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The tremendous heterogeneity of the human population presents a
major obstacle in understanding how autoimmune diseases like
multiple sclerosis (MS) contribute to variations in human peripheral
immune signatures. To minimize heterogeneity, we made use of a
unique cohort of 43 monozygotic twin pairs clinically discordant for
MS and searched for disease-related peripheral immune signatures
in a systems biology approach covering a broad range of adaptive
and innate immune populations on the protein level. Despite dis-
ease discordance, the immune signatures of MS-affected and unaf-
fected cotwins were remarkably similar. Twinship alone contributed
56% of the immune variation, whereas MS explained 1 to 2% of the
immune variance. Notably, distinct traits in CD4+ effector T cell sub-
sets emerged when we focused on a subgroup of twins with signs
of subclinical, prodromal MS in the clinically healthy cotwin. Some
of these early-disease immune traits were confirmed in a second
independent cohort of untreated early relapsing-remitting MS pa-
tients. Early involvement of effector T cell subsets thus points to a
key role of T cells in MS disease initiation.
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Research into human autoimmunity is facing a number of
particular challenges. First, in contrast to inbred animal

strains housed under controlled conditions, the human population
is exceedingly heterogeneous, with a high degree of genetic and
environmental diversity. Second, human autoimmune diseases are
usually diagnosed long after initiation of the disease process, so it
is impossible to differentiate between early (primary) and late (sec-
ondary) immune processes. Third, human studies mostly rely on the
blood as the main source of immune cells because access to human
tissues is usually limited. Last but not least, ethical constraints limit the
scope of functional (“mechanistic”) human studies compared to so-
phisticated animal systems. For these and other reasons it has been
very difficult to capture the early footprints (“signatures”) of nascent
human autoimmune reactions in the blood, the most accessible pe-
ripheral immune compartment. This holds particularly true for organ-
specific, “compartmentalized” autoimmune processes, such as auto-
immune diabetes, rheumatoid arthritis, or multiple sclerosis (MS).
MS is a prominent example of such a compartmentalized au-

toimmune disease as it affects the central nervous system (CNS),
which is partly secluded from the peripheral immune system by the
blood–brain barrier (1–3). Classic experiments in animals showed
that experimental autoimmune encephalomyelitis (EAE), the
most widely used model of MS, can be induced in naïve recipient
animals by injecting purified myelin autoantigen-specific CD4+

effector T cells (4, 5). However, consistent with the excessive
heterogeneity of the human population, it has so far not been possible

to identify any unifying “target autoantigen” in humanMS. There are
additional notable differences between EAE models and human MS,
including the well-known preponderance of clonally expanded CD8+,
rather than CD4+, T cells in MS brain lesions, and the presence of
oligoclonal immunoglobulins in the cerebrospinal fluid (CSF) of MS
patients (6–9). Yet despite knowledge about distinct MS-associated
features in affected tissues, identification of an MS-associated pe-
ripheral immune signature has remained elusive.
Apart from the heterogeneity of the human population, built-

in delays in the diagnostic process of autoimmune diseases have
hindered the identification of peripheral disease-specific signa-
tures. In MS for example, diagnosis strictly requires the presence
of clinical symptoms according to prevailing consensus criteria
(10). However, the appearance of symptoms can be preceded by
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a long-lasting prodromal phase of clinically silent neuroinflammation.
This is detected only very rarely and usually only by chance when
unexpected silent brain lesions are observed on MRI performed for
an unrelated medical reason, a setting referred to as “radiologically
isolated syndrome” (11).
In searching for peripheral MS-associated immune signatures,

we here took advantage of a unique cohort of 43 monozygotic
twin pairs who are discordant for MS: That is, one cotwin in each
pair carries the diagnosis of MS, whereas the other cotwin is
clinically healthy. We reasoned that pairwise comparisons of
these monozygotic twins would eliminate genetic heterogeneity
for each pair, and in addition reduce environmental heteroge-
neity as the twins included in this study were raised in the same
household. In a first step of analysis, we found that the immune
signatures of MS-affected and unaffected cotwins were remark-
ably similar, whereas age, sex, and MS disease status together
contributed less than 10% of the variation of immune traits. In a
second step, we leveraged another distinct advantage of the MS-
discordant twin cohort: The healthy cotwins of MS-affected twins
have a maximum familial risk of developing MS and therefore an
increased probability of showing signs of prodromal MS (12).
Indeed, several clinically unaffected cotwins showed distinct
signs of early subclinical neuroinflammation (SCNI) on MRI. By

focusing on these subjects with early neuroinflammation, we
were able to detect an early influence of MS on the peripheral
immune signature, using high-resolution flow cytometry-based
immune phenotyping followed by unbiased machine-based
analysis and dimensionality reduction algorithms.

Results
High Degree of Similarity in Peripheral Immune Signatures within Twin
Pairs Despite Disease Discordance. In this study, we evaluated MS-
related changes in peripheral immune signatures in a cohort of
43 monozygotic twin pairs clinically discordant for MS (Fig. 1A), as
a twin approach offers the important advantage to control for ge-
netic as well as intrinsic factors as age and sex, as well as early
environmental factors. All 43 monozygotic twin pairs were of
Caucasian origin and were raised together until adulthood and
shared a variety of early environmental factors. Demographic data,
as well as information with regard to MS disease course and
treatment, are depicted in Table 1. We took advantage of a com-
prehensive deep functional immune-cell phenotyping platform by
using multicolor flow cytometry on frozen peripheral blood mono-
nuclear cell (PBMC) specimens. In this system immunology ap-
proach, 13 9- to 10-color immunophenotyping panels were used for
the characterization of major immune cell subpopulations and their
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Fig. 1. In-depth characterization of monozygotic twins discordant for MS. (A) Twin study set-up of monozygotic twin pairs (n = 43) discordant for MS:
Healthy (TWINHD, gray) and MS (TWINMS, red) twin. Sample processing; cryoconserved PBMC of study participants were processed via flow cytometry in 13
panels of 10 colors each. For unbiased nonlinear dimensionality reduction via bh-SNE, LMDs were transformed, normalized, and merged per panel and
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in red, down-regulation in green) is visualized in a heatmap. (B) Hierarchical illustration of the defined populations (n = 141) analyzed within this study. Red dots
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maturation and functional status (13, 14). Longitudinal repeated
measurements (n = 26) of PBMCs derived from a study-independent
healthy individual during the total acquisition period of 4 wk (mean
variability of traits r = 0.05) revealed robustness of data acquisition
(Dataset S4). To accommodate for sample-to-sample acquisition
variability, we used a linear normalization algorithm and applied it on
a single-file level. The normalized single-cell data were then visualized
by Barnes-Hut stochastic neighbor embedding (bh-SNE) and Phe-
noGraph, a machine-based algorithm for clustering and dimension-
ality reduction of high-dimensional single-cell data (15, 16). Fig. 1B
illustrates the immune cell parameters as determined by conventional
gating, finally encompassing 141 different immune phenotypes, which
we here refer to as immune cell traits (17).
To detect and visualize distinct immune signatures in healthy

twins (TWINHD) (Fig. 2A, first row) and MS-affected (TWINMS)
(Fig. 2A, second row) cotwins, we used unsupervised clustering
to identify major immune cell populations within each panel
(Fig. 2A) by the PhenoGraph algorithm. The algorithm identi-
fied 30 distinct immune cell clusters (as described in Materials
and Methods) in high-dimensional space based on compiled
TWINHD and TWINMS single-cell data. We did not observe any
differences between TWINHD and TWINMS in any of the immune cell
traits encompassed by this analysis as shown in the heatmaps (Fig. 2A,
third row). This was corroborated by conventional manual gating
approaches yielding the frequencies of the main immune cell pop-
ulations and subsequent Pearson correlation analysis (Fig. 2A and SI
Appendix, Fig. S1A). Notably, also pairwise comparison within indi-
vidual twin pairs revealed a remarkable similarity in the immune traits
for all major immune cell populations, with a slight tendency for dif-
ferential patterns only found in the B cell subset of treatedMS cotwins
(Fig. 2B).
We next analyzed immune cell lineages in more detail, by

considering all (n = 13) (Fig. 2C) immunophenotyping panels
together. Across all flow cytometry panels, PhenoGraph identi-
fied 352 discrete immune cell clusters in high-dimensional space,
which we used to reveal potential differences between TWINHD and
TWINMS immune cell signatures with higher resolution. Still, we did
not observe any distinctly emerging changes (i.e., defined as more than
twofold) per cluster between TWINHD and TWINMS, again pointing
toward a strong similarity within each twin pair (Fig. 2 C and D).

When focusing our analysis on those twin pairs without any MS
treatment—to exclude potential treatment-related confounding
factors—we again did not detect any relevant changes within
each cluster comparing TWINHD to TWINMS groups (SI Ap-
pendix, Fig. S1B).
We also performed functional analyses of major subsets, using

intracellular cytokine expression analysis following short-term
stimulation. We found slightly lower frequencies of cytokine-
producing CD4+ and CD8+ T memory subsets in the MS cot-
wins; however, this difference was completely abolished when
focusing on those MS cotwins not receiving any immune therapy
at the time of blood sampling, hence suggesting that these effects
were most likely treatment related (SI Appendix, Fig. S1C).

Twinship Explains the Majority of the Variance in Peripheral Immune
Traits. We next aimed to decipher and quantify the distinct in-
dividual effects of defined factors, such as twinship, MS status,
age, gender, and cytomegalovirus (CMV) serostatus on the
variation of all innate and adaptive immune cell traits investi-
gated using a linear mixed-model approach (Fig. 3A). The factor
“twinship” encompasses both the genetic background, and
shared local environmental factors, such as childhood infections
or diet, that play a major role in early development of immunity
(18, 19). Importantly, twinship explained the vast majority of the
variance for each of the 141 investigated immune-cell traits, its
influence ranging from 11 to 89% of the explained variance
(Fig. 3B). In contrast, age, sex, CMV, and MS status taken to-
gether had a minor contribution (11%) to the variance of each
parameter (Fig. 3 B and C and SI Appendix, Fig. S2). Overall,
twinship was responsible on average for the major proportion
(56%) of the variance, whereas the MS status explained 1%, age
4%, CMV status 3%, and sex 2% of the proportion of the var-
iance of immune traits (Fig. 3D). To search for subtle differences
in the contribution of each factor, all parameters were grouped
according to their immunological “ancestry” (Fig. 1B). Again, the
MS status alone explained minor proportions of the variation,
ranging from 1% in conventional T cells and innate immune cells,
to 2% in B cells, monocytes and dendritic cells (DC) (Fig. 3 C and
D). Interestingly, the contribution of twinship to the variance of
B cell traits was slightly less pronounced (Fig. 3 C and D), albeit

Table 1. Basic clinical characteristics of patient cohorts

Monozygotic
twin pairs

Monozygotic twin
pairs with SCNI

in healthy cotwin
Clinically solated

syndrome
Treatment naïve
early MS (RRMS)

Control cohort
(HD)

Number 43 10 55 60 71
Sex (f/m) 33/10 8/2 43/12 43/17 44/27
Age (mean, range) 43.7 (20–67) 44 (20–67) 32.6 (18–56) 33.1 (18–55) 33.3 (21–56)
Disease course

RRMS 26 7 0 60 NA
CIS 3 1 55 0 NA
SPMS 12 2 0 0 NA
PPMS 2 0 0 0 NA

Disease duration 14 y (0.5–45) 14 y (1–30) 1.6 mo (0–10) 2.7 mo (0–10) NA
EDSS 1.7 (0–9.5) 3.2 (1–8.5) 1.3 (0–2.5) 1.3 (0–4.5) NA
Disease modifying treatment NA

None 22 5 55 60 NA
IFN-β 14 4 0 0 NA
Glatiramer acetat 3 0 0 0 NA
Natalizumab 4 1 0 0 NA

EBV status (+/−) 71/1* 20/0 NA
CMV status (+/−) 31/53† 10/10 NA

NA, not applicable; PPMS, primary progressive MS; SPMS, secondary progressive MS.
*Tested pairs n = 36.
†Tested pairs n = 42.
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Fig. 3. Effects of age, sex, CMV, MS status, and twinship on the variation of immune cell traits in monozygotic twins. (A) Illustration of our approach of
quantification of the proportion of variance explained (R2) by fixed factors age, sex, CMV, and MS defined as the marginal R2 and additional incorporation of
twinship as random effect (conditional R2) in a linear mixed model. (B) Bar graph illustrates the proportion of variance explained by the marginal effects age
(brown), sex (yellow), CMV (red), and MS (blue) and random-effect “twinship” (light blue) for each immune cell trait in TWINMS and TWINHD cohorts (n = 43
pairs). (C) Dot plot graphs demonstrate the marginal versus conditional R2 for each individual immune trait within the respective major immune cell pop-
ulation. (D) Bar graphs illustrate the mean proportions of variance (R2) explained by the different factors age, sex, CMV, and twinship for all major immune
cell populations; residual unexplained variance is displayed in violet.
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still high, with 55% of the explained variance, suggesting that B
cell traits might be less stringently genetically controlled as compared
to other immune traits.

Identification of MS-Related Immune Traits by Analysis of Cotwins
with Subclinical Neuroinflammation. It has been shown that indi-
viduals with an increased risk of MS based on a combined ge-
netic and environmental risk are more likely to have early
subclinical manifestations of MS (20). Specifically, in our twin
cohort the clinically healthy cotwins have a maximum familial
risk of developing MS. We therefore applied detailed investi-
gations, including cerebral imaging (cMRI) and CSF analysis, to
detect potential SCNI in the clinically unaffected cotwins. We
defined SCNI as the presence of either cMRI lesions suggestive
of MS, rated by a blinded MS neuroradiologist, or detection of
CSF-specific oligoclonal bands indicative of intrathecal IgG
synthesis (8). A significant proportion of clinically unaffected
cotwins (n = 10) presented signs of SCNI, suggesting the pres-
ence of prodromal MS. A group of clinically healthy cotwins (n =
14) without any signs of SCNI were used as controls for further
analysis (Fig. 4A). We first repeated our unbiased cluster analysis
of healthy twins versus MS twins by only incorporating datasets
from healthy twins without any signs of SCNI; however, this did
not result in the identification of differentially regulated clusters
(SI Appendix, Fig. S3). We then hypothesized that if any immune
cell trait is indeed influenced by MS, the extent of its correlation
would be higher within SCNI-MS twin pairs than in healthy
donor (HD)-MS twin pairs based on the premise that SCNI
represents the earliest detectable stage of MS. We therefore
performed a Spearman correlation analysis adjusted for MS
status, comparing the correlation coefficient of SCNI-MS twin
pairs with the correlation coefficient of HD-MS twin pairs for all
immune cell subsets (n = 141) (SI Appendix, Fig. S4A). As hy-
pothesized, we observed a significant increase in the degree of
correlation in SCNI-MS twin pairs particularly within the adaptive
compartment (i.e., all T cells and, more specifically, in CD4+ and
CD8+ T cell subsets). The degree of correlation was also slightly
increased for the monocyte/dendritic cell subset.
To further corroborate these findings by another statistical

approach, we calculated the intraclass correlation coefficient
(ICC) (Fig. 4B) for each immune cell trait based on a linear
mixed-model adjusted for MS, and corrected the comparison
between SCNI-MS and HD-MS twin cohorts for the hierarchical
dependency of parameters (SI Appendix, Fig. S4B). The advantage
of this approach is that the mixed model was additionally adjusted
for the interdependence of immune parameters as described in
Materials and Methods. Comparison of the ICC of the major im-
mune cell populations revealed a significant increase in the SCNI-
MS twin pairs compared to the HD-MS twin pairs for T cells but
neither for B cells nor the major innate cell populations (Fig. 4B
and SI Appendix, Fig. S4C), again supporting the concept that the
degree of correlation is enhanced in SCNI-MS twin pairs as
compared to HD-MS twin pairs. Within the T cell compartment,
we observed a significant ICC rise in the CD4+ but not CD8+

T cell subsets (Fig. 4B and SI Appendix, Fig. S5A).
For further corroboration of this concept we made use of

unbiased t-distributed stochastic neighbor embedding (t-SNE)
dimensionality reduction of our flow cytometry data to calculate
the biological distance within each individual twin pair as an in-
dicator of the degree of similarity within predefined CD4+ T cell
subsets as described in Materials and Methods (a representative
example of such a calculation is depicted in Fig. 4C and SI Ap-
pendix, Fig. S5B). Indeed, we observed a significant difference in
the biological distance between SCNI-MS twin pairs and HD-MS
twin pairs for CD4+ effector subsets (Fig. 4C), again pointing
toward a higher degree of similarity within the SCNI-MS twin
pairs. Heatmap visualization of pairwise differences (in percent)
for individual parameters within the CD4+ effector subsets further

illustrated the increased degree of similarity within the SCNI-MS twin
pairs, which was particularly pronounced within proinflammatory
CD4+ T-cell subsets, such as Th17 and Th1 cell populations (Fig. 4D).

Validation of MS-Related Immune Traits in an Early MS Replication
Cohort. Finally, we wanted to determine whether our approach of
analyzing individuals with prodromal MS might facilitate iden-
tification of potentially disease-associated peripheral immune
signatures in a replication cohort of subjects with either clinically
isolated syndrome (CIS) or early clinically manifest relapsing-
remitting MS (RRMS) according to the 2010 Mc Donald criteria
(21), that were all treatment-naïve at the time of blood sampling
(Fig. 4E). In this cohort, biosample acquisition took place within the
first 3 y from the time of clinically defined disease onset. We were
able to obtain flow cytometry data of our key candidate populations
identified in Fig. 4D, in 55 patients with clinically isolated syndrome
and 60 treatment-naïve early RRMS patients, as well as 71 age- and
sex-matched healthy controls (Table 1). Indeed, conventional flow
cytometry analysis revealed significant MS-related changes in some
of the previously identified immune traits from our twin approach,
such as Th1 cells, migratory Th17 cells (MCAM+), effector Th17
cells, migratory Th1 cells (CD195+), as well as Th17.1 cells (Fig. 4E
and SI Appendix, Fig. S5C). Notably, at least some of these changes
were slightly more pronounced in the CIS cohort, such as effector
Th17 cells and migratory Th17 cells, again supporting the concept
of early disease-related changes in peripheral immune signatures in
the course of disease evolution.

Discussion
In our study we aimed at capturing autoimmunity-related changes
in the peripheral immune system in a systems biology approach.
To this end, we took advantage of a MS-discordant monozygotic
twin cohort, which allows for controlling genetic as well as intrinsic
factors, including shared early environmental influences on im-
mune cell traits. At the level of the overall cohort, immune sig-
natures of MS-affected and unaffected twins were remarkably
similar despite discordance for an autoimmune disease. However,
when we focused on a subgroup of clinically healthy cotwins
showing signs of early subclinical neuroinflammation, a distinct
MS-related immune signature emerged.

Dominance of Twinship Over MS Disease Status. Using a compre-
hensive flow cytometry-based immune phenotyping approach and
linear mixed models, we determined the relative impact of age, sex,
CMV status, MS status, and twinship on the variation of each im-
mune cell trait. Our analysis revealed that the impact of twinship was
dominant, ranging from 11% to a maximum 89%, with a mean of
56% of explained variance for all immune traits investigated. Other
known factors—such as age, sex, and CMV status—had an influence
on average of 4% for age, 2% for sex, and 3% for CMV, thus
confirming their acknowledged effects on cellular immune com-
partments as, for example, recent thymic emigrant CD4+ T cells for
age (18, 22). In comparison, MS exerted an average influence of 1%,
indicating a similar degree of impact as compared to the established
factors age, sex, and CMV status.
A distinct influence of twinship on the variation of immune

cell traits was expected based on studies in healthy individuals,
especially in light of the known impact of genetic as well as local
environmental factors on the immune system (18, 19, 23–26).
Along this line, several recent studies provided evidence of a
strong genetic influence on immune cell traits: One study revealed
that adaptive immune traits—in particular CD4+ and CD8+

T cells—were more influenced by genetics than innate traits (23).
Another study also revealed a substantial impact of genetic factors
on immune traits in a cohort of 1,620 Sardinians (27). Moreover,
an analysis from the human functional genomics project demon-
strated that within the lymphocyte population, genetics explained
a higher percentage of variation for T cells (i.e., 30%) than for
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Fig. 4. SCNI analysis identifies effector CD4 populations as differentially regulated populations in the initiation of MS. (A) Illustration of cohort division into
SCNI-MS twin pairs (n = 10, beige) and HD-MS twin pairs (n = 14, gray) as described inMaterials and Methods. (B) Calculation of the ICC for each immune trait
in SCNI-MS twin pairs (n = 10, beige) and HD-MS twin pairs (n = 14, gray) based on linear mixed model adjusted for MS. To account for hierarchical de-
pendencies between immune cell populations, analyses incorporate corrections using correlation matrixes per sub collective, as described in Materials and
Methods. (C) Representative example of t-SNE dimensionality reduction of conventionally analyzed flow cytometry populations comparing the biological
distance (gray line) between HD-cotwins (gray rectangle, n = 10) and SCNI cotwins (beige circle, n = 9) to their respective MS cotwin (red circle), for CD4+

effector subset (n = 13 parameters). (D) Hierarchically clustered heatmap represent the difference in percent for each individual immune cell trait between
HD-MS twin compared to SCNI-MS twin within each pair for the CD4+ effector subset. (E) Independent validation cohort consisting of healthy controls (HD,
n = 71; turquoise), CIS (n = 55, light olive) and treatment naïve MS patients (MS, n = 60; olive) of selected CD4+ effector parameters. Statistical significance was
evaluated by linear mixed models, as described in Materials and Methods and Mann–Whitney U test or unpaired t test; *P ≤ 0.05; **P ≤ 0.01; ns: not
significant.
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B cells (i.e., 18%) (24). Although the reasons for this differential
influence have not been fully elucidated, the strong association
between HLA background and T cell receptor repertoire may
contribute to these findings (28). In addition to these observations
highlighting the impact of genetics, a large twin study in healthy
individuals revealed that also nonheritable influences have a dis-
tinct impact on immune traits as illustrated by the profound effect
of a latent CMV infection affecting more than 50% of all immune
cell parameters investigated (25). These findings prompted us to
include CMV serostatus as fixed factor in our modeling, and in-
deed, CMV serostatus explained up to 17% of immune cell pa-
rameter variance in our dataset. Along this line, a Belgian survey
using a large cohort of healthy individuals provided evidence of a
profound impact of local environmental influences as reflected by
cohabitation of nonrelated individuals (i.e., parents), which
resulted in a 50% reduction in immunological variation between
nonrelated individuals (18). Some of the nonheritable influences
might lead to MS-associated epigenetic changes in immune cells,
but these have yet to be characterized in detail (29).
In our study, the observed strong effect of twinship is most

likely driven by a combined effect of genetic and shared envi-
ronmental influences because of the fact that all twin pairs in our
study were raised together until adulthood. Potentially relevant
shared environmental influences range from infections to dietary
influences and their respective effects on individual microbiome
composition to lifestyle factors, such as exercise, smoking, and
alcohol consumption. Importantly, many of these factors not only
have been identified as modulators of immune cell traits but have
also been implicated in the development of autoimmunity. Par-
ticularly in MS, there is evidence that at least some environmental
influencing factors not only impact disease incidence and disease
course, but also elicit changes in immune signatures (30, 31).
An important aspect that might have contributed to the

moderate influence of MS at the level of the whole cohort is the
relative heterogeneity of the MS-affected cotwins with regard to
disease duration (range 0.5 to 45 y), disease course (relapsing
form 67%, progressive form 33%), disease severity (expanded
disability status scale [EDSS] range 0 to 9.5), as well as immune
modulatory treatment (Table 1). In light of the obvious diffi-
culties in the recruitment of monozygotic twins discordant for
MS, it was not possible to stringently recruit only early untreated
MS twins, although this might have reduced confounding effects
due to MS heterogeneity.

MS-Related Signatures in Cotwins with Prodromal MS. To overcome
this limitation, we chose a complementary approach to investi-
gate the impact of autoimmunity on immune signatures. Because
the evolution of autoimmune diseases such as MS is a gradual
process, we hypothesized that an analysis of MS-related effects
on immune traits would be most promising at the earliest stages
of the disease as this avoids any confounding effects related to
disease stage and treatment. This concept of a gradual evolution
has gained much interest in recent years (32, 33). In our cohort,
the clinically healthy cotwins have a maximum familial risk for
developing MS (34). Indeed, we were able to identify a subcohort
of clinically healthy cotwins who showed signs of subclinical
neuroinflammation (8). This offered us the unique possibility to
study potential MS-related effects on each immune trait by
comparing the degree of correlation in twin pairs who were
clinically and subclinically discordant, to those where the healthy
twin exhibited subclinical signs of prodromal MS. By this ap-
proach, we were indeed able to identify a pattern of potential
MS-associated adaptive immune traits, especially within CD4+

effector T cell subsets. This finding supports the concept that MS
is initiated and orchestrated by antigen-driven T cells (6, 7).
Notably, we had the opportunity to analyze flow cytometry

data from a second independent cohort of untreated patients with
either clinically isolated syndrome or early RRMS to evaluate

whether the immune traits identified in our prodromal MS ap-
proach might be differentially expressed in early untreated MS
patients. Indeed, several of our identified immune traits were
found to be differentially expressed, in particular within the Th1
and Th17 effector populations. Despite using distinct approaches
to study MS-related changes of immune signatures in incipient
disease in both cohorts, our analysis revealed that very early dis-
ease stages were particularly associated with changes in peripheral
immune signatures.
Interestingly, some of these immune traits identified in our

systems approach had already been implicated in MS patho-
physiology, either based on preclinical findings from animal models of
MS or differential expression patterns using focused hypothesis-
driven approaches in smaller cohorts of MS patients (35). For ex-
ample, Th17 cells and a specific subset, termed Th17.1 cells, have
both been shown to be highly encephalitogenic in EAE models and
found to be increased in the peripheral blood of early MS patients
(36–38). However, in contrast to these previous approaches, which
investigated single individual candidates in a hypothesis-driven fash-
ion, we now employed an unbiased approach that allowed us to
identify MS-associated signatures in distinct immune cell populations
of our twin cohort. Our findings are in line with a recent study
employing a combination of single-cell mass cytometry (CyTOF)
with machine-learning algorithms to identify a T-helper cell
signature in MS patients (39).
It is interesting to note that our approach did not reveal a

significant impact of MS on B cell traits. This finding seemingly
contradicts the increasingly acknowledged role of B cells in MS
highlighted by the success of B cell-depleting treatment strate-
gies both in RRMS and primary progressive MS (40, 41).
However, we acknowledge that our flow cytometry panels cap-
tured a higher number of T cell as compared to B cell traits,
which in contrast to B cell traits include functionality assess-
ments, resulting in a higher power for detection of alterations in
the T cell compartment. Furthermore, our analysis in Fig. 2B
revealed that B cell traits might be particularly susceptible to
immune treatment effects. It should be pointed out that our
regression analysis also suggested more pronounced MS effects
on a few selected B cell traits, for example regulatory B cells and
memory B cells. In addition, for selected antigen-presenting
monocyte and DC populations, an individually higher MS in-
fluence could be noted, which is in line with other publications
highlighting the potential role of specific myeloid cell subsets in
CNS autoimmunity (42, 43).
The observed predominance of MS-associated adaptive im-

mune traits in our correlation approach might at least partly be
related to the fact that our phenotyping strategy overall covered
more adaptive (102 traits) than innate (39 traits) immune traits.
We therefore cannot rule out that a more detailed investigation
of innate immune traits might reveal additional MS-associated
features in these populations, since innate populations are in-
creasingly acknowledged as key players in the pathogenesis of
MS (44–46).
From a more general perspective, our approach illustrates that

a stringent control for interindividual heterogeneity by use of a
twin design combined with a focus on very early disease stages,
thus minimizing disease-related heterogeneity, represents a
powerful strategy to elucidate changes of the peripheral immu-
nome in human autoimmunity in a comprehensive fashion.
By analyzing subjects with subclinical (prodromal) signs of

neuroinflammation we were able to uncover MS-associated im-
mune signatures that would otherwise have escaped detection. We
are aware of the relatively small sample size, but this is outbalanced
by the distinct advantages of our twin approach. It should be
mentioned that, albeit our deep-immune phenotyping panel en-
compasses a large number of immune traits, we cannot rule out that
it does not fully capture more sophisticated functional immune
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features, such as antigen recognition, functional exhaustion, active
suppression, or other tolerance mechanisms.
In particular, in vitro stimulation of T cells with relevant target

autoantigens and ex vivo staining with antigenic-peptide-MHC
multimers might have revealed stronger MS-associated “signa-
tures.” However, apart from technical hurdles, validated target
antigens are lacking in MS (6, 7). This contrasts with other
autoimmune diseases of the CNS where the target antigens are
well established, for example, neuromyelitis optica spectrum dis-
ease (characterized by antiaquaporin-4-antibodies) and myelin-
oligodendrocyte glycoprotein (MOG)-antibody associated auto-
immune disorder (characterized by anti MOG-antibodies) (47).
Another limitation is that with this approach we analyzed only

blood and not CSF. While CSF analysis likely could provide
important additional information, it poses practical and ethical
obstacles because it would imply systematic invasive CSF sam-
pling from healthy individuals. From a scientific point of view,
however, analysis of immune signatures in secondary lymphatic
structures as well as in CSF from our twin pairs would be highly
interesting as these might more closely reflect target-organ and
autoimmunity-associated changes of immune cell traits. Indeed,
in a small cohort of monozygotic twins with prodromal MS,
single-cell RNA sequencing of CSF cells revealed alterations in
the adaptive immune compartment, such as clonal expansion of
tissue-resident memory CD8+ T cells, plasma blasts, as well as
CD4+ T cells, suggesting an involvement of all major compo-
nents of the adaptive immune system (8).
Taking these data together, by controlling for the dominant

influence of genetic and local environmental factors, and by fo-
cusing on incipient MS, we were able to reveal peripheral MS-
related immune signatures pointing to a pivotal role of effector
CD4+ T cells during disease initiation. Our study underscores
the crucial importance of genetic and environmental heteroge-
neity as an obstacle in the search for disease-related immune
signatures. Our in-depth analysis of healthy as well as cotwins
with prodromal MS helped us to identify patterns of MS-
associated immune alterations, some of which could be corrob-
orated in an independent cohort of early, untreated RRMS pa-
tients. In future studies it will be of great interest to correlate
such MS-linked variations of immune phenotypes with the
emerging genetic and epigenetic risk profile of MS.

Materials and Methods
Study Cohorts. Twins were recruited between May 2012 and February 2016 in
Germany. Inclusion criteria for study participation were met if only one
cotwin of monozygotic twins had an MS diagnosis according to the revised
McDonald criteria (10, 21). Exclusion criteria were infection, as well as
treatment with antibiotics or high dose intravenous glucocorticosteroids
within 3 mo prior to sampling. Monozygotic twin pairs clinically discordant
for MS visited the outpatient department at the Institute of Clinical Neu-
roimmunology in Munich for a detailed interview, neurological examina-
tion, MRI investigations, blood sampling, and optional CSF sampling. To
confirm MS diagnosis, medical records including MRI scans were obtained and
reviewed. Exclusion criteria for the present analysis were a current disease
modifying treatment (DMT) with fingolimod, alemtuzumab, dimethylfuma-
rate, or teriflunomide, resulting in 43 of 53 monozygotic twin pairs eligible for
analysis (see Table 1 for basic clinical characteristics). Based on the analysis in a
healthy twin cohort by Brodin et al. (25), showing a profound influence of
CMV serostatus on immune signatures, we determined CMV serostatus (n = 42
pairs) in our cohort and it was included in our modeling. Notably, Epstein–Barr
virus (EBV) serostatus was determined (n = 36 pairs); however, we identified
only one single HD twin being EBV seronegative.

At the time of blood collection, 22 MS-affected cotwins did not receive
any DMT, 21 MS-affected cotwins were treated with different DMT, in-
cluding IFN-β (n = 14), natalizumab (n = 4), or glatiramer acetate (n = 3). MRI
and CSF sampling detected subtle signs of inflammation in 10 of 43 clinically
healthy cotwins, which was classified as SCNI potentially reflecting prodro-
mal MS in this high-risk cohort (see details in Dataset S1) (8, 20, 48–53). In
order to provide a clear-cut dichotomization of both ends of the spectrum
(i.e., healthy vs. SCNI cotwins), healthy cotwins in which MRI-data were

missing or inconclusive, and CSF data to either confirm or rule out SCNI was
lacking were excluded from this subgroup analysis (n = 19). Monozygosity
was confirmed by genotyping 17 highly polymorphic microsatellite markers
and by next-generation sequencing of 33 SNPs.

The Muenster early MS cohort consists of 115 early treatment-naïve MS
patients diagnosed according to the revised McDonald criteria with a disease
onset <36 mo. In parallel, 71 age- and sex-matched healthy controls were
assessed (Table 1).

The study was approved by the local ethics committees of the Ludwig-
Maximilians University of Munich (ethics approval project number 267-13)
and of the University of Muenster (ethics approval project number 2010-
262-f-S). All participants gave written informed consent, according to the
principles of the Declaration of Helsinki.

Blood Sampling and PBMC Preparation. Blood samples of study participants
were collected in EDTA-containing tubes. To exclude sample collection bias,
blood samples were drawn from each twin pair before meals and at the
same time on the same day. PBMCs were isolated as described before by
density gradient centrifugation with Lymphoprep (Stemcell Technologies)
and cryopreserved in liquid nitrogen using serum-free cryopreservation
medium (CTL-Cryo ABC Media Kit, Immunospot) in concentrations of 1 × 107

cells/mL (44).

Immune Phenotyping by Flow Cytometry. For flow cytometry analysis 13
panels consisting of 9 to 10 fluorescence markers were measured (cellular
functional immune phenotyping matrix). Gating strategies and identification
of populations are depicted in Dataset S2. All samples were stained and
measured over a short period of 4 wk by two experienced technicians on the
same flow cytometer. Cotwins were stained and measured on the same day
to minimize acquisition variability. To label cell surface molecules, cry-
oconserved PBMCs were reconstituted in PBS/0.5% BSA/2 mM EDTA con-
taining fluorochrome-conjugated antibodies and incubated for 30 min at
4 °C or 37 °C. For intracellular staining, cells were fixed and permeabilized
for 20 min at 4 °C with Cytofix/CytopermTM working solution (eBioscience)
according to the manufacturer’s instructions, and subsequently stained with
intracellular fluorochrome-conjugated antibodies for 30 min at 4 °C. To
determine intracellular cytokine secretion, PBMCs were restimulated in
X-vivo (Lonza) ±10 μL/mL LAC (Leukocyte Activation Mixture; PMA, Ion-
omycin, Brefeldin A; BD Pharmingen) for 4 h at 37 °C/5% CO2. Working
antibody concentrations are depicted in Dataset S3. All flow cytometry data
were acquired by Navios (twin cohort) and Cytoflex (Beckman Coulter, val-
idation cohort) flow cytometers and analyzed by Kaluza analysis software
1.5 (Beckman Coulter) and GraphPad Prism 6. Data analysis was performed
by two independent scientists (four-eyes principle).

Single-Cell Multiparameter Visualization. We used an unbiased approach to
visualize flow cytometry data on a multiparameter single-cell basis. We
analyzed 13 flow cytometry panels consisting of 9 to 10 fluorescence and 2
scatter parameters using viSNE, a Matlab-based unbiased nonlinear dimen-
sion reduction visualization tool. The bh-SNE algorithm maps single-cell data
points from high-dimensional to 2D space, emphasizing local rather than
global similarities by minimizing the difference in pairwise similarities be-
tween points (54, 55). The generated List Mode Data (LMD) files were con-
verted into Flow Cytometry Standard (FCS) files using an R studio-based script
provided by Beckman Coulter. Prior to clustering, we applied a linear nor-
malization algorithm to reduce sample-to-sample acquisition variability (56,
57). Data points of twin FCS files were randomly subsampled, limiting the data
point size to 1,000 to 2,000 points per individual. To promote divergence and
avoid “crowding” of clusters, data point size was limited to 100,000 points in
total. Samples were merged and subsequently mapped into a 2D bh-SNE plot.
We applied the PhenoGraph algorithm to identify local, single-cell–based
similarities (cluster) (15). PhenoGraph was run using a setting of k-nearest
neighbors between 300 and 500 based on investigator expertise and a Eu-
clidean distance metric to yield sample‐level subpopulation clusters ranging
from 1 to 10% per panel. This setting generated 19 to 34 distinct immune cell
clusters per panel. This adds up to an overall number of 352 cluster (355
clusters in the treatment naïve analysis in SI Appendix, Fig. S1C), which de-
termined the unique immune signature of the individual twins allowing for in-
depth comparison of immune status in the twin pairs. A heatmap illustrates
twofold change of reduced (green) and increased (red) percental differences
of clusters between the healthy and MS conditions (e.g., Fig. 1A).

Determination of Biological Distance. Conventionally gated populations of the
sub collectives CD4+ were divided into activated, effector, and other subsets
(depicted in Dataset S4) according to their immunological phenotype (total
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number of investigated populations: CD4+ activated subset, n = 6; CD4+

other subset, n = 7; CD4+ effector subset, n = 13). Frequency values per
population were normalized and clustered by the t-SNE algorithm using the
Rtsne package in R. Biological distance was determined based on the Eu-
clidian distance of t-SNE coordinates (16, 18, 58). To account for clustering
variability and assess analysis robustness, the analysis was performed three
times (without a seed) and the mean was used to determine the biological
distance. Only twin pairings with complete datasets per parameter were
included into this analysis. Statistical significance was determined with
GraphPad Prism 6 by the Mann–Whitney U test. *P ≤ 0.05; **P ≤ 0.01.

Regression Analysis. Regression analyses were performed using SAS v9.4 (SAS
Institute) and R v3.6.1 (59). For each immune parameter, a linear mixed
model was fitted including age, gender, CMV, and disease status (MS yes/no)
as fixed effects as well as a random intercept in order to account for the
correlation within twin pairs (SAS, proc mixed). Based on the mixed models,
marginal and conditional R2s were computed according to Nakagawa and
Schlielzeth (60). The authors indicate the proportion of variance explained
based on the fixed effects (marginal R2) and the fixed plus the random ef-
fects (conditional R2) (i.e., also accounting for the correlation within pairs of
twins). ICCs were calculated by dividing the variance estimate of the random
effect by the sum of this variance and the residual variance. In addition,
correlation coefficients (Pearson/Spearman) were calculated to assess the
correlation within twin pairs for each parameter. Additionally, the propor-
tion of variance explained by the different fixed effects was estimated using
the relaimpo package (lmg metric) (61). In order to account for correlation
within twin pairs, a workaround for clustered data by specifying a survey
design was used as presented in the package manual.

Mixed-model analyses were repeated for the two separate twin cohorts
with healthy cotwins and SCNI cotwins. The ICCs from these models (adjusted

for age, gender, and CMV) were compared using a mixed model accounting
for the dependence of immune parameters. Therefore, the correlation of
immune parameters was calculated based on the whole cohort using the
marginal residuals from linear mixed models (i.e., accounting for age, gender,
and CMV). Because of the correlation of residuals within twin pairs, the re-
siduals were averaged for each pair of twins (62). The correlation between
immune parameters was then estimated using Spearman’s rank correlation
coefficient. The sample correlation matrix was implemented in the mixed
model by applying the lme4qtl package in order to specify the covariance
matrix for the random effects (63). No adjustment for multiple testing was
applied (i.e., all significance levels are to be understood as local significance
levels). Therefore, inferential statistics are intended to be exploratory (hy-
potheses generating), not confirmatory.

Data Availability. All study data are included in the article, the SI Appendix,
and Datasets S1–S8. Full protected access of flow cytometry data will be
granted to collaborating scientists who are willing to complete an “MS-TWIN
Data Access Agreement” and an “MS-TWIN Data Access Application form.”
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