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In the local circuit of the cerebral cortex, GABAergic inhibitory interneurons are considered
to work in collaboration with excitatory neurons. Although many interneuron subgroups
have been described in the cortex, local inhibitory connections of each interneuron sub-
group are only partially understood with respect to the functional neuron groups that receive
these inhibitory connections. In the present study, we morphologically examined local
inhibitory inputs to corticospinal neurons (CSNs) in motor areas using transgenic rats in
which GABAergic neurons expressed fluorescent protein Venus. By analysis of biocytin-
filled axons obtained with whole-cell recording/staining in cortical slices, we classified
fast-spiking (FS) neurons in layer (L) 5 into two types, FS1 and FS2, by their high and low
densities of axonal arborization, respectively.We then investigated the connections of FS1,
FS2, somatostatin (SOM)-immunopositive, and other (non-FS/non-SOM) interneurons to
CSNs that were retrogradely labeled in motor areas. When close appositions between
the axon boutons of the intracellularly labeled interneurons and the somata/dendrites
of the retrogradely labeled CSNs were examined electron-microscopically, 74% of these
appositions made symmetric synaptic contacts. The axon boutons of single FS1 neurons
were two- to fourfold more frequent in appositions to the somata/dendrites of CSNs than
those of FS2, SOM, and non-FS/non-SOM neurons. Axosomatic appositions were most
frequently formed with axon boutons of FS1 and FS2 neurons (approximately 30%) and
least frequently formed with those of SOM neurons (7%). In contrast, SOM neurons most
extensively sent axon boutons to the apical dendrites of CSNs. These results might sug-
gest that motor outputs are controlled differentially by the subgroups of L5 GABAergic
interneurons in cortical motor areas.

Keywords: FS neuron, corticospinal neuron, somatostatin-immunopositive neuron, motor areas, apposition,

inhibitory, synapse, morphology

INTRODUCTION
An important piece of the motor execution signal is transmitted
from the cerebral cortex to the spinal cord by corticospinal pro-
jection neurons (CSNs), which are densely located in layer (L)
5 of motor areas. When CSNs are labeled by injection of retro-
grade tracers into the spinal cord in rats, many labeled neurons
are continuously found in L5 from the primary motor (M1) area
of the lateral agranular field to the hindlimb (HL) and forelimb
(FL) areas of the lateral granular field (Wise and Jones, 1977;
Leong, 1983; Miller, 1987; Killackey et al., 1989). Although the
FL/HL areas are often recognized as the primary somatosensory
area, the threshold of intracortical microstimulation for evok-
ing somatic movement is as low in the HL area and the medial
part of the FL area as in the M1 area. Thus, the FL/HL areas
are considered mixed areas for the motor and sensory informa-
tion processing of the FL and HL (Hall and Lindholm, 1974;
Donoghue and Wise, 1982; Sanderson et al., 1984; Frost et al.,
2000).

Neocortical GABAergic interneurons are classified on the basis
of morphological, electrophysiological, and molecular properties
(Cauli et al., 1997; DeFelipe, 1997; Markram et al., 2004; Rudy
et al., 2011). In the rat neocortex, immunohistochemical, and
electrophysiological studies established that cortical GABAergic
interneurons are divided into at least four distinct subgroups:
(1) parvalbumin (PV)-producing, fast-spiking (FS) neurons; (2)
somatostatin (SOM)-producing neurons containing Martinotti
cells; (3) neurons expressing one or more chemical markers includ-
ing calretinin, vasoactive intestinal polypeptide (VIP), cholecys-
tokinin, corticotropin-releasing factor, and choline acetyltrans-
ferase; and (4) α-actinin-expressing neurogliaform cells exhibit-
ing late-spiking characteristics (Eckenstein and Baughman, 1984;
Kosaka et al., 1987; Rogers, 1992; DeFelipe, 1993; Chedotal et al.,
1994; Kawaguchi and Kubota, 1996, 1997; Bayraktar et al., 1997;
Gonchar and Burkhalter, 1997; Kawaguchi and Kondo, 2002;
Uematsu et al., 2008; Kubota et al., 2011). It is accepted that the
third group is more heterogeneous than the others, as various
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chemical markers are partially co-expressed with each other in
single interneurons. Furthermore, the composition of GABAer-
gic interneuron subgroups is dependent on the cortical layer of
the rat neocortex (Gonchar and Burkhalter, 1997; Uematsu et al.,
2008; Kubota et al., 2011; Ma et al., 2011). In L5 of the rodent
cortex, 50–70% and 20–30% of L5 interneurons are FS neurons
and SOM-producing neurons (SOM neurons), respectively. The
majority of the remaining interneurons belong to the third group
(non-FS/non-SOM neurons in the present study; Gonchar and
Burkhalter, 1997; Uematsu et al., 2008; Ma et al., 2011), as α-
actinin-expressing neurons are distributed mainly in superficial
layers and very sparsely in L5 (Uematsu et al., 2008; Ma et al.,
2011).

When animals execute their movements, excitatory neurons
including CSNs in the motor areas work in collaboration with
inhibitory interneurons, suggesting that the cortical local circuit
finely modulates the motor output signal (Matsumura et al., 1991,
1992; Beloozerova et al., 2003; Georgopoulos and Stefanis, 2007;
Merchant et al., 2008; Isomura et al., 2009). It is thus important
to understand how neighboring excitatory and inhibitory neurons
connect to CSNs in local circuits of the motor areas. In rodents,
CSNs have been shown to receive strong excitatory connections
from L3–5 pyramidal neurons (Kaneko et al., 1994,2000; Cho et al.,
2004b; Anderson et al., 2010). However, the direct connections of
inhibitory interneurons to CSNs have not been studied in detail.
In the present study, we examined the relationship between axon
varicosities, or boutons, of L5 interneurons with dendrites and cell
bodies of CSNs, because L5 interneurons were previously reported
to exert the greatest inhibitory control over L5 pyramidal neurons
(Katzel et al., 2011). By morphological analysis, we divided L5 FS
neurons into two types, FS1 and FS2, in terms of axonal arboriza-
tion. We then examined the local connections of FS1, FS2, SOM,
and non-FS/non-SOM interneurons to CSNs by combining retro-
grade visualization of CSNs (Kaneko et al., 1996, 2000; Cho et al.,
2004b) with whole-cell recording/labeling of interneurons in the
motor areas of adult transgenic rats that expressed fluorescent pro-
tein Venus under the control of the promoter for vesicular GABA
transporter (VGAT; Uematsu et al., 2008).

MATERIALS AND METHODS
ANIMALS
Fifty-six VGAT-Venus transgenic B line rats (Uematsu et al., 2008;
postnatal days 56–70) were used. Experiments were conducted in
accordance with the guidelines of the Committee for Animal Care
and Use of the Graduate School of Medicine, Kyoto University.
All efforts were made to minimize the suffering and number of
animals used in the present study.

IMMUNOHISTOCHEMISTRY OF GABAergic INTERNEURON MARKERS
Six transgenic rats were deeply anesthetized with chloral hydrate
(70 mg/100 g body weight) and perfused transcardially with
200 ml of 10 mM phosphate-buffered 0.85% saline (PBS; pH 7.4),
followed by 200 ml of 4% formaldehyde, 75%-saturated picric
acid, and 0.1 M Na2HPO4 (pH 7.0; adjusted with NaOH). The
brains were removed, cut into several blocks, and post-fixed with
the same fixative above for 4 h at 4˚C. For immunostaining of
GABA, 0.1% glutaraldehyde was added to the fixative used for

perfusion. After cryoprotection with 30% sucrose in PBS, the
blocks were cut into 30-μm-thick sections on a freezing micro-
tome. The sections were immunolabeled for GABA, PV, and SOM
as reported previously (Hioki et al., 2004). Briefly, the sections were
incubated with anti-GABA rabbit antibody (1:1000,A2052; Sigma,
St. Louis, MO, USA), mouse monoclonal anti-PV IgG (1:8000, P-
3088; Sigma) or rat anti-SOM IgG (1:250, MAB354; Chemicon,
Temecula, CA, USA) in PBS containing 0.3% Triton X-100 and
0.02% sodium merthiolate (PBS-X) and further incubated with
5 μg/ml AlexaFluor (AF) 594-conjugated goat antibody to rabbit
IgG (A-11037; Invitrogen, Eugene, OR, USA), to mouse IgG (A-
11032), or to rat IgG (A-11007). Fluorescence was observed and
photographed under epifluorescence microscope Axiophot (Zeiss,
Oberkochen, Germany) with appropriate filter sets: Venus, 450–
490 nm for excitation and 514–565 nm for emission; and AF594,
530–585 and ≥615 nm, or under a confocal laser-scanning micro-
scope LSM 5 Pascal (Zeiss) with appropriate sets of laser beams:
Venus, 488 nm for excitation and 505–530 nm for emission; and
AF594, 543 and ≥560 nm.

INJECTION OF RETROGRADE TRACER, WHOLE-CELL
RECORDING/LABELING, AND FIXATION
Rats were anesthetized by ether inhalation and intraperitoneal
injection of chloral hydrate (35 mg/100 g body weight). Three
microliters of 10% tetramethylrhodamine–dextran amine (TMR–
DA, MW 3000; D-3308; Invitrogen) dissolved in 0.1 M citrate–
NaOH, pH 3.0 (Kaneko et al., 1996), was injected into the cor-
ticospinal tract in the dorsal funiculus at the upper cervical seg-
ments of the spinal cord by pressure through a glass micropipette
attached to Picospritzer III (Parker Hannifin Corporation, General
Valve Division, Fairfield, NJ, USA).

After survival for 2–3 days, the rats were reanesthetized by
intraperitoneal injection of chloral hydrate (70 mg/100 g body
weight), perfused transcardially with 100 ml of the following cut-
ting solution at room temperature, and decapitated. The cutting
solution was composed of (in mM) 147 N -methyl-d-glucamine,
20 HEPES, 1 KCl, 1.3 KH2PO4, 2.5 MgSO4, 1 CaCl2, 10 glucose
(pH was adjusted to 7.4 by HCl), which were helpful to obtain
viable slices from adult rodent brain (Tanaka et al., 2008). The
brains were quickly removed and cut frontally into 500-μm-thick
slices in cutting solution at room temperature using a Linear Slicer
Pro 7 (Dosaka EM, Kyoto, Japan). Immediately after the cutting,
the slices were incubated at 20 ± 1˚C on a nylon mesh for at least
30 min in 95% O2/5% CO2-saturated artificial cerebrospinal fluid
(ACSF) containing (in mM) 125 NaCl, 2.5 KCl, 1.25 NaH2PO4, 1
MgSO4, 2 CaCl2, 26 NaHCO3, 20 glucose, 4 lactic acid, 2 pyru-
vic acid, and 0.4 ascorbic acid (pH 7.4, 315 mOsm/l; Galarreta
and Hestrin, 2002), and then transferred to a recording cham-
ber set at 30 ± 1˚C and perfused with ACSF. Recording pipettes
were made with a puller P97 (Sutter, Novato, CA, USA) and filled
with (in mM) 130 K-methylsulfate, 6.3 KCl, 10 HEPES, 20 Na2-
phosphocreatine, 0.2 EGTA, 4 Mg-ATP, 0.3 Na2-GTP, and 0.5%
biocytin (Sigma; pH 7.3, 295 mOsm/l; Galarreta and Hestrin,
2002), resulting in the resistance of 5–10 MΩ and liquid junc-
tion potential of 12 mV. Under the fluorescence microscope, we
recorded Venus-expressing neurons (Figures 1C,C′) in L5 of the
motor areas that contained many retrogradely TMR-labeled CSNs.

Frontiers in Neural Circuits www.frontiersin.org September 2011 | Volume 5 | Article 12 | 2

http://www.frontiersin.org/Neural_Circuits
http://www.frontiersin.org
http://www.frontiersin.org/Neural_Circuits/archive


Tanaka et al. Inhibitory inputs to corticospinal neurons

FIGURE 1 | Chemical and electrical properties of L5 GABAergic

interneurons in the motor areas. (A–B′′) Almost all PV- and SOM
immunopositive L5 neurons expressed Venus in the motor areas of
VGAT-Venus transgenic rats. (C,C′) A Venus-expressing cell was attached
and recorded with a patch electrode (arrowhead). (D–F) Left traces show
the responses of L5 FS neurons, SOM neurons, and non-FS/non-SOM
neurons, respectively, to 500-ms-long depolarizing current pulse injection.
Right traces display the shape of action potential, where a passive
component was subtracted from the raw trace (Kaneko et al., 1995). (G–H′)

Arrowheads indicate biocytin-labeled GABAergic interneurons (G,H) that
were immunoreactive for PV (G′) or SOM (H′). DIC, differential interference
contrast microscopy. Scale bar in (B′′) applies to (A–B′′), that in (C′) to
(C,C′), that in (D) to (D–F), and that in (H′) to (G–H′).

The responses of impaled neurons to current injections were
recorded with a current-clamp amplifier (Intracellular Record-
ing Amplifier Model IR-183; NeuroData Instruments, New York,
NY, USA), and the data were stored in a computer through an
analog-digital converter (PowerLab; AD Instruments, Castle Hill,
Australia). At the end of the experiments, the slices were fixed
for 20 h at 25˚C in 0.1 M sodium phosphate (pH 7.0) contain-
ing 3% formaldehyde, 0.03% glutaraldehyde, and 75%-saturated
picric acid.

VISUALIZATION OF RECORDED NEURONS AND RETROGRADELY
LABELED CSNs
After cryoprotection with 30% sucrose in PBS, the slices were
further cut into 30-μm-thick sections on a freezing microtome.
The sections were separately incubated as described in Table 1.
After the staining, the sections were mounted on gelatin-coated
glass slides, washed in tapping water, dried up, cleared in xylene,
and coverslipped with organic mounting medium MX (Mat-
sunami; Kishiwada, Japan). When necessary, cytoarchitecture was

Table 1 | Incubation steps of the sections for fluorescence and light

microscopies.

(1) Endogenous peroxidase activity was suppressed by incubation for 30 min

with 2% H2O2 in 1 ml of PBS.

(2) Incubated for 30 min with 10% normal donkey serum.

(3) Incubated at least for at least 12 h with a mixture of ABC-Elite (1:50),

5 μg/ml Marina blue-conjugated neutravidin and 0.5 μg/ml anti-TMR rabbit

antibody.

(4) ABC in the intracellularly labeled neurons was visualized blue black by

incubation for 30–45 min in 1 ml of DAB/nickel reaction mixture containing

0.02% DAB, 10 mM nickel ammonium sulfate, 0.0001% H2O2, and 50 mM

Tris–HCl (pH 7.6).

(5)The peroxidase in ABC was inactivated by incubation for 30 min with 2%

NaN3 in 500 μl of 50 mM Tris–HCl (pH 7.6).

(6) Incubated for 1 h with 10 μg/ml biotinylated anti-rabbit IgG goat antibody.

(7) Incubated for 1 h with ABC-Elite (1:100).

(8) Incubated for 30 min with 1 ml of BT–GO reaction mixture composed

of 0.6 μM BT, 3 μg/ml GO (259 U/mg), 3 mg/ml of β-D-glucose, 2% bovine

serum albumin, and 50 mM sodium phosphate (pH 7.4) for signal enhance-

ment of TMR immunoreactivity.

(9) Incubated for 1 h with ABC-Elite (1:100).

(10) ABC bound to TMR–DA-labeled CSNs neurons was developed red by

incubation for 30–45 min in 1 ml of TAPM/p-cresol reaction mixture consist-

ing 0.1% TAPM, 0.07% p-cresol, 0.002% H2O2, and 50 mM Tris–HCl (pH

7.6).

Each section was separately incubated in 100 μl of PBS-X unless otherwise

stated. All the incubations were carried out at room temperature and followed

by a rinse with PBS or PBS-X.

References for BT–GO reaction (Kuramoto et al., 2009) and for TAPM/p-cresol

reaction (Kaneko et al., 1994). ABC, avidin–biotinylated peroxidase complex; BT,

biotinylated tyramine; DAB, diaminobenzidine-4HCl; GO, glucose oxidase;TAPM,

Tris–aminophenylmethane; TMR–DA, tetramethylrhodamine–dextran amine.

examined by counterstaining for Nissl with 0.2% cresyl violet after
removal of glass covers. The sources of antibodies and reagents
used in the steps were as follows; avidin-biotinylated peroxi-
dase complex (ABC-Elite, Vector, Burlingame, CA, USA); Marina
Blue-conjugated NeutrAvidin (Invitrogen); affinity-purified anti-
TMR rabbit antibody (Kaneko et al., 1996); biotinylated anti-
rabbit IgG goat antibody (BA-1000, Vector); diaminobenzidine-
4 HCl (DAB; Dojindo, Kumamoto, Japan); biotinylated tyra-
mine (BT; Kuramoto et al., 2009); glucose oxidase (GO; Nacalai
Tesque, Kyoto, Japan); Tris–aminophenylmethane (TAPM; Nacalai
Tesque); p-cresol (Sigma). Three hours after incubation in the step
(3), the sections were examined under epifluorescence microscope
Axiophot with the filter set for Marina Blue (359–371 nm for exci-
tation and 397–490 nm for emission) to determine which section
contained the cell body of the intracellularly labeled neuron. The
mouse monoclonal anti-PV IgG (1:8000) or rat anti-SOM IgG
(1:250) was added into the incubation well containing the section
with the FS or non-FS neuron cell body, respectively. After fur-
ther incubation for at least 8 h, the section containing the cell
body was incubated for 1 h with 5 μg/ml AF594-conjugated goat
antibody to mouse IgG or to rat IgG. The section was observed
again under the epifluorescence microscope with the filter sets
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for AF594 (530–585-nm excitation and ≥615-nm emission) and
Marina Blue to determine whether intracellularly labeled neurons
expressed PV or SOM. The section was then incubated again for 4 h
with 0.5 μg/ml anti-TMR rabbit antibody to recover detectability
of TMR immunoreactivity in the steps (6)–(10) in Table 1. After
these additional steps, the sections were returned to the step (4).

ELECTRON MICROSCOPY
The electron microscopic examination was performed as reported
previously (Kaneko et al., 2000; Cho et al., 2004b). Briefly, after
intracellular labeling with biocytin, the slices were fixed at 4˚C
overnight with 2% paraformaldehyde and 0.1% glutaraldehyde in
0.1 M sodium phosphate (pH 7.4). The slices were embedded in
low temperature-melting gelatin (12.5% in PBS; Nacalai Tesque).
After solidified by cooling and post-fixed at 4˚C for 3 h with 4%
paraformaldehyde and 75%-saturated picric acid in 0.1 M sodium
phosphate (pH 7.0), the slice in the gelatin blocks was further cut
into 50-μm-thick sections with a Microslicer (Dosaka EM).

The endogenous peroxidase activity in the sections was sup-
pressed by incubation with H2O2 [Table 1, step (1)] and the
sections were incubated for 30 min with 10% normal donkey
serum (NDS) in PBS. The following incubations were carried out
at 4˚C in PBS containing 10% NDS and 0.2% Photoflo (FUJI-
FILM, Tokyo, Japan) unless otherwise stated. After overnight
incubation with a mixture of ABC-Elite (1:100) and 0.5 μg/ml
affinity-purified anti-TMR rabbit IgG, the bound ABC was visual-
ized blue black by peroxidase reaction in the DAB/nickel reaction
mixture [as described in Table 1, step (4)]. After inactivation
of the peroxidase in ABC with NaN3 [Table 1, step (5)], the
sections were incubated for 4 h with 10 μg/ml biotinylated anti-
rabbit IgG goat antibody and subsequently for 4 h with ABC-Elite
(1:50). The bound ABC in the sections were developed brown for
20–40 min at room temperature in the DAB reaction mixture con-
taining with 0.02% DAB and 0.001% H2O2 in 50 mM Tris–HCl
(pH 7.6). The sections were post-fixed with 1% osmium tetraox-
ide in 0.1 M phosphate buffer, stained with 1% uranyl acetate,
dehydrated in ethanol series, and flat-embedded in epoxy-resin
Luveak (Nacalai Tesque). Once the resin was polymerized, the
tissue samples were cut into ultrathin sections (70 nm) on an
ultramicrotome Reichert-Nissei Ultracut S (Leica, Vienna, Aus-
tria). The ultrathin sections were mounted on one-pore grids and
examined with an electron microscope H-7650 (Hitachi, Tokyo,
Japan). We used the tilting apparatus coupled with rotation in the
electron-microscopic observation, and the maximum tilting angle
was ±45˚.

MORPHOLOGICAL RECONSTRUCTION OF SINGLE GABAergic
INTERNEURON AND ANALYSIS OF CLOSE APPOSITIONS BETWEEN
THEIR AXON BOUTONS AND THE DENDRITES OF CSNs
The cell body, dendrites, and axons of intracellularly stained
GABAergic interneurons were reconstructed under a microscope
attached with camera lucida apparatus. During the reconstruction
of the axon collaterals, we examined, frequently changing the focus
of the microscopic with a 40× (N.A. = 0.95) or 100× (N.A. = 1.4,
oil immersion) Plan Apo objective lens (Nikon, Tokyo, Japan),
whether or not the axon boutons were closely apposed to the
dendritic processes of retrogradely labeled CSNs. Axon boutons

located between the slice surface and the intracellularly labeled
cell body (usually 50–70 μm deep from the slice surface) were not
included in the present analyses, because the brain tissue near the
slice surface was largely damaged.

To examine the distribution of axon boutons of FS neurons
three-dimensionally, the axon boutons were plotted by using
Neurolucida (MicroBrightField, Williston, VT, USA) installed on
microscopeVANOX (Olympus,Tokyo, Japan) with a 40×objective
lens (PLAN Apo, N.A. = 0.95) and a 30′′ monitor. The histogram
of the axon bouton density of FS neurons was fitted with a
mixture curve of Gaussian distributions by the maximum like-
lihood estimation using a program written in software Igor Pro
5.0 (WaveMetrics Inc., Lake Oswego, OR, USA). A unimodal,
bimodal or trimodal fitting curve was selected on the basis of the
Bayesian Information Criterion (BIC) for parameters (Schwarz
and Schmitz, 1997).

STATISTICS
When we compared all pairs between the three or four interneuron
subgroups, we used Tukey’s post hoc multiple comparison test fol-
lowing one-way analysis of variance (ANOVA) or chi-square test
with Bonferroni correction (Tables 2 and 4; Figure 7). For compar-
ison in FS neuron group, we used two-tailed t -test or Bonferroni
multiple comparison test following two-way ANOVA (Table 3;
Figure 2). Each statistic and p-value was calculated with Prism 5.0
(Graphpad Software, San Diego, CA, USA).

RESULTS
CLASSIFICATION OF INTERNEURONS IN L5 OF THE MOTOR AREAS BY
ELECTRICAL AND CHEMICAL PROPERTIES
Before examining the local connection of Venus-expressing
interneurons to CSNs in VGAT/Venus transgenic rats, we exam-
ined the colocalization of GABA immunoreactivity and Venus
fluorescence in L5 interneurons of motor areas. Venus-expressing
neurons were observed in 434 of 441 GABA-immunopositive cells
(98.4 ± 0.4%, n = 3 rats) and, inversely, all the Venus-expressing
neurons were immunoreactive for GABA. We further examined
PV (Figures 1A–A′′) or SOM immunoreactivity (Figures 1B–B′′)
in Venus-expressing neurons. PV and SOM immunoreactivities
were observed in 51.3 ± 0.04% (158 of 308) and 29.5 ± 0.1% (94
of 319) of Venus-positive neurons, respectively. Hence, these two
interneuron subgroups accounted for approximately 80% of the L5
inhibitory interneurons in the motor areas, confirming the results
of a previous study in the frontal cortex (Uematsu et al., 2008). The
remaining 20% of interneurons were considered to belong to the
other interneuron subgroup(s) as reported previously (Uematsu
et al., 2008; Kubota et al., 2011).

We defined FS neurons as those satisfying the following electri-
cal properties (McCormick et al., 1985): (1) a high-frequency spike
train of at least 50 Hz was sustained when a strong depolarizing
current pulse was injected; (2) the spike width at half amplitude
from the resting potential was less than 0.76 ms at 30˚C, which was
estimated from 0.32 + 0.2 ms (mean + 2 SD) at 36˚C by consider-
ing the temperature factor of spike width (Q10 = 0.525; Thompson
et al., 1985); (3) fast after hyperpolarization (AHP) was larger
than medium-range AHP; and (4) little or no spike frequency
adaptation was observed. We obtained 32 FS neurons satisfying

Frontiers in Neural Circuits www.frontiersin.org September 2011 | Volume 5 | Article 12 | 4

http://www.frontiersin.org/Neural_Circuits
http://www.frontiersin.org
http://www.frontiersin.org/Neural_Circuits/archive


Tanaka et al. Inhibitory inputs to corticospinal neurons

Table 2 | Electrical properties of each subgroup of GABAergic interneurons.

Property FS (n = 32) SOM (n = 11) Non-FS/non-SOM (n = 7)

PROPERTIES DEFINING FS

Spike width at half amplitude (ms) 0.54 ± 0.10a 0.99 ± 0.21*** 0.85 ± 0.45**

Spike rise rate (mV/ms) 249.7 ± 71.4 142.4 ± 40.4*** 160.1 ± 63.6**

Spike fall rate (mV/ms) −178.4 ± 56.3 −91.0 ± 25.6*** −108.6 ± 41.7**

Fast AHPb (mV) −10.8 ± 5.7 −5.25 ± 7.8** −7.4 ± 3.4

Medium-range AHPb (mV) −2.5 ± 1.8 −2.4 ± 2.9 −3.7 ± 3.7

Maximal frequencyc (Hz) 110.9 ± 34.7 (60–180) 56.3 ± 30.0*** (30–104) 66.7 ± 34.9* (14–100)

Adaptationd 0/32 11/11*** 5/7***

OTHER PROPERTIES

Resting potential (mV)e −72.6 ± 2.7 −72.9 ± 2.0 −73.6 ± 4.5

Input resistance (MΩ) 224.1 ± 117.7 289.9 ± 147.1 347.6 ± 169.3

Membrane time constant τm (ms)f 11.6 ± 5.8 19.5 ± 8.5** 14.5 ± 5.9

First time constant τ1 (ms)f 0.71 ± 0.35 0.74 ± 0.29 0.74 ± 0.25

Electrotonic lengthg 0.81 ± 0.14 0.65 ± 0.12** 0.74 ± 0.10

Spike amplitude (mV) 82.4 ± 9.4 83.3 ± 7.6 82.5 ± 5.8

aMean ± SD.
bThe sizes of fast and medium-range AHPs were measured at 3.5 and 27 ms, respectively, after the spike onsets (Kawaguchi, 1993).
cThe maximal frequency was measured only in neurons showing tonic responses to 500-ms-long current injection: all FS neurons, seven SOM neurons and six

non-FS/non-SOM. Frequency range was indicated in the parentheses.
dAdaptation was examined by the ratio of the ninth to the third inter-spike intervals in a representative record containing more than 20 Hz (Gottlieb and Keller, 1997;

Cho et al., 2004a). When the adaptation ratio was more than 1.1, the neuron was judged to be adapting or accommodating. Two non-FS/non-SOM neurons were

irregular spiking as reported frequently in VIP-immunopositive neurons (Cauli et al., 1997).
eJunction potential was compensated.
fTime constants were measured by injecting 0.2 ms depolarizing pulses of 1 nA. Potential decay from 0.4 to 50 ms after the current injection was mostly well fitted

with a double exponential curve.
gElectrotonic length of an equivalent sealed-end cylinder was estimated by expression π/

√
τm/τ1 − 1

*p < 0.05, **p < 0.01, ***p < 0.001 compared with FS neurons by Tukey’s post hoc test following one-way ANOVA or chi-square test with Bonferroni correction.

Table 3 | Electrical properties of FS1 and FS2 neurons.

Property FS1 (n = 7) FS2 (n = 13)

Resting potential (mV) −73.5 ± 2.3 −71.7 ± 3.3

Input resistance (MΩ) 149.7 ± 38.8 278.9 ± 156.9*

Membrane time constant τm (ms) 9.3 ± 2.8 12.6 ± 7.0

First time constant τ1 (ms) 0.64 ± 0.21 0.74 ± 0.44

Electrotonic length 0.83 ± 0.10 0.78 ± 0.09

Spike amplitude (mV) 81.0 ± 4.2 81.0 ± 10.3

Spike width at half amplitude (ms) 0.56 ± 0.11 0.56 ± 0.10

Spike rise rate (mV/ms) 236.2 ± 50.3 210.7 ± 58.7

Spike fall rate (mV/ms) −174.6 ± 55.3 −149.2 ± 48.8

Fast AHP (mV) −11.7 ± 2.8 −13.3 ± 4.1

Medium-range AHP (mV) −1.6 ± 1.8 −3.0 ± 2.2

Maximal frequency (Hz) 114.0 ± 34.8

80–178

106.8 ± 19.5

80–148

Adaptation ratio 1.02 ± 0.03 1.02 ± 0.05

For further detail, see the footnote ofTable 2.

*p < 0.05 compared with FS1 and FS2 neurons by the two-tailed t-test.

these criteria in L5 of the motor areas by intracellular recording
and labeling with biocytin through patch pipettes under the fluo-
rescent microscopy in the adult rat neocortex (Figures 1C,C′D).
Some FS neurons were confirmed to be immunoreactive for PV

as shown in Figures 1G,G′. We also found 18 non-FS neurons in
L5 (Figures 1E,F), which we further divided into 11 SOM neu-
rons and 7 non-FS/non-SOM neurons by the presence or absence
of SOM immunoreactivity (Figures 1H,H′). In addition to the
electrical properties that defined FS neurons, FS neurons were
characterized with shorter membrane time constants and longer
electrotonic lengths than those of SOM neurons (Table 2), as
previously reported (Kawaguchi, 1993; Kawaguchi and Kubota,
1993).

MORPHOLOGICAL ANALYSIS OF AXONS OF FS NEURONS IN L5 OF THE
MOTOR AREAS
Twenty of the 32 FS neurons were successfully reconstructed under
the microscope attached with a camera lucida apparatus. As there
was a large diversity in axonal density of these 20 FS neurons
(Figures 2A–D), we examined whether or not FS neurons were
classified into several subgroups by the distribution of their axon
boutons in a three-dimensional space with the Neurolucida. Data
were collected in the space deeper than the intracellularly labeled
cell body, which was usually 50–70 μm from the slice cut surface,
as the cut surface was damaged and unsuitable for the analysis.
The frequency histogram of FS neurons against the total number
of axon boutons in a hemisphere, the center of which was the
cell body, was fitted with Gaussian distributions (Figure 2E). The
histogram was best fitted with a single Gaussian distribution as
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Table 4 | Morphological properties of FS1, FS2, SOM, and Non-FS/non-SOM neurons.

Property FS1 FS2 SOM Non-FS/non-SOM

Soma size (μm2) 100.8 ± 26.9 (n = 7) 88.3 ± 17.5 (n = 13) 105.8 ± 19.3 (n = 5) 87.9 ± 31.2 (n = 5)

Horizontal dendritic spread (μm) 286.1 ± 91.3 (7) 315.9 ± 107.5 (13) 333.1 ± 25.2 (5) 370.4 ± 154.6 (5)

Vertical dendritic spread (μm) 604.1 ± 120.4 (7) 476.4 ± 110.6 (13) 641.8 ± 165.6 (5) 607.9 ± 242.9 (5)

Total axon length (mm) (A) 39.8 ± 13.8 (5) 11.9 ± 3.7** (5) 20.8 ± 8.4* (5) 13.0 ± 9.2** (5)

Inter-bouton interval (B) (μm) 4.3 ± 0.3 (5) 4.4 ± 0.4 (5) 3.7 ± 0.2 (5) 5.0 ± 0.8††(5)

Estimated number of total boutonsa (A/B) 9330 ± 3436 (5) 2692 ± 757** (5) 5627 ± 2284 (5) 2573 ± 1744** (5)

Apposition rateb (%) 6.2 ± 2.9 (5) 8.2 ± 2.4 (5) 4.2 ± 1.1 (5) 7.2 ± 5.4 (5)

aThe total number of boutons was estimated by dividing total axon length by inter-bouton interval (A/B).
bApposition rate was calculated by dividing the number of close appositions by the estimated total number of boutons.

*p < 0.05, **p < 0.01 compared with FS1 cells or ††p < 0.01 compared with SOM neurons by Tukey’s post hoc test following one-way ANOVA.

judged by BIC (see Materials and Methods), where a smaller BIC
value indicated better fitting.

Although this simple analysis failed to show diversity in FS
neurons, we observed a large total number (≥540) of axon bou-
tons in the analyzed hemisphere for some neurons, and a small
difference between BIC values of the optimal single Gaussian dis-
tribution and the optimal mixture curve of Gaussian distributions
(266.7 vs. 268.4, respectively). We therefore analyzed the plotted
data by calculating the local density of the axon boutons (LDAB)
in an unit voxel with the parameters of hemisphere radius r and
voxel size x (Figure 2F). The mean LDAB was then obtained by
averaging the LDAB in the voxels that contained at least one bou-
ton. Thus, the volume containing no axon boutons was excluded
from the averaging of LDAB. By varying x and r, the frequency
histogram against the mean LDAB was fitted with the single Gauss-
ian distribution and the mixture curve of two distributions, and
the BIC value of the mixture curve of two distributions [BIC(2)]
was compared with that of the single distribution [BIC(1)]. The
BIC(2) of the mean LDAB was smaller than the BIC(1) in a wide
range of r and x (blue region in Figure 2G). Figure 2H shows
the histogram with the parameters (r = 111 μm, x = 35 μm) that
resulted in the largest {BIC(1) − BIC(2)}. At the same parame-
ters, the BIC(3) was larger than the BIC(2), indicating that the
histogram was best fitted with the mixture curve of two Gauss-
ian distributions. We thus divided the 20 FS neurons into two
subgroups, 7 FS1 and 13 FS2 neurons, as defined by a mean LDAB
higher and lower, respectively, than 2.17 × 10-4/μm3 (indicated by
an arrow in Figure 2H). FS neurons of Figures 2A,B were classified
as FS1 neurons (the value of mean LDAB: 2.23 and 2.22, respec-
tively), while those of Figures 2C,D were classified as FS2 neurons
(the value of mean LDAB: 1.08 and 1.42, respectively). Further
examples are shown in Figure 4. Since the axonal arborization of
FS neurons often contained a large volume without any axon bou-
ton around their cell bodies, the total bouton number might not
effectively represent their axonal density. This may account for the
observed segregation of the FS subgroups in terms of the mean
LDAB with appropriate parameters, but not in terms of the total
bouton number.

When electrical properties were compared between FS1 and
FS2 neurons, the input resistance of FS1 neurons was significantly
smaller than that of FS2 neurons (p < 0.05, two-tailed Student’s
t -test). In contrast, FS1 and FS2 neurons had similar kinetics

of action potentials, maximum spike frequency, adaptation ratio
and afterpotentials (Table 3). Morphologically, the size of FS1 cell
bodies had a tendency to be larger than that of FS2 cell bodies,
although the difference was not statistically significant (Table 4).
The dendritic arborizations differed between FS1 and FS2 neu-
rons (Figures 2I,J). Sholl analyses of the dendritic arbors revealed
that, at distances of 60–100 μm from the cell body, the number of
the dendritic intersections was significantly larger for FS1 neurons
than for FS2 neurons (Figure 2K). These differences in electrical
and morphological properties are considered to support the seg-
regation of L5 FS neurons into the two subgroups, because these
properties are independent of axonal arborization.

As expected from the classification using mean LDAB, the total
axon length of FS1 neurons was significantly longer than that of
FS2 neurons (Table 4). Because the inter-bouton intervals were
virtually identical between FS1 and FS2 neurons (Table 4), it was
likely that the differences in mean LDAB between the two sub-
groups mainly resulted from differences in the density of axon
fibers.

DISTRIBUTION OF THE LOCAL CONNECTION OF GABAergic
INTERNEURONS TO CSNs
To examine the inputs of GABAergic interneurons to CSNs, we
retrogradely labeled CSNs by injection of TMR–DA dissolved in
an acidic vehicle into the corticospinal tract (Kaneko et al., 1996).
More than 45% of pyramidal neurons in L5 were immunopositive
for TMR (Figure 3A). Since the largest percentage of retrogradely
labeled neurons is approximately 50% in L5 of the motor areas
after injection of potent retrograde tracers to the spinal cord
(Miller, 1987; Kaneko et al., 2000; Cho et al., 2004b), the vast
majority of CSNs were labeled retrogradely in our present study.
The cell bodies and basal and apical dendritic shafts of CSNs were
well visualized by this retrograde labeling method, whereas den-
dritic spines or intracortical axon collaterals of them were poorly
labeled.

Using cortical slices containing retrogradely labeled CSNs, the
32 FS cells, 11 SOM neurons, and 7 non-FS/non-SOM neu-
rons were intracellularly recorded and stained by the whole-
cell patch clamp method. On the basis of sufficient retrograde
labeling of CSNs and successful intracellular staining of axon
collaterals of recorded interneurons, five neurons each from
FS1 (Figure 3B), FS2, SOM (Figure 3C) and non-FS/non-SOM
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FIGURE 2 | Morphological analysis of axons of L5 FS neurons. (A–D)

Two-dimensional reconstructed FS neurons. Note that the axonal arborization
of some FS neurons was much denser than that of other FS neurons. Black
filled circles point to the cell bodies, and black lines are axons. (E) The
frequency histogram of FS neurons against the total number of axon boutons
in a half sphere as shown in (F) [center, cell body; radius, 111 μm in (F)]. This
histogram was fitted better with a single Gaussian curve (red line) than with a
mixture curve of two Gaussian distributions as judged by the BIC method. (F)

The method for calculation of voxel-based local density of the axon boutons
(LDAB). The hemisphere (radius = r ) located under the intracellularly labeled

cell body in the 500-μm-thick slice was divided into voxels with the size of x,
and the mean LDAB was calculated as the average of axon bouton density of
voxels that contained at least one bouton. (G) {BIC(1)-BIC(2)} values of fitting
curves for the frequency histogram of L5 FS neurons against the mean LDAB.
The {BIC(1)-BIC(2)} values was plotted with pseudocolor in a two-dimensional
parameter space of radius r and voxel size x. The frequency histogram of FS
neurons was fitted with a single Gaussian curve or with a mixture curve of
two Gaussian distributions. Since smaller BIC indicates better fitting, blue
points imply that the mixture curve of two Gaussian distributions better fits
the histogram than a single curve. Arrow indicates the parameter point

(Continued )
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FIGURE 2 | Continued

(r = 111 μm, x = 35 μm) resulting in the maximum {BIC(1)-BIC(2)}. (H) The
histogram of FS neurons against mean LDAB at parameters of r = 111 μm and
x = 35 μm. This histogram was fitted better by the mixture curve of two
Gaussian distributions (red line) than the single or mixture curve of three.
Arrow indicates the point that the probability densities of the two Gaussian
distributions are identical (2.18 × 10−4/μm3). Thus, FS neurons with higher or

lower mean LDAB than this point were defined as FS1 or FS2 neurons,
respectively. (I,J) Reconstructed dendrites and somata of FS1 and FS2
neurons. (K) The Sholl analysis of FS1 (blue) and FS2 neurons (red). The data
are shown as mean ± SD. The difference was statistically significant at
distances 60–100 μm from the cell body (*p < 0.05, ***p < 0.001, Bonferroni
multiple comparison test). Scale bar in (D) applies to (A–D), and that in (J)

to (I,J).

FIGURE 3 | Light and electron microscopic findings of close

appositions formed between CSN somata/dendrites and the axons of

intracellularly labeled GABAergic interneurons. (A) Retrograde labeling
of CSNs after injection into the corticospinal tract of TMR–DA dissolved in
an acidic vehicle. Almost all the dendrites of CSNs were visualized red by
immunostaining for TMR with the TAPM/p-cresol reaction. (B,C)

Biocytin-labeled FS (B) and SOM neurons (C) were developed black by the
ABC method with the DAB/nickel reaction. (D–F) Many axon boutons of
intracellularly labeled interneurons were closely apposed to a cell body
[arrowheads in (D)], a thick apical dendrite (E) and basal or oblique dendrites
(F) of CSNs. (G–G′′) Some close appositions found in the light microscope
were examined electron-microscopically. TMR and biocytin were visualized
brown and black with the DAB and DAB/nickel reactions, respectively. Many
axosomatic and axodendritic appositions were found to form symmetrical
synapses. Black arrowheads in (G′′) indicate the symmetric synaptic
contact that was made between the biocytin-labeled bouton (B) and the
dendrite (D) with TMR immunoreactivity (arrows). White arrowheads in (G)

and (G′) point to the boutons that did not contact withTMR-immunopositive
structures. (H) Another example of symmetric synapses made on the cell
body (CB) containing TMR immunoreactivity (arrows). N, cell nucleus. (H′)

High-power view of the synaptic site. Scale bar in (C) applies in (B,C), that
in (F) to (D–F), that in (G) to (G,G′), and that in (G′′) to (G′′,H′).

neurons were selected for further morphological analyses. We
observed many appositions between the axon boutons of intra-
cellularly stained interneurons and the cell bodies/dendrites of

TMR-immunopositive CSNs (arrows in Figures 3D–F). The pale
staining of intracortical axons of CSNs helped us to identify the
dendrites of CSNs; otherwise, the identification might be inter-
fered by dense arborization of CSN axons. To examine how
frequently the appositions formed synapses, we used electron
microscopy to examine 25 appositions formed by the axons of
FS neurons and 10 appositions by those of non-FS neurons
in serial ultrathin sections (Figures 3G–H′). In the appositions
examined, symmetric synapses were identified using the follow-
ing criteria (Peters et al., 1991; Buhl et al., 1994; Ingham et al.,
1998; Kubota and Kawaguchi, 2000): the accumulation of at least
three synaptic vesicles at the presynaptic site, a widened synap-
tic cleft with parallel presynaptic and postsynaptic membranes,
and a slightly thickened postsynaptic membrane. Of the 25 axo-
dendritic and 10 axosomatic appositions examined, 18 (72%;
13 of 18 FS neurons and 5 of 7 non-FS neurons) and 8 (80%;
6 of 7 FS neurons and 2 of 3 non-FS neurons) were found
to make symmetric synapses with TMR-immunopositive den-
drites (Figures 3G–G′′) and cell bodies (Figures 3H–H′), respec-
tively. All of the other electron-microscopically examined boutons
had postsynaptic targets other than TMR–DA immunopositive
dendrites or cell bodies.

The distribution of appositions between axon boutons of each
intracellularly labeled interneuron and retrogradely labeled CSN
somata/dendrites is shown in Figures 4–6 after projection of the
axons to frontal planes. Axon collaterals of FS1 and FS2 neurons
were chiefly located in L5, but did not avert the adjacent layers
(Figure 4). In contrast to FS neurons, SOM neurons had ascending
axonal arbors up to L1 (Figure 5), while four of five non-FS/non-
SOM neurons had descending axonal arbors into L6 (Figure 6).
The inter-bouton interval of SOM neurons was smaller than those
of the other three subgroups, which is consistent with previous
findings (Karube et al., 2004; Table 4).

When FS1, FS2, SOM, and non-FS/non-SOM interneuron sub-
groups were analyzed, the largest average number of appositions
to CSN somata/dendrites was observed with boutons sent by
FS1 neurons (p < 0.01, Tukey’s post hoc test following one-way
ANOVA; Figure 7A). The number of apposed boutons origi-
nating from single FS2 neurons or SOM neurons was approxi-
mately half of those arising from single FS1 neurons. The boutons
apposed to CSN somata/dendrites were least frequently formed by
non-FS/non-SOM neurons (Figure 7A).

When appositions to apical dendrites and their branches of
CSNs were examined by counting appositions in L1–4, SOM
neurons most frequently formed appositions to CSN dendrites
of the four interneuron subgroups (p < 0.05, Tukey’s post hoc
test following one-way ANOVA; Figure 7B). This is likely
because SOM neurons contain many Martinotti cells, which
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FIGURE 4 |The distribution of axon boutons of FS neurons in close

appositions to CSNs. Axons of L5 FS1 (A–E) and FS2 neurons (F–J) were
reconstructed with camera lucida and projected to the frontal plane. Black
lines and filled circles are axons and cell bodies of FS neurons, respectively.
Blue and red circles indicate the axodendritic and axosomatic appositions,
respectively. Scale bar in (J) applies to (A–J).

are characterized by emitting axons ascending toward L1–3
(Kawaguchi and Kubota, 1997; Karube et al., 2004; Wang et al.,
2004). In addition, relative frequency of appositions in L5 was
higher (72.8 ± 19.7%) in SOM neurons than that in L1–4.
Together with those of other interneurons (>95%), this result
showed that numerically the strongest innervation of L5 interneu-
rons was onto the cell bodies and proximal/basal dendrites.

Since previous studies have indicated that axons of FS neurons
frequently target the cell bodies of pyramidal neurons (DeFelipe,
1997; Somogyi et al., 1998; Uematsu et al., 2008), we next com-
pared how many axosomatic appositions to CSNs were formed
between the four subgroups. Of appositions of FS1 and FS2 neu-
rons, 31.5 and 27.3%, respectively, formed axosomatic contacts,
whereas only 7.4% of appositions of SOM neurons made axoso-
matic contacts (Figure 7C, p < 0.05; Tukey’s post hoc test following
one-way ANOVA). Although more than 68% of the appositions
of FS neurons were formed on the dendrites of CSNs, these
data clearly suggest that FS1 and FS2 neurons prefer CSN cell
bodies as their targets for inhibition when compared to SOM
neurons. The proportion of axosomatic appositions to the total
appositions of non-FS/non-SOM neurons was between those of
FS and SOM neurons (Figure 7C). Furthermore, we analyzed
how many appositions were formed between individual interneu-
rons and individual CSN somata (Figure 7D). The numbers of
axosomatic appositions per CSN soma were similar between the
four interneuron subtypes. On the contrary, the numbers of CSN

FIGURE 5 |The distribution of axon boutons of SOM neurons in close

appositions to CSNs. Axons and dendrites of L5 SOM neurons were
reconstructed and projected to the frontal plane. Black lines and filled
circles indicate the axons and cell bodies of SOM neurons, respectively.
Blue and red circles indicate the axodendritic and axosomatic appositions,
respectively. The dendrites were reconstructed dark green. Note that a
considerable number of appositions were found in L1–3. Scale bar in (E)

applies to (A–E).

somata per interneuron were different between the four sub-
types. On average, single FS1 neurons innervated 59.0 ± 16.2 CSN
somata and the other three subtypes sent their axon boutons to
significantly fewer numbers of CSN somata (25.0 ± 18.1 for FS2,
8.4 ± 7.9 for SOM, and 10.6 ± 9.3 for non-FS/non-SOM, p < 0.01;
Tukey’s post hoc test following one-way ANOVA). These results
indicate that FS1 neurons innervate twice to seven times more
CSN somata than the other interneuron subtypes with as many
axosomatic appositions per CSN.

DISCUSSION
In the present study, we morphologically examined connections of
FS, SOM, and non-FS/non-SOM inhibitory interneurons to CSNs
in L5 of adult rat motor areas by combining intracellular label-
ing with retrograde visualization of CSNs. L5 FS neurons were
divided into two subgroups in terms of their axonal arborization,
and single FS1 neurons with dense axonal arborization sent at
least twofold greater number of inhibitory axon boutons to CSNs
than the other three subgroups (Figure 7E). Axons of FS and
non-FS/non-SOM neurons were predominantly located in L5 and
innervated the basal dendrites and cell bodies of CSNs, whereas
SOM neurons extended their axons to L1–4 and showed a tendency
to target the basal and apical dendrites.
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FIGURE 6 |The distribution of axon boutons of non-FS/non-SOM

neurons in close appositions to CSNs. Axons and dendrites of L5
non-FS/non-SOM neurons were reconstructed and projected to the frontal
plane. Black lines and filled circles indicate the axons and cell bodies of
non-FS/non-SOM neurons, respectively. Blue and red circles indicate the
axodendritic and axosomatic appositions, respectively. The dendrites were
reconstructed dark green. Note that the appositions were much fewer than
FS or SOM neurons. Scale bar in (E) applies to (A–E).

TWO TYPES OF L5 FS NEURONS
The present results suggest that L5 FS neurons can be classified
into two subgroups in terms of their axonal arborization. This
classification was supported by the statistically significant differ-
ences in input resistance and dendritic arborization between the
two subgroups. It is well established that FS neurons include basket
cells and chandelier cells (Kawaguchi, 1995), and this heterogene-
ity might account for the presence of two types of L5 FS neurons.
However, we found no chandelier cells in the 20 reconstructed FS
neurons, and all the FS neurons showed a preference (approxi-
mately 30% of their appositions) for axosomatic appositions with
CSNs. Besides chandelier cells, there is some evidence of a mor-
phological heterogeneity of FS neurons. For example, Kawaguchi
and Kondo (2002) described a wide-arbor FS neuron type with
horizontal axon spread of 400–800 μm in addition to FS basket
neurons. However, as we observed no FS1 or FS2 neurons with
a horizontal axonal arborization of more than 400 μm, no FS
neurons were classified as wide-arbor cells. Although the term
“FS” was not used in the classification, Wang et al. (2002) divided
non-accommodating basket cells, presumably including many FS

FIGURE 7 | Quantitative comparisons of appositions formed between

the axon boutons of L5 interneuron subgroups and somata/dendrites

of CSNs. (A) Total number of appositions. The apposition number of single
FS1 neurons was at least twofold more numerous than the other
interneurons. (B) The number of appositions in L1–4. Of the four groups,
SOM neurons most frequently formed appositions to the apical dendrites
of CSNs. (C) Relative frequency of axosomatic appositions of FS1 and FS2
neurons were in the same range, and significantly higher than that of SOM
neurons. (D) The histogram of number of appositions per CSN soma. In four
interneuron subgroups, average of the number of appositions per CSN
soma was 2.2—2.8. (E) Summary diagram of local inhibitory connections of
single FS1, FS2, SOM, and non-FS/non-SOM neurons to CSNs. Arrows
indicate the relative frequency of apposed boutons per neuron (for further
detail, see text). (F) Presumed inhibitory impact at the CSN soma of each
L5 interneuron subgroup. The impact was calculated as [the number of
appositions made by an interneuron as shown in (A)] × [the relative
frequency of the interneuron subgroup in L5] × [inhibitory current amplitude
per apposition (Wang et al., 2002; Xiang et al., 2002; Silberberg and
Markram, 2007)]. The presumed impacts of FS1 and FS2 neuron subgroups
were comparable to each other, and much larger than that of SOM group.
The presumed impact of non-FS/non-SOM neurons was not calculated,
because no reliable data of inhibitory current amplitude is available for
these neurons. All the data were shown as mean ± SD. *p < 0.05,
**p < 0.01, ***p < 0.001 by Tukey’s post hoc multiple comparison test
following one-way ANOVA.

neurons, into small, nest and large basket cells, and found a highly
dense axonal plexus around the cell body of small and nest basket
cells. Although these presumable FS neurons have been studied
specifically in L2–4, small basket cells and nest ones in that study
might correspond to the FS1 neurons in the present study.
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Parvalbumin-producing cortical neurons, which are almost
equal to FS neurons, exhibit heterogeneous chemical profiles.
Approximately 40% of PV-immunopositive neurons were shown
to express mRNA for cortistatin in the rat neocortex (de Lecea et al.,
1997), although approximately one-third of cortistatin-expressing
neurons showed SOM immunoreactivity. In addition, some PV-
immunopositive neurons were reported to be immunoreactive
for preprotachykinin A, a precursor of substance P, in the rat
frontoparietal cortex (Kaneko et al., 1998), while 46% of PV-
immunopositive neurons were immunopositive for substance P
in L4–5 of the rat primary somatosensory cortex (Vruwink et al.,
2001). Recently, in the rat primary somatosensory cortex, David
et al. (2007) have found that the number of VIP-immunopositive
boutons on somata/dendrites divides PV-immunopositive neu-
rons into two subgroups. Further, the subgroup receiving dense
VIP-immunopositive boutons have a smaller cell body and den-
dritic length than the other subgroup. Thus, the morphological
subgroups of L5 FS neurons found in the present study may reflect
chemical heterogeneity of PV-producing FS neurons in the rat
neocortex.

RETROGRADE LABELING AND APPOSITIONS
For a quantitative estimation, we counted appositions between
the axon boutons of single GABAergic interneurons and the
somata/dendrites of nearby CSNs. Using this technique there is
potential for under- or over-estimation of the number of synaptic
contacts. For example, the retrograde labeling of CSNs might be
incomplete in terms both of labeling efficiency and visualization
of dendritic spines, which could lead to a severe underestima-
tion. However, for quantitative analyses, we selected the slices
where more than 45% of L5 neurons were retrogradely labeled
in the vicinity of intracellular labeled interneurons, as we reported
previously (Kaneko et al., 2000; Cho et al., 2004b). Since the per-
centage of CSNs in L5 neurons of the motor areas was reported
to be 50% at most (Miller, 1987; Kaneko et al., 2000; Cho et al.,
2004b), the underestimation derived from the incomplete retro-
grade labeling efficiency was limited to less than 5%. Although
injection of TMR–DA in an acidic vehicle into the corticospinal
tracts and thalamic nuclei resulted in clear retrograde labeling of
CSNs and corticothalamic neurons, the dendritic spines were not
well visualized (Figures 3A–F; Kaneko et al., 1996, 2000; Cho et al.,
2004b), which may be another cause of underestimation of num-
bers of synaptic contacts. However, since axodendritic synapses of
inhibitory boutons are mostly found on dendritic shafts (DeFe-
lipe, 1997; Somogyi et al., 1998), the detection of appositions
for inhibitory connections would be unlikely to be dramatically
affected by incomplete filling of CSN dendritic spines with TMR–
DA. Thus, it is unlikely that the incompleteness of the present
retrograde labeling method in terms both of labeling efficiency and
of subcellular filling would have caused a severe underestimation
of inhibitory inputs to CSNs.

One possible cause of overestimation is the fact that the
number of appositions did not exactly indicate the number of
synapses between intracellularly labeled axons and retrogradely
labeled somata/dendrites. Using electron microscopy, we con-
firmed that 74% of the axodendritic and axosomatic apposi-
tions actually formed symmetric synapses. Therefore, the number

of axodendritic and axosomatic appositions is considered to be
indicative of the inhibitory synapses formed between inhibitory
axons and CSN somata/dendrites. This percentage was higher than
those in previous reports of axodendritic appositions between
excitatory neurons (50–60%; Kaneko et al., 2000; Cho et al.,
2004b). The inhibitory synapses were predominantly made on
dendritic shafts or somata, whereas the excitatory synapses were
largely on the dendritic spines (DeFelipe, 1997; Somogyi et al.,
1998). As the present retrograde labeling method visualized CSNs
well in their dendritic shafts, but poorly in their dendritic spines,
the appositions in the present study might reflect synapse for-
mation more efficiently than those in the previous studies on
excitatory connections (Kaneko et al., 2000; Cho et al., 2004b).

INHIBITORY IMPACT AT THE SOMA OF INTERNEURON SUBGROUPS ON
CSNs
In a previous study of dual whole-cell recording, L5 FS neu-
rons evoked large inhibitory postsynaptic currents (IPSCs;
208.3 ± 58.7 pA/pair) in L5 pyramidal neurons in the visual cor-
tex of young rats (Xiang et al., 2002). By considering that the
average number of appositions between axons of basket neurons
(including many FS neurons) and dendrites of pyramidal neu-
rons is 15.8/pair (Wang et al., 2002), the calculated inhibitory
impact at the soma is to be 13.2 pA/apposition. On the other
hand, LTS neurons, including many SOM neurons, evoke much
smaller IPSCs (26.5 ± 1.6 pA/pair) in pyramidal neurons (Xiang
et al., 2002). The average number of appositions from a Mar-
tinotti cell to a pyramidal neuron is 12 (Silberberg and Markram,
2007), and the inhibitory impact at the soma is therefore estimated
at 2.2 pA/apposition. Using this estimation and the total num-
ber of interneuron subgroups in L5, we compared the inhibitory
impacts at the soma of FS1, FS2, and SOM interneurons as a group
(Figure 7F). Collectively, the L5 FS2 neuron group had a compa-
rable inhibitory impact on CSNs at the soma with the FS1 group,
whereas the SOM neuron group had much smaller impact on
CSNs at the soma than the FS1 and FS2 groups. Although the fir-
ing rate of these interneurons should be considered in addition
to the morphological parameters, this estimation indicates that FS
neurons are much more important than SOM neurons in the local
inhibition of CSNs.

FUNCTION OF FS AND SOM NEURONS
In the motor areas, CSNs show strong disynaptic inhibition after
the stimulation of motor thalamic nuclei (Futami et al., 1986). L4
FS neurons in the sensory cortical areas receive inputs from thala-
mocortical fibers and in turn, inhibit nearby pyramidal and spiny
stellate neurons in L4, playing a key role in the feedforward inhi-
bition of thalamocortical inputs (Keller and White, 1987; Staiger
et al., 1996; Gibson et al., 1999; Porter et al., 2001; Sun et al., 2006).
Thus, L5 FS neurons in motor areas would also be candidates for
the feedforward inhibition. However, since the thalamocortical
inputs mainly enter L3–4, but only partially enter L5 (Kuramoto
et al., 2009, 2011), L5 FS neurons are unlikely to work as a main
feedforward inhibitory mechanism for thalamic inputs. In contrast
to thalamic inputs, L5 pyramidal neurons are known to send many
axon collaterals to nearby FS neurons in L5 (Thomson et al., 1996;
Silberberg and Markram, 2007; Otsuka and Kawaguchi, 2009).
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Furthermore, a recent study has shown that some L5 FS neurons
are recruited during the execution of a self-paced task in motor
areas of awake rats, and that the movement-related activity of FS
neurons occurs in parallel with or slightly later than pyramidal
neuron activity (Isomura et al., 2009). Thus, L5 FS neurons may
serve as an element of a feedback or lateral inhibition mecha-
nism for CSNs by increasing time and spatial resolution of motor
executions.

The number of local connections of an SOM neuron to CSNs
was approximately half of that of an FS1 neuron,and was compara-
ble to that of an FS2 neuron (Figure 7E). Further, the SOM neuron
group was estimated to have much less inhibitory impact on CSNs
than FS groups (Figure 7F). However, considering the tendency
for their apposed boutons to contact CSN apical dendrites, L5
SOM neurons might work as a principal component providing
CSNs with inhibition of apical dendrites (Figure 7B). Most SOM
neurons have ascending axonal arbors toward L1–3, showing char-
acteristic of Martinotti cells (Goldberg et al., 2004), and the targets
of the ascending axons are mainly apical dendrites of pyramidal
neurons (DeFelipe, 1997; Somogyi et al., 1998). Since SOM neu-
rons are known to be stimulated by nearby pyramidal neurons and
inhibit surrounding pyramidal neurons (Kapfer et al., 2007; Sil-
berberg and Markram, 2007; Berger et al., 2009), L5 SOM neurons
might be stimulated by the axon collaterals of CSNs and produce
an inhibitory effect on the apical dendrites of CSNs in a nega-
tive feedback manner. The synaptic inputs to apical dendrites of

pyramidal neurons have been reported to modulate the gain of the
pyramidal neuron response, resulting in a multiplicative control of
the response (Larkum et al., 2004). In line with this, an in vivo study
of awake rats suggested that Martinotti cells control the response
gain of L5 pyramidal cells through inhibition of their apical den-
drites (Murayama et al., 2009). Thus, our present results support
that apical projection of SOM neurons negatively modulates these
gain control mechanisms (Prescott and De Koninck, 2003).

In conclusion, we anatomically examined the connections from
L5 inhibitory interneurons to CSNs, and found numerous dif-
ferences in the connectivity among the interneuron subgroups.
Future studies examining the firing dynamics of each subgroup
of inhibitory interneurons and CSNs during motor execution
in awake animals are required to further elucidate the neuronal
mechanisms for motor execution.

ACKNOWLEDGMENTS
We are grateful to Dr. A. Miyawaki for providing pCS2-Venus, Dr.
Y. Kawaguchi for supplying with VGAT-Venus transgenic rats, Ms.
K. Okamoto-Furuta and Mr. H. Kohda for technical assistance
in electron microscopy and Dr. T. Tanaka for helpful discussion.
This study was supported by Grants-in-Aid for Scientific Research
from Ministry of Education, Culture, Sports, Science and Technol-
ogy (22300113, 23115101, 23650175, and JST, CREST). Yasuyo H.
Tanaka and Yasuhiro R. Tanaka was supported by Japan society for
the Promotion of Science research fellowship for young scientists.

REFERENCES
Anderson, C. T., Sheets, P. L., Kir-

itani, T., and Shepherd, G. M.
(2010). Sublayer-specific microcir-
cuits of corticospinal and corticos-
triatal neurons in motor cortex. Nat.
Neurosci. 13, 739–744.

Bayraktar, T., Staiger, J. F., Acsady,
L., Cozzari, C., Freund, T. F., and
Zilles, K. (1997). Co-localization
of vasoactive intestinal polypep-
tide, gamma-aminobutyric acid and
choline acetyltransferase in neocor-
tical interneurons of the adult rat.
Brain Res. 757, 209–217.

Beloozerova, I. N., Sirota, M. G., and
Swadlow, H. A. (2003). Activity of
different classes of neurons of the
motor cortex during locomotion. J.
Neurosci. 23, 1087–1097.

Berger, T. K., Perin, R., Silberberg,
G., and Markram, H. (2009).
Frequency-dependent disynaptic
inhibition in the pyramidal net-
work: a ubiquitous pathway in the
developing rat neocortex. J. Physiol.
587, 5411–5425.

Buhl, E. H., Halasy, K., and Somogyi,
P. (1994). Diverse sources of hip-
pocampal unitary inhibitory post-
synaptic potentials and the number
of synaptic release sites. Nature 368,
823–828.

Cauli, B., Audinat, E., Lambolez, B.,
Angulo, M. C., Ropert, N., Tsuzuki,

K., Hestrin, S., and Rossier, J. (1997).
Molecular and physiological diver-
sity of cortical nonpyramidal cells.
J. Neurosci. 17, 3894–3906.

Chedotal, A., Cozzari, C., Faure, M.
P., Hartman, B. K., and Hamel, E.
(1994). Distinct choline acetyltrans-
ferase (ChAT) and vasoactive intesti-
nal polypeptide (VIP) bipolar neu-
rons project to local blood vessels
in the rat cerebral cortex. Brain Res.
646, 181–193.

Cho, R. H., Segawa, S., Mizuno, A., and
Kaneko, T. (2004a). Intracellularly
labeled pyramidal neurons in the
cortical areas projecting to the spinal
cord. I. Electrophysiological proper-
ties of pyramidal neurons. Neurosci.
Res. 50, 381–394.

Cho, R. H., Segawa, S., Okamoto, K.,
Mizuno, A., and Kaneko, T. (2004b).
Intracellularly labeled pyramidal
neurons in the cortical areas pro-
jecting to the spinal cord. II. Intra-
and juxta-columnar projection of
pyramidal neurons to corticospinal
neurons. Neurosci. Res. 50, 395–410.

David, C., Schleicher, A., Zuschrat-
ter, W., and Staiger, J. F. (2007).
The innervation of parvalbumin-
containing interneurons by VIP-
immunopositive interneurons in the
primary somatosensory cortex of
the adult rat. Eur. J. Neurosci. 25,
2329–2340.

de Lecea, L., del Rio, J. A., Criado, J. R.,
Alcantara, S., Morales, M., Daniel-
son, P. E., Henriksen, S. J., Soriano,
E., and Sutcliffe, J. G. (1997). Cortis-
tatin is expressed in a distinct subset
of cortical interneurons. J. Neurosci.
17, 5868–5880.

DeFelipe, J. (1993). Neocortical neu-
ronal diversity: chemical hetero-
geneity revealed by colocaliza-
tion studies of classic neurotrans-
mitters, neuropeptides, calcium-
binding proteins, and cell sur-
face molecules. Cereb. Cortex 3,
273–289.

DeFelipe, J. (1997). Types of neurons,
synaptic connections and chemical
characteristics of cells immunoreac-
tive for calbindin-D28K, parvalbu-
min and calretinin in the neocortex.
J. Chem. Neuroanat. 14, 1–19.

Donoghue, J. P., and Wise, S. P.
(1982). The motor cortex of the rat:
cytoarchitecture and microstimula-
tion mapping. J. Comp. Neurol. 212,
76–88.

Eckenstein, F., and Baughman, R. W.
(1984). Two types of choliner-
gic innervation in cortex, one co-
localized with vasoactive intestinal
polypeptide. Nature 309, 153–155.

Frost, S. B., Milliken, G. W., Plautz, E.
J., Masterton, R. B., and Nudo, R.
J. (2000). Somatosensory and motor
representations in cerebral cortex of

a primitive mammal (Monodelphis
domestica): a window into the early
evolution of sensorimotor cortex. J.
Comp. Neurol. 421, 29–51.

Futami, T., Kano, M., Sento, S., and
Shinoda, Y. (1986). Synaptic orga-
nization of the cerebello-thalamo-
cerebral pathway in the cat. III.
Cerebellar input to corticofugal neu-
rons destined for different subcorti-
cal nuclei in areas 4 and 6. Neurosci.
Res. 3, 321–344.

Galarreta, M., and Hestrin, S. (2002).
Electrical and chemical synapses
among parvalbumin fast-spiking
GABAergic interneurons in adult
mouse neocortex. Proc. Natl. Acad.
Sci. U.S.A. 99, 12438–12443.

Georgopoulos, A. P., and Stefanis, C. N.
(2007). Local shaping of function in
the motor cortex: motor contrast,
directional tuning. Brain Res. Rev.
55, 383–389.

Gibson, J. R., Beierlein, M., and Con-
nors, B. W. (1999). Two networks
of electrically coupled inhibitory
neurons in neocortex. Nature 402,
75–79.

Goldberg, J. H., Lacefield, C. O., and
Yuste, R. (2004). Global dendritic
calcium spikes in mouse layer 5
low threshold spiking interneurones:
implications for control of pyra-
midal cell bursting. J. Physiol. 558,
465–478.

Frontiers in Neural Circuits www.frontiersin.org September 2011 | Volume 5 | Article 12 | 12

http://www.frontiersin.org/Neural_Circuits
http://www.frontiersin.org
http://www.frontiersin.org/Neural_Circuits/archive


Tanaka et al. Inhibitory inputs to corticospinal neurons

Gonchar, Y., and Burkhalter, A. (1997).
Three distinct families of GABAergic
neurons in rat visual cortex. Cereb.
Cortex 7, 347–358.

Gottlieb, J. P., and Keller, A. (1997).
Intrinsic circuitry and physiological
properties of pyramidal neurons in
rat barrel cortex. Exp. Brain Res. 115,
47–60.

Hall, R. D., and Lindholm, E. P.
(1974). Organization of motor and
somatosensory neocortex in the
albino rat. Brain Res. 6, 23–38.

Hioki, H., Fujiyama, F., Nakamura, K.,
Wu, S. X., Matsuda, W., and Kaneko,
T. (2004). Chemically specific circuit
composed of vesicular glutamate
transporter 3- and preprotachykinin
B-producing interneurons in the
rat neocortex. Cereb. Cortex 14,
1266–1275.

Ingham, C. A., Hood, S. H., Tag-
gart, P., and Arbuthnott, G. W.
(1998). Plasticity of synapses in
the rat neostriatum after unilateral
lesion of the nigrostriatal dopamin-
ergic pathway. J. Neurosci. 18,
4732–4743.

Isomura, Y., Harukuni, R., Takekawa,
T., Aizawa, H., and Fukai, T.
(2009). Microcircuitry coordina-
tion of cortical motor informa-
tion in self-initiation of volun-
tary movements. Nat. Neurosci. 12,
1586–1593.

Kaneko, T., Caria, M. A., and Asanuma,
H. (1994). Information processing
within the motor cortex. II. Intra-
cortical connections between neu-
rons receiving somatosensory corti-
cal input and motor output neurons
of the cortex. J. Comp. Neurol. 345,
172–184.

Kaneko, T., Cho, R., Li, Y., Nomura,
S., and Mizuno, N. (2000). Pre-
dominant information transfer from
layer III pyramidal neurons to corti-
cospinal neurons. J. Comp. Neurol.
423, 52–65.

Kaneko, T., Kang, Y., and Mizuno,
N. (1995). Glutaminase-positive
and glutaminase-negative pyrami-
dal cells in layer VI of the pri-
mary motor and somatosensory cor-
tices: a combined analysis by intra-
cellular staining and immunocyto-
chemistry in the rat. J. Neurosci. 15,
8362–8377.

Kaneko, T., Murashima, M., Lee,
T., and Mizuno, N. (1998).
Characterization of neocortical
non-pyramidal neurons express-
ing preprotachykinins A and B:
a double immunofluorescence
study in the rat. Neuroscience 86,
765–781.

Kaneko, T., Saeki, K., Lee, T., and
Mizuno, N. (1996). Improved

retrograde axonal transport and
subsequent visualization of tetram-
ethylrhodamine (TMR)-dextran
amine by means of an acidic
injection vehicle and antibodies
against TMR. J. Neurosci. Methods
65, 157–165.

Kapfer, C., Glickfeld, L. L., Atallah, B.
V., and Scanziani, M. (2007). Supra-
linear increase of recurrent inhibi-
tion during sparse activity in the
somatosensory cortex. Nat. Neu-
rosci. 10, 743–753.

Karube, F., Kubota,Y., and Kawaguchi,Y.
(2004). Axon branching and synap-
tic bouton phenotypes in GABAer-
gic nonpyramidal cell subtypes. J.
Neurosci. 24, 2853–2865.

Katzel, D., Zemelman, B. V., Buetfering,
C., Wolfel, M., and Miesenbock, G.
(2011). The columnar and laminar
organization of inhibitory connec-
tions to neocortical excitatory cells.
Nat. Neurosci. 14, 100–107.

Kawaguchi, Y. (1993). Groupings of
nonpyramidal and pyramidal cells
with specific physiological and mor-
phological characteristics in rat
frontal cortex. J. Neurophysiol. 69,
416–431.

Kawaguchi, Y. (1995). Physiological
subgroups of nonpyramidal cells
with specific morphological char-
acteristics in layer II/III of rat
frontal cortex. J. Neurosci. 15,
2638–2655.

Kawaguchi, Y., and Kondo, S. (2002).
Parvalbumin, somatostatin and
cholecystokinin as chemical markers
for specific GABAergic interneuron
types in the rat frontal cortex. J.
Neurocytol. 31, 277–287.

Kawaguchi, Y., and Kubota, Y. (1993).
Correlation of physiological
subgroupings of nonpyramidal
cells with parvalbumin- and cal-
bindin D28k-immunoreactive
neurons in layer V of rat frontal
cortex. J. Neurophysiol. 70,
387–396.

Kawaguchi, Y., and Kubota, Y. (1996).
Physiological and morphological
identification of somatostatin- or
vasoactive intestinal polypeptide-
containing cells among GABAergic
cell subtypes in rat frontal cortex. J.
Neurosci. 16, 2701–2715.

Kawaguchi, Y., and Kubota, Y. (1997).
GABAergic cell subtypes and their
synaptic connections in rat frontal
cortex. Cereb. Cortex 7, 476–486.

Keller, A., and White, E. L. (1987).
Synaptic organization of GABAergic
neurons in the mouse SmI cortex. J.
Comp. Neurol. 262, 1–12.

Killackey, H. P., Koralek, K. A., Chiaia,
N. L., and Rhodes, R. W. (1989).
Laminar and areal differences in

the origin of the subcortical projec-
tion neurons of the rat somatosen-
sory cortex. J. Comp. Neurol. 282,
428–445.

Kosaka, T., Heizmann, C. W., Tateishi,
K., Hamaoka, Y., and Hama, K.
(1987). An aspect of the organi-
zational principle of the gamma-
aminobutyricacidergic system in the
cerebral cortex. Brain Res. 409,
403–408.

Kubota, Y., and Kawaguchi, Y. (2000).
Dependence of GABAergic synaptic
areas on the interneuron type and
target size. J. Neurosci. 20, 375–386.

Kubota, Y., Shigematsu, N., Karube,
F., Sekigawa, A., Kato, S., Yam-
aguchi, N., Hirai, Y., Morishima,
M., and Kawaguchi, Y. (2011).
Selective coexpression of multiple
chemical markers defines discrete
populations of neocortical GABAer-
gic neurons. Cereb. Cortex 21,
1803–1817.

Kuramoto, E., Fujiyama, F., Nakamura,
K. C., Tanaka, Y., Hioki, H., and
Kaneko, T. (2011). Complementary
distribution of glutamatergic cere-
bellar and GABAergic basal ganglia
afferents to the rat motor thalamic
nuclei. Eur. J. Neurosci. 33, 95–109.

Kuramoto, E., Furuta, T., Nakamura,
K. C., Unzai, T., Hioki, H., and
Kaneko, T. (2009). Two types of
thalamocortical projections from
the motor thalamic nuclei of the
rat: a single neuron-tracing study
using viral vectors. Cereb. Cortex 19,
2065–2077.

Larkum, M. E., Senn, W., and Luscher,
H. R. (2004). Top-down dendritic
input increases the gain of layer
5 pyramidal neurons. Cereb. Cortex
14, 1059–1070.

Leong, S. K. (1983). Localizing the corti-
cospinal neurons in neonatal, devel-
oping and mature albino rat. Brain
Res. 265, 1–9.

Ma, Y., Hioki, H., Konno, M., Pan, S.,
Nakamura, H., Nakamura, K. C.,
Furuta, T., Li, J. L., and Kaneko,
T. (2011). Expression of gap junc-
tion protein connexin 36 in mul-
tiple subtypes of GABAergic neu-
rons in adult rat somatosensory cor-
tex. Cereb. Cortex. doi:10.1093/cer-
cor/bhr051

Markram, H., Toledo-Rodriguez, M.,
Wang, Y., Gupta, A., Silberberg, G.,
and Wu, C. (2004). Interneurons of
the neocortical inhibitory system.
Nat. Rev. Neurosci. 5, 793–807.

Matsumura, M., Sawaguchi, T., and
Kubota, K. (1992). GABAergic inhi-
bition of neuronal activity in the
primate motor and premotor cor-
tex during voluntary movement. J.
Neurophysiol. 68, 692–702.

Matsumura, M., Sawaguchi, T., Oishi,
T., Ueki, K., and Kubota, K. (1991).
Behavioral deficits induced by local
injection of bicuculline and mus-
cimol into the primate motor and
premotor cortex. J. Neurophysiol. 65,
1542–1553.

McCormick, D. A., Connors, B. W.,
Lighthall, J. W., and Prince, D. A.
(1985). Comparative electrophysiol-
ogy of pyramidal and sparsely spiny
stellate neurons of the neocortex. J.
Neurophysiol. 54, 782–806.

Merchant, H., Naselaris, T., and Geor-
gopoulos, A. P. (2008). Dynamic
sculpting of directional tuning in the
primate motor cortex during three-
dimensional reaching. J. Neurosci.
28, 9164–9172.

Miller, M. W. (1987). The origin of cor-
ticospinal projection neurons in rat.
Exp. Brain Res. 67, 339–351.

Murayama, M., Perez-Garci, E., Nevian,
T., Bock, T., Senn, W., and Larkum,
M. E. (2009). Dendritic encoding of
sensory stimuli controlled by deep
cortical interneurons. Nature 457,
1137–1141.

Otsuka, T., and Kawaguchi, Y. (2009).
Cortical inhibitory cell types dif-
ferentially form intralaminar and
interlaminarsubnetworks with exci-
tatory neurons. J. Neurosci. 29,
10533–10540.

Peters, A., Palay, S. L., and Webster, H. D.
(1991). “Synapses” in the Fine Struc-
ture of the Nervous System, Neurons
and their Supporting Cells, 3rd Edn.
New York: Oxford University Press,
138–211.

Porter, J. T., Johnson, C. K., and
Agmon, A. (2001). Diverse types
of interneurons generate thalamus-
evoked feedforward inhibition in the
mouse barrel cortex. J. Neurosci. 21,
2699–2710.

Prescott, S. A., and De Koninck, Y.
(2003). Gain control of firing rate by
shunting inhibition: roles of synap-
tic noise and dendritic saturation.
Proc. Natl. Acad. Sci. U.S.A. 100,
2076–2081.

Rogers, J. H. (1992). Immunohisto-
chemical markers in rat cortex:
co-localization of calretinin and
calbindin-D28k with neuropeptides
and GABA. Brain Res. 587, 147–157.

Rudy, B., Fishell, G., Lee, S., and
Hjerling-Leffler, J. (2011). Three
groups of interneurons account for
nearly 100% of neocortical GABAer-
gic neurons. Dev. Neurobiol. 71,
45–61.

Sanderson, K. J., Welker, W., and
Shambes, G. M. (1984). Reevalua-
tion of motor cortex and of senso-
rimotor overlap in cerebral cortex of
albino rats. Brain Res. 292, 251–260.

Frontiers in Neural Circuits www.frontiersin.org September 2011 | Volume 5 | Article 12 | 13

http://dx.doi.org/10.1093/cercor/bhr051
http://www.frontiersin.org/Neural_Circuits
http://www.frontiersin.org
http://www.frontiersin.org/Neural_Circuits/archive


Tanaka et al. Inhibitory inputs to corticospinal neurons

Schwarz, C., and Schmitz, Y. (1997).
Projection from the cerebellar lateral
nucleus to precerebellar nuclei in the
mossy fiber pathway is glutamater-
gic: a study combining anterograde
tracing with immunogold labeling
in the rat. J. Comp. Neurol. 381,
320–334.

Silberberg, G., and Markram, H. (2007).
Disynaptic inhibition between neo-
cortical pyramidal cells mediated
by Martinotti cells. Neuron 53,
735–746.

Somogyi, P., Tamas, G., Lujan, R., and
Buhl, E. H. (1998). Salient features
of synaptic organisation in the cere-
bral cortex. Brain Res. Brain Res. Rev.
26, 113–135.

Staiger, J. F., Zilles, K., and Fre-
und, T. F. (1996). Distribution
of GABAergic elements postsynap-
tic to ventroposteromedial thala-
mic projections in layer IV of rat
barrel cortex. Eur. J. Neurosci. 8,
2273–2285.

Sun, Q. Q., Huguenard, J. R., and
Prince, D. A. (2006). Barrel cortex
microcircuits: thalamocortical feed-
forward inhibition in spiny stellate
cells is mediated by a small number

of fast-spiking interneurons. J. Neu-
rosci. 26, 1219–1230.

Tanaka, Y., Tanaka, Y., Furuta, T., Yana-
gawa, Y., and Kaneko, T. (2008).
The effects of cutting solutions on
the viability of GABAergic interneu-
rons in cerebral cortical slices of
adult mice. J. Neurosci. Methods 171,
118–125.

Thompson, S. M., Masukawa, L. M., and
Prince, D. A. (1985). Temperature
dependence of intrinsic membrane
properties and synaptic potentials in
hippocampal CA1 neurons in vitro.
J. Neurosci. 5, 817–824.

Thomson, A. M., West, D. C., Hahn,
J., and Deuchars, J. (1996). Single
axon IPSPs elicited in pyramidal cells
by three classes of interneurones in
slices of rat neocortex. J. Physiol. 496,
81–102.

Uematsu, M., Hirai, Y., Karube, F., Ebi-
hara, S., Kato, M., Abe, K., Obata,
K., Yoshida, S., Hirabayashi, M.,
Yanagawa, Y., and Kawaguchi, Y.
(2008). Quantitative chemical com-
position of cortical GABAergic neu-
rons revealed in transgenic venus-
expressing rats. Cereb. Cortex 18,
315–330.

Vruwink, M., Schmidt, H. H., Wein-
berg, R. J., and Burette, A. (2001).
Substance P and nitric oxide sig-
naling in cerebral cortex: anatomi-
cal evidence for reciprocal signaling
between two classes of interneurons.
J. Comp. Neurol. 441, 288–301.

Wang, Y., Gupta, A., Toledo-Rodriguez,
M., Wu, C. Z., and Markram, H.
(2002). Anatomical, physiological,
molecular and circuit properties of
nest basket cells in the developing
somatosensory cortex. Cereb. Cortex
12, 395–410.

Wang, Y., Toledo-Rodriguez, M., Gupta,
A., Wu, C., Silberberg, G., Luo, J.,
and Markram, H. (2004). Anatom-
ical, physiological and molecular
properties of Martinotti cells in the
somatosensory cortex of the juvenile
rat. J. Physiol. 561, 65–90.

Wise, S. P., and Jones, E. G. (1977).
Cells of origin and terminal distribu-
tion of descending projections of the
rat somatic sensory cortex. J. Comp.
Neurol. 175, 129–157.

Xiang, Z., Huguenard, J. R., and Prince,
D. A. (2002). Synaptic inhibition of
pyramidal cells evoked by different
interneuronal subtypes in layer v of

rat visual cortex. J. Neurophysiol. 88,
740–750.

Conflict of Interest Statement: The
authors declare that the research was
conducted in the absence of any
commercial or financial relationships
that could be construed as a potential
conflict of interest.

Received: 30 July 2011; paper pending
published: 23 August 2011; accepted: 07
September 2011; published online: 29
September 2011.
Citation: Tanaka YH, Tanaka YR,
Fujiyama F, Furuta T, Yanagawa Y and
Kaneko T (2011) Local connections of
layer 5 GABAergic interneurons to corti-
cospinal neurons. Front. Neural Circuits
5:12. doi: 10.3389/fncir.2011.00012
Copyright © 2011 Tanaka, Tanaka,
Fujiyama, Furuta, Yanagawa and
Kaneko. This is an open-access article
subject to a non-exclusive license between
the authors and Frontiers Media SA,
which permits use, distribution and
reproduction in other forums, provided
the original authors and source are
credited and other Frontiers conditions
are complied with.

Frontiers in Neural Circuits www.frontiersin.org September 2011 | Volume 5 | Article 12 | 14

http://dx.doi.org/10.3389/fncir.2011.00012
http://www.frontiersin.org/Neural_Circuits
http://www.frontiersin.org
http://www.frontiersin.org/Neural_Circuits/archive

	Local connections of layer 5 GABAergic interneurons to corticospinal neurons
	INTRODUCTION
	MATERIALS AND METHODS
	Animals
	Immunohistochemistry of GABAergic interneuron markers
	Injection of retrograde tracer, whole-cell recording/labeling, and fixation
	Visualization of recorded neurons and retrogradely labeled CSNs
	Electron microscopy
	Morphological reconstruction of single GABAergic interneuron and analysis of close appositions between their axon boutons and the dendrites of CSNs
	Statistics

	RESULTS
	Classification of interneurons in L5 of the motor areas by electrical and chemical properties
	Morphological analysis of axons of FS neurons in L5 of the motor areas
	Distribution of the local connection of GABAergic interneurons to CSNs

	DISCUSSION
	Two types of L5 FS neurons
	Retrograde labeling and appositions
	Inhibitory impact at the soma of interneuron subgroups on CSNs
	Function of FS and SOM neurons

	Acknowledgments
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages false
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages false
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages false
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


