deletions confined to the dorsomedial hypo
thalamus eliminated FAA (26). The reason for this discrepancy 
is not readily clear; because methods and protocols to measure 
locomotor activity differ between studies, this conclusion remains 
to be confirmed (26, 27). Importantly, in another study using 
mice with a nervous systemspecific deletion of Bmal1, excluding 
the SCN clock, it was demonstrated that FAA is strongly affected, 
suggesting the necessity of Bmal1 in an extraSCN brain locus 
for FAA (12). Further confirming a role for Bmal1 in FAA, in 
Rev-erbαmutant mice exposed to restrictedfeeding schedules, 
FAA was negatively affected (21). Rev-erbα is a transcription fac
tor with a repressor activity on Bmal1 (20).

With regard to the negative arm of the clockwork, double Cry 
gene mutations (Cry1–2) lead to arrhythmic behavior in mice held 
under DD (18) and FAA is markedly reduced (19). Per genes (1–2), 
also important components of the negative loop, are essential in 
the control of circadian rhythmicity. These genes are expressed 
rhythmically in diverse brain structures and peripheral organs 
[liver, heart, and lung (13, 15, 28)]. Whereas Per1−/− mutants 
show normal FAA, FAA is absent in Per2Brdm1mutant mice 
(14). However, in a more recent examination of the same Per2 
mutant mice, FAA was not altered (16). Thus, the effects of global 
mutations of Per2 on FAA remain to be clarified. Interestingly, 
when Per2 is knock down specifically in the liver, FAA is totally 
eliminated and can be rescued by viral overexpression of liver 

https://www.frontiersin.org/Endocrinology/
https://www.frontiersin.org
https://www.frontiersin.org/Endocrinology/archive


3

Caba and Mendoza FAA in Rodents and Rabbit

Frontiers in Endocrinology | www.frontiersin.org May 2018 | Volume 9 | Article 266

Per2 (17). This study indicates that FAA is not only dependent 
upon the brain but that it also requires normal Per2 expression 
in the liver for its manifestation, confirming that Per2 is likely 
an important component of the molecular mechanisms of FAA 
(Table 1).

Most studies of FAA examine rodents under a schedule of 
food restriction. However, most animals in their natural environ
ments do no experience food restriction on a circadian schedule. 
In contrast, rabbit pups are fed for brief periods on a circadian 
schedule in nature and the lab. Thus, in the present contribution, 
we present evidence that supports notion that the rabbit pup 
constitutes a natural model of food entrainment.

FAA in THe RABBiT

Rabbit pups are born altricial, they have no fur, their eyelids and 
outer ears are sealed, and they remain in the maternal burrow in 
darkness for the first 2 weeks of their life (29). Behavioral studies 
(29, 30) confirm that shortly after parturition the mother leaves 
the nest and returns every day with a circadian periodicity to 
nurse pups whether they are maintained in continuous light or 
in light–dark conditions (31, 32). Although parturition occurs 
throughout the day, the time of nursing is rapidly established on 
lactation day 1 and then nursing occurs every 24 h at around the 
same hour every night, 03:52 h across lactation days 1–15 (33, 34).

lOCOMOTOR BeHAviOR

Although pups are not entrained by the light–dark cycle (their 
eyes do not open until postnatal day 10) (35), they receive peri
odic time cues through feeding. Every day at around the same 
time they ingest up to 35% of their body weight in milk (36) in 
around 5 min (31, 32). Hence food, in this case milk, seems to 
be a potent zeitgeber for rabbit pups. To explore in detail behav
ioral, physiological, and neural consequences of timed feeding, 
we scheduled nursing at two different hours, at 10:00 a.m. and 
at 02:00 a.m. (i.e., during the day and during the night, respec
tively) from postnatal (PD) 1. At PD3 (02:00 a.m. group) and PD4 
(10:00 a.m. group), despite their altricial condition, pups show a 
significant increase in locomotor behavior 2 h before the mother’s 
arrival. Immediately after suckling, locomotor behavior decreases 
and pups remain inactive and huddled in the nest. Moreover, this 
locomotor increase persists for 2 days in nursedeprived pups at 
the same hour of the last nursing (37).

CORTiCOSTeROne

In contrast to neonatal rodents which are in a stress hyporespon
sive period (38), we found that 7 to 9dayold rabbits exhibit 
rhythmic secretion of corticosterone with higher plasma levels 
at the time of nursing, reaching a nadir 12 h later and increasing 
again in advance of the next nursing bout (39). Peak levels of 
corticosterone shift in parallel with the nursing schedule either 
during the day or the night and persist during fasting conditions 
(40, 41), indicating entrainment by time of nursing. In adult 
rodents this hormone reaches a peak at the time of food presenta
tion (5, 42). See Figure 1.

CORe BODY TeMPeRATURe

Rabbit pups maintained in constant dim light exhibit a 24h 
rhythm of core body temperature with a significant anticipatory 
rise of 0.4–0.6°C around 3 h before daily nursing. This increase is 
followed by a secondary postprandial rise, followed within 1–3 h 
by a temperature drop. Moreover, during a 48h fast, the anticipa
tory rise in temperature persists, while the postprandial increase 
in temperature does not (45, 47). These results indicate that the 
anticipatory increase is endogenous and entrained by the timing 
of nursing, whereas the postprandial increase is induced by food 
ingestion. In Figure 1, we present a comparison of daily rhythms 
of locomotor activity, corticosterone release and body tempera
ture in relation to FAA in adult rodents and rabbit pups. In these 
species, there are changes in FOS protein, clock genes, and PER1 
protein in some brain structures described further below.

ClOCK GeneS AnD FAA in THe  
RABBiT PUP

Olfactory Bulb
Postnatal day 7 pups receive temporal time cues through the brief 
daily visit by their mother and ingestion of a meal once a day. To 
successfully ingest milk, pups depend on their OB to detect the 
emission of a mammary pheromone (48) and to grasp the nipple; 
anosmic pups are unable to suckle milk and will die of starvation 
(49). At PD7, rhythms of the clock genes Per1, Bmal1, and Cry1 
are already established in the OB, whereas a clear rhythm is not 
detected until PD45 in the SCN (50). The earlier maturation of 
the clockwork in the OB is consistent with the dependence on 
suckling at this age. Analysis of PER1 protein in the OB has been 
explored to determine the pattern of rhythms in this protein rela
tive to the timing of suckling. At PD7, neonatal rabbits express 
robust rhythms of PER1 in layers of both main and accessory OBs 
that shift in parallel to the timing of suckling (i.e., either during 
the day or during the night). Moreover, PER1 expression persists 
during fasting conditions. Additionally, significant increases 
in FOS protein were detected at the time of suckling (i.e., dur
ing FAA), suggesting that the OB has a clock mechanism that 
anticipates nursing (51). This finding is consistent with previous 
work showing that the OB has an SCNindependent circadian 
pacemaker (52).

A milk/nipple stimulus appears to be important for OB oscilla
tions. In this regard, the role of a mammary pheromone has been 
explored as an entraining signal (50); however, its importance 
remains unclear as the pheromone was applied at concentrations 
far beyond the effective concentration to elicit the oral nipple 
grasping response (53). Additionally, food has been explored as 
the entraining signal. In neonatal rabbits, the intragastric infusion 
of milk formula at PD7 once during the day or during the night 
without any maternal contact entrained rhythms of locomotor 
behavior and CORT, with peak values at the time of FAA. The 
milk stimulus also entrained rhythms of PER1 in hypothalamic 
nuclei (see below). These rhythms shift in parallel to the timing 
of milk formula infusion, demonstrating that food, in this case 
milk, is sufficient to entrain behavioral, physiological, and neural 
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FiGURe 1 | Physiological, behavioral, and neural changes associated with food-anticipatory activity and the molecular clockwork. Daily rhythms of locomotor 
activity ( ), corticosterone ( ), and body temperature ( ) increase in anticipation of the time of feeding in both species. The molecular 
clock is comprised of two principal feedback loops for the expression of clock genes. In the positive loop (green) the proteins CLOCK/NPAS2 and BMAL1 act on the 
transcription sites of Per, Cry, and Rev-erbα genes to induce their mRNA expression. Once the final proteins of PER and CRY (negative loop; red) are produced, 
these have the ability to repress their own transcription via an inhibitory action on the Clock-Npas2/Bmal1 dimer. The REV-ERBα protein is a transcriptional repressor 
for the Bmal1 gene driving rhythmic Bmal1. FOS protein expression and rhythms of clock genes and proteins in several brain nuclei synchronize to mealtime. DMH, 
dorsomedial hypothalamic nucleus; LH, lateral hypothalamus; MnPO, median preoptic nucleus; OB, olfactory bulb; OVLT, organum vasculosum of lamina terminalis; 
PeF, perifornical nucleus; paraventricular nucleus; SON, supraoptic nucleus; TM, tuberomammillary nucleus. Vertical bar and big arrow, feeding time. Figure derived 
from data previously published by: Angeles-Castellanos et al. (43), Caba et al. (37), Escobar et al. (44), Honma et al. (42), Jilge et al. (45), Mistlberger (7), Morgado 
et al. (40, 41, 46), and Rovirosa et al. (39).
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parameters in the neonatal rabbit (46), similar to what is seen 
in nursed pups. In contrast, the mammary pheromone is likely 
necessary for nipple detection, but not FAA.

Suprachiasmatic nucleus
In the SCN, there is a rhythm of PER1 in nursed and fasted pups 
fed either during the day or the night from PD1 (37). More impor
tantly, there is a shift in PER1 peak expression of 2.5 h between 
day and night nursed pups, suggesting an entraining effect of 
timed nursing on the pup’s SCN. A larger shift of Per1, Per2, and 
Bmal1 rhythms was demonstrated by shifting the time of nursing 
from PD4–PD7 (54). However, in this same study, there was a 
spontaneous advance in Per1 of around 7 h from PD3 to PD9 in 
pups nursed at the same time since birth. Therefore, it is not clear 
if the influence of ontogenetic development of the SCN on the 
shift in clock genes is mediated by the timing of nursing. Although 
retinal projections are present in the SCN at birth, the nucleus is 
immature in its response to a light pulse until PD12 (55). Despite 
methodological differences, it is possible that the pups’ SCN is 
sensitive to nonphotic cues. The effect of food restriction on the 

SCN has been reported in adult rats and may be involved in the 
neural mechanism of food entraining (56), although, as already 
mentioned, this nucleus is not essential for FAA.

Other Brain Structures
In the dorsomedial hypothalamic nucleus (DMH) there is a 
complete phase shift of PER1 in parallel to a change in the time 
of nursing that persists in fasted pups (37). These results agree 
with publications in rodents (57, 58), indicating that the DMH 
might play an important role in food entrainment, although not 
as the unique brain structure regulating FAA (17). PER1 has been 
also analyzed in the median preoptic nucleus (MnPO), organum 
vasculosum of lamina terminalis, and medial preoptic area (59). 
However, a robust rhythm of PER1 is only detected in the MnPO 
at the time of FAA, a rhythm that persists during fasting. To our 
knowledge, there are no reports regarding a role of the MnPO 
in FAA in rodents, pointing to a need for further exploration. In 
the brainstem the dorsal vagal complex (DVC) and parabrachial 
nucleus (PBN) express PER1 in neonatal rabbits. Whereas the 
DVC shows rhythms related to food ingestion, the PER1 rhythm 
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was entrained by milk intake in the PBN, a rhythm that persists 
during fasting (60). It is possible that changes in PER1 are due 
to food ingestion as the paraventricular, supraoptic, and tubero
mammillar nuclei shows PER1 rhythms that shift in parallel to 
the timing of intragastric milk formula infusion (46).

MeTABOliC AnD HORMOnAl SiGnAlS 
AnD THe RewARD SYSTeM

Metabolic fuels such as glycogen and free fatty acids follow a 
rhythm associated with the full and empty stomach to maintain 
stable glucose levels; those levels are maintained even in fast
ing conditions (40, 41). Interestingly, the orexigenic hormone, 
ghrelin, which acts on the arcuate nucleus, also follows a rhythm 
with peak levels 12 h after the last nursing, likely participating in 
triggering the next FAA episode (40, 46). Indeed, in rats under 
restricted feeding, plasma ghrelin levels peak before mealtime (61) 
and, in combination with leptin, modulates the reward circuitry 
by acting on dopaminergic neurons in the ventral tegmental area 
to reinforce FAA (62, 63).

COnClUSiOn

Foodanticipatory activity is the expression of a circadian phe
nomenon in different species, usually studied in adult subjects. 
Here, we demonstrate that the neonatal rabbit circadian system 

is an ideal natural model to study the brain and molecular 
mechanism of FAA. FAA depends, in part, on some clock genes 
expressed in a circadian network of brain structures, oscillating in 
synchrony, and coordinated by the SCN. Combining information 
on brain clock gene expression in rabbit pups with mouse models 
of clock gene mutations for the study of FAA will help increase 
understanding of the molecular mechanisms implicated in food 
anticipation in the wild.
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