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OBJECTIVE—Clinical and experimental studies suggest cross-
talk between lipid metabolism and the renin-angiotensin system
(RAS) in atherogenesis. The aim of this study was to explore
interactions between these two systems in mediating cancer risk
in type 2 diabetes.

RESEARCH DESIGN AND METHODS—A prospective cohort
of 4,160 Chinese patients with type 2 diabetes, free of cancer at
enrollment, were analyzed using Cox models. Interaction of RAS
inhibitors (angiotensin I–converting enzyme inhibitors or angio-
tensin II receptor blockers) and statins was estimated using
relative excess risk due to interaction (RERI), attributable pro-
portion due to interaction (AP), and synergy index (S). RERI � 0,
AP � 0, or S � 1 indicates additive interaction between the two
classes of drugs. Molecular mechanisms underlying these inter-
actions were explored using a uninephrectomy (UNX) rat model
with renal carcinogenesis.

RESULTS—During 21,992 person-years of follow-up, 190 pa-
tients developed cancer. Use of RAS inhibitors and statins in
isolation or combination during follow-up was associated with
reduced risk of cancer after adjustment for covariates. The
multivariable RERI and AP for the additive interaction between
these drug classes for cancer were significant (0.53 [95% CI
0.20–0.87] and 2.65 [0.38–4.91], respectively). In the UNX rat
model, inhibition of the RAS prevented renal cell carcinoma by
normalizing hydroxymethylglutaryl-CoA reductase (HMGCR) ex-
pression and the insulin-like growth factor-1 (IGF-1) signaling
pathway.

CONCLUSIONS—Combined use of RAS inhibitors and statins
may act synergistically to reduce cancer risk, possibly via
HMGCR and IGF-1 signaling pathways in high-risk conditions
such as type 2 diabetes. Diabetes 58:1518–1525, 2009

T
ype 2 diabetes is associated with increased risk
of a variety of cancers (1) such as colorectal (2),
pancreatic (3), and liver cancers (4), as well as
breast (5) and endometrial cancers (6) in women

and prostate cancers in men (7). In Hong Kong, type 2
diabetic patients have a 30% increased risk of cancer
compared with that of the general population (8). We have
previously reported nonlinear relationships between lipids
and cancer risks in type 2 diabetes (9). The risk associa-
tion of cancer with LDL cholesterol was V-shaped, with
both LDL cholesterol levels of �2.80 mmol/l and �3.80
mmol/l being associated with elevated risks of cancer (8).

Large-scale epidemiological studies have suggested that
the use of renin-angiotensin system (RAS) inhibitors is
associated with a reduced risk of new onset of cancer
(10–12), but whether statin use alters cancer risks remains
controversial (13,14). Based on our previous findings on
the nonlinear relationships between lipids and cancer risk
in type 2 diabetes (8,9), we hypothesized that the meval-
onate pathway, which leads to cholesterol synthesis, can
produce other molecules such as the isoprenoids farnesol
and geranylgeraniol and that these small proteins are
involved in cell proliferation, differentiation, apoptosis,
and thus cancer (8). There is now consistent data from
experimental, animal, and human studies suggesting acti-
vation of the local/systemic RAS in type 2 diabetes (15). In
a retrospective survey, type 2 diabetic patients treated
with ACE inhibitors were found to have a lower risk of
cancer than those not receiving this drug (16). In
support of interactions between dyslipidemia and RAS
activation in atherogenesis (17), the combined use of
rosuvastatin, a hydroxymethylglutaryl-CoA reductase
(HMGCR) inhibitor, and candesartan, an angiotensin re-
ceptor blocker, has been shown to have synergistic effects
in reducing atherosclerosis in animal studies (18).

Among different growth-promoting pathways, there is
emerging evidence suggesting that components of the
insulin-like growth factor-1 (IGF-1) system may be impli-
cated in atherogenesis, type 2 diabetes, and cancers.
Binding of IGF-1 and insulin to their receptors results in
activation of the phosphatidylinositol 3-kinase/Akt signal-
ing pathway and protein kinase (PK) C �. IGF-1 and insulin
signaling systems have important roles in energy metabo-
lism and cell growth associated with diabetes risk and
cancer (19). Interestingly, inhibition of HMGCR activity by
statins caused growth arrest via depressing the expression
of the functional IGF-1 receptor in multiple cancer cells
(20), and thus statins could have therapeutic significance
in IGF-1–dependent neoplasms (21,22). In addition, RAS
inhibition attenuates IGF-1–induced cardiac fibroblast pro-
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liferation (23) and elevates insulin growth factor–binding
protein 3 (IGFBP3) levels among hypertensive older adults
(24).

It has long been recognized that nephrectomy in rats
(25) and humans (26) leads to compensated remnant
kidney growth, proteinuria, and hypertension and is asso-
ciated with local RAS activation. Recently, we reported the
presence of elevated blood glucose and blood lipids,
associated with chronic renal impairment and insulin
resistance in uninephrectomized rats followed up for 10
months after the operation (27,28). These findings suggest
that the uninephrectomy (UNX) rat model may serve as a
useful model for the study of metabolic disorders and
complications related to type 2 diabetes; including the
possible interaction between RAS activation and lipid
metabolism for cancer in type 2 diabetes.

Against this background, we hypothesized that com-
bined use of RAS inhibitors and statins is associated with
reduced cancer risk in type 2 diabetes and that these
clinical benefits may be mediated via modulation of the
HMGCR and IGF-1 pathways.

RESEARCH DESIGN AND METHODS

Epidemiological analysis. Details on the methodology of the cohort study
have been described previously (8). The Hong Kong Diabetes Registry was
established in 1995 and enrolls 30–50 ambulatory diabetic patients per week.
Patients were referred by general practitioners and internists from community-
and hospital-based clinics or were discharged from the Prince of Wales
Hospital or other regional hospitals. Less than 10% of these enrolled patients
have had hospital admissions within 6–8 weeks before assessment.

The 4-h assessment of complications and risk factors, modified from the
European DiabCare protocol (29), was performed on an outpatient basis.
Once a diabetic subject had undergone this comprehensive assessment, he or
she was considered to have entered this study cohort and would be observed
until death. Ethical approval was obtained from the Clinical Research Ethics
Committee of the Chinese University of Hong Kong.

Hospital services in Hong Kong were subsidized to a large extent by the
government through the Hospital Authority, the governing body for all
publicly funded hospitals and outpatient clinics (30). All patients attending
Hospital Authority hospital clinics either as outpatients or inpatients are
dispensed medications on site. Clinical end points, including discharge
diagnoses of hospital admissions and mortality from 1 January 1995 until 30
July 2005 were used for defining the end points. The Hospital Authority
Central Computer System was used to retrieve all hospital admissions and
drug-dispensing data. These databases were successfully matched by a unique
identification number, the Hong Kong Identity Card number, which is com-
pulsory for all residents in Hong Kong and is used by all government
departments and major organizations.

From 1995 to 2005, 7,920 diabetic patients were enrolled in this registry. We
limited the analysis to 7,387 patients who were enrolled after 1 December 1996
when dispensing data were computerized. The following exclusion criteria
were applied before analysis: diagnosis of type 1 diabetes (n � 323) (31),
missing data on types of diabetes (n � 5), non-Chinese or unknown nationality
(n � 45), cancer or receiving treatment for cancer at enrollment (n � 175),
and missing values for variables used in the analysis (n � 736) (see footnotes
to Table 2 for the variable list). LDL cholesterol is a major confounding factor
for cancer in type 2 diabetes (8). Because the pretreatment LDL cholesterol
levels were not documented in the registry and use of statins and RAS
inhibitors may modify risk associations between LDL cholesterol and cancer,
we excluded 827 patients who were using statins and 1,116 patients who were
using RAS inhibitors at enrollment to reduce confounding effects due to
treatment at baseline. A total of 4,160 patients were entered into the present
analysis.
Definition of end points. All hospital discharge principal diagnoses includ-
ing cancer and non–cancer-related hospital admissions were regularly coded
by a team of trained personnel under the Hospital Authority, according to
ICD-9. Mortality data from the Hong Kong Death Registry were retrieved, and
the causes of death were verified against hospital admission records in the
Hong Kong Hospital Authority computer system. ICD-9 codes were used to
identify first admissions relating to a diagnosis of cancer. The end point of this
study was defined as having a first cancer event during the follow-up period
(code 140–208), including fatal and nonfatal cancer.

Clinical and laboratory measurements. On the day of enrollment, all
patients attended the Diabetes and Endocrine Centre of the Prince of Wales
Hospital after at least 8 h of fasting and without taking any medication. A
sterile, random spot urine sample was used to measure the albumin-to-
creatinine ratio (ACR). Albuminuria was defined as ACR �2.5 mg/mmol in
men and �3.5 mg/mmol in women. Total cholesterol, triglycerides, and HDL
cholesterol were measured by enzymatic methods on a Hitachi 911 automated
analyzer (Boehringer Mannheim, Mannheim, Germany) using reagent kits
supplied by the manufacturer of the analyzer. LDL cholesterol was calculated
by the Friedewald equation (32). The precision performance of these assays
was within the manufacturer’s specifications.
Statistical analyses. SAS (release 9.10; SAS Institute, Cary, NC) was used to
perform all statistical analysis. Cox proportional hazards regression was used
to obtain hazard ratios (HRs) with 95% CI. Follow-up time was calculated as
the period from enrollment to the date of first admission for cancer, death, or
30 July 2005, whichever came first.

We tested multiplicative and additive interactions between use of RAS
inhibitors and statins for cancer. Multiplicative interaction was tested using a
term of the product of two variables in Cox models. There are three measures
to test additive interaction (33,34): 1) relative excess risk due to interaction
(RERI), 2) attributable proportion due to interaction (AP), and 3) synergy
index (S). RERI is the excess risk due to interaction relative to the risk
without exposure. AP refers to the attributable proportion of disease that is
due to interaction among individuals with both exposures. S is the excess risk
from both exposures when there is an additive interaction, relative to the risk
from both exposures without interaction. RERI � 0, AP � 0, or S � 1 indicates
additive interaction. In Cox models, the RERI is the best choice among the
three measures (35). A detailed calculation method of additive interaction
including definition of three indicator variables, an SAS program, and a
calculator in Excel (available at http://www.epinet.se) was described by
Andersson et al. (34). Briefly, the three indicator variables were generated for
different combinations of exposure to use of statins and use of RAS inhibitors
(1 � Yes/0 � No) (see additive interaction models of Table 2 for details). The
SAS program delivered estimates of the required parameters together with the
covariance matrix, which are used in calculation of the interaction measures
in the Excel calculator.

To control for the confounding effects of drug use, we used Yes/No coding,
which was a more robust measure than the duration of drug use with or
without adjustment for the period of discontinuation (8). A structured
adjustment scheme was used to evaluate the additive interaction of the use of
statins and that of RAS inhibitors. First, we adjusted for LDL cholesterol–
related risk factors, i.e., LDL cholesterol �3.80 mmol/l and LDL cholesterol
�2.80 mmol/l plus albuminuria (X.Y., W.Y.S., R.C.W.M., et al., unpublished
data), age, sex, BMI, and the use of tobacco and alcohol. Second, we further
adjusted for metabolic variables (see footnotes to Table 2 for details) and drug
use from enrollment to cancer, death, or censoring dates. To avoid overfitting,
a propensity score was used to adjust for the covariates, in which a restricted
cubic spline with four knots at the 5th, 35th, 65th, and 95th percentiles was
used to adjust for the confounding effects of nonlinear associations of lipids
and other continuous covariates as before (8). Stratified Cox models on
deciles of the propensity score were used in all of the Cox models to adjust for
likelihoods of drug use during follow-up or cancer where appropriate (36) (see
Table 2 for details). Proportional hazard assumptions of baseline variables and
correlations between pairs of baseline variables were also checked as
described previously (8). Two-sided P � 0.05 was considered to be significant.
Animal experiments. We developed a UNX rat model characterized by renal
carcinogenesis, RAS activation, and dysmetabolism of glucose and lipids to
examine disease mechanisms and drug effects. Details of the experimental
protocol and phenotypes were described previously (27,28). Male Sprague-
Dawley rats (300–350 g) were obtained from the Laboratory Animal Services
Centre at the Chinese University of Hong Kong and maintained at our
Research Unit at the Prince of Wales Hospital. The animals were caged in
pairs, housed at 22–24°C with a 12-h dark/light cycle and free access to water,
and fed a standard laboratory rat diet (5001 Rodent Diet; LabDiet, St. Louis,
MO). The total duration of the studies was 10 months.

The animals were randomized into three groups: sham operation (n � 8),
left UNX (n � 8), and UNX rats treated with the ACE inhibitor (ACEI)
lisinopril (n � 8). Lisinopril were dissolved in 3 ml sterile distilled water, with
a once-daily dose of 4 mg/kg body weight. All of the sham and UNX rats were
also gavaged with distilled water (3 ml) as a placebo control. Ethical approval
for the animal study was obtained from the Animal Experimentation Ethics
Committee of The Chinese University of Hong Kong and in accordance to the
Animals (Control of Experiments) Ordinance of the Department of Health of
the Hong Kong SAR Government.
Biochemical studies. At 3, 6, and 8 months after the operation, 24-h urine
samples were collected using metabolic cages (Huang Qiao Yin Xing Animal
Cage & Equipments Factory, Suzhou, China). When rats were killed 10 months
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after the operation, fasting blood samples were taken for the measurement of
renal function and lipids including total cholesterol, triglyceride, LDL choles-
terol, and HDL cholesterol.
Histological studies of kidneys. Histopathological criteria for diagnosis of
renal cell carcinoma in the UNX rats included cytological atypia, bizarre
nuclei, frequent mitotic figures, and invasive growth. Absence of these
morphological characteristics in at least three tissue sections indicated
absence of renal cancer. Rats were killed at 10 months after the operation.
Kidneys from all of the rats were removed, weighed, and processed for light
microscopy. Tissue samples were fixed in 10% neutral formaldehyde and
embedded in paraffin. Serial longitudinal sections (4 �m) were spliced parallel
to the longest axis of the kidney and stained with periodic acid Schiff. Stained
slides were examined with a Zeiss Axioplan 2 imaging microscope (Carl Zeiss,
Hamburg, Germany), and representative images were captured using a Spot
digital camera.
Western blot assays. Tissue total proteins from renal cortex were extracted.
The resolved proteins were then transferred onto nitrocellulose membranes.
The membranes were blocked for 1 h at room temperature with 5% skimmed
milk, incubated with primary antibodies against IGFBP3 (dilution 1:1,000;
Santa Cruz Biotechnology, Santa Cruz, CA), Akt1/2/3 (dilution 1:1,000; Cell
Signaling Technology, Danvers, MA), and PKC� (dilution 1:1,000; Santa Cruz
Biotechnology) in Tris-buffered saline containing 0.05% Tween 20 (TBS-T)
with 5% skimmed milk overnight at 4°C. After washing with TBS-T, mem-
branes were incubated with anti-goat, anti-rabbit, or anti-mouse secondary
antibody conjugated to horseradish peroxidase (Upstate Biotechnology, Bil-
lerica, MA) with dilution of 1:2,000. Proteins were detected by enhanced
chemiluminescence (Amersham, Piscataway, NJ) on Hyperfilm. The major
protein bands with �42 kDa for IGFBP3, 60 kDa for Akt1/2/3, and 80 kDa for
PKC� were detected. To ensure equal loading of proteins, membranes were
incubated and probed with a rabbit anti–�-actin antibody (Abcam, Cambridge,
MA) with a dilution of 1:10,000, which recognizes �-actin at �43 kDa. Signals
were quantitated by densitometry and corrected for the �-actin signal, using a
Kodak Digital Image station 440CF and the ID Image Analysis software
program. Treatment groups were compared using ANOVA, and P � 0.05 was
considered statistically significant.

RESULTS

Characteristics of the patients. The median age of the
cohort was 55 years (25th–75th percentiles 45–66 years),
with a median duration of diabetes of 5 years (1–10 years).
During a total of 21,992 person-years of follow-up, 190
patients developed cancer, giving an annual incidence of
8.64 (95% CI 7.42–9.86) per 1,000 person-years. Patients
who subsequently developed cancer were older, were
more likely to be smokers and alcohol drinkers, and had
a longer duration of diabetes and poorer metabolic
profile than those without cancer (Table 1). They were
also more likely to use antihypertensive drugs other
than RAS inhibitors than patients without cancer. Pa-
tients who developed cancer were less likely to be
treated with statins alone or statins combined with RAS
inhibitors during the follow-up period than those who
remained free of cancer.
Additive interaction between statins and RAS inhib-
itors. Compared with nonusers of statins and RAS inhib-
itors, subjects who were exposed to statins and/or RAS
inhibitors had a lower risk of cancer after adjustment for
drug use indications and demographic and lifestyle covari-
ates. The additive interaction between statins and RAS
inhibitors on cancer risk was significant as indicated by
the RERI (0.39 [95% CI 0.09–0.69]) and AP values (1.57
[0.21–2.94]). The statistical significances of use of statins
only, use of RAS inhibitors only, combined use of statins
and RAS inhibitors, and additive interaction measures
(RERI and AP) persisted after adjustment for all of the
above factors, metabolic covariates, and use of other
drugs at enrollment and during follow-up using a propen-
sity score as well as taking nonlinear associations into
account (Tables 2 and 3). Combined use of statins and RAS
inhibitors was consistently associated with lower risks of

cancer even after removal of 682 patients followed for
�2.5 years (HR 0.35 [95% CI 0.16–0.75]) and reinclusion of
1,943 patients who used RAS inhibitors or statins at
baseline (0.33 [0.21–0.52]). In addition, combined use of
RAS inhibitors and statins was also consistently associ-
ated with lower risks of a variety of site-specific cancers
(supplemental Table, available in an online appendix at
http://care.diabetesjournals.org/cgi/content/full/db09-0105/
DC1). Figure 1 shows that the cumulative incidence of
cancer in patients who used statins or RAS inhibitors
alone or both was lower than that in those patients who
were not exposed to statins and RAS inhibitors over the
follow-up period.
Prevention of renal cancer by RAS inhibitors in UNX
rats. We then explored the role of RAS activation in the
development of cancers using the UNX rat model. By 10
months postoperation (Fig. 2), all of the eight untreated
UNX rats (100%) developed invasive renal cell carcinoma
in the remnant kidney (Fig. 2B). In comparison, none of
the sham rats (Fig. 2A) or UNX rats treated with the ACEI
lisinopril (Fig. 2C) developed renal cancer. As previously
reported (27,28), untreated UNX rats also exhibited a
phenotype resembling that of type 2 diabetes, character-
ized by insulin resistance and pancreatic �-cell deficit,
whereas treatment with lisinopril significantly reduced
hypertrophy of the remnant kidney (28).
Improved lipid metabolism by RAS inhibitors in UNX
rats. We used the UNX model to examine the longitudinal
effect of RAS inhibition on lipid metabolism and renal
function. From 3 months onward, untreated UNX rats
exhibited progressive chronic renal dysfunction, as in-
dicated by an increased total urine protein-to-creatinine
ratio (Fig. 3A). An elevated LDL cholesterol level was
observed in the untreated UNX rats from 6 months after
UNX (Fig. 3B). Interestingly, treatment with ACEI
largely attenuated the renal dysfunction (Fig. 3A) and
improved lipid metabolism (Fig. 3B) in UNX animals (all
P � 0.05 vs. untreated UNX rats). Western blot assays of
renal tissues revealed a fourfold increase in the protein
expression of HMGCR in the untreated UNX rats com-
pared with the sham animals (Fig. 4). Treatment with
the ACEI lisinopril normalized the expression of HMGCR
(Fig. 4).
Normalization of IGF-1 signaling pathway by ACEI in
UNX rats. We further examined the protein expression of
key molecules in the IGF-1 signaling pathway, which may
be linked to carcinogenesis. Compared with sham animals,
the protein expression of the growth inhibitory factor,
IGFBP3, in the remnant kidney was reduced, whereas the
protein expression levels of growth-promoting factors,
such as Akt/PKB and PKC�, were increased in the un-
treated UNX rats (Fig. 5). RAS inhibition by the ACEI
nearly normalized the expression of these IGF-1 signal
molecules (Fig. 5).

DISCUSSION

This study provides evidence that the combined use of
RAS inhibitors and statins may be associated with
greater anticancer effects than use of either class of
drugs in isolation. To explain this phenomenon, our
animal data indicated that RAS blockade prevented the
development of renal cell carcinoma in UNX rats via
normalizing the expression of the HMGCR and IGF-1
signaling pathways.

The risk associations of statin use and cancer remain
controversial. In epidemiological studies, the use of statins
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was associated with a large relative risk reduction for
cancer (37). Conversely, nearly all meta-analyses of clini-
cal trials (13,38) showed that statins have a neutral effect
on incidence of cancer. However, results from meta-
analyses are often inconclusive because of heterogeneity
of study design, clinical profile of patient cohorts, different
definitions for outcome measures, and quality of data. This
statement is illustrated by the marked variations in cancer
incidence ranging from 0.2 to 6.3% in these reported trials
(39). Furthermore, the majority of clinical trials included
in these meta-analyses were not conducted in diabetic
populations.

The risk association of RAS inhibitors and cancer is also
controversial. A meta-analysis of randomized trials of
antihypertensive drugs failed to demonstrate a reduced
odds of cancer with use of antihypertensive drugs, includ-

ing RAS inhibitors (40). On the other hand, the Rotterdam
Study reported that use of RAS inhibitors was associated
with reduced cancer risk in ACE-DD genotype carriers,
who are also known to have high levels of ACE (41). Two
other studies (11,16) also showed that users of RAS
inhibitors had lower risks of cancer than nonusers. Our
study further showed that combined use of stains and RAS
inhibitors was associated with a larger reduction in cancer
risk compared with the added risk reduction associated
with the use of either of the two types of drugs in isolation.

In support of these clinical observations, experimental
studies indicated that RAS activation can influence carci-
nogenesis and tumor growth by inducing oxidative stress
(42) and modulating angiogenesis, cell proliferation, im-
mune responses, and extracellular matrix formation (12).
In our experimental studies, the UNX rats developed

TABLE 1
Clinical and biochemical characteristics of the study cohort stratified according to the occurrence of cancer during follow-up period

Noncancer Cancer P

n 3,970 190
Baseline variables

Age (years) 54 (21) 66 (15) �0.0001*
Male sex 1,823 (45.9%) 98 (51.6%) 0.1263†
Smoking status �0.0001†

Ex-smoker 541 (13.6%) 39 (20.5%)
Current smoker 650 (16.4%) 25.8 (49%)

Alcohol drinking status �0.0001†
Ex-drinker 443 (11.2%) 40 (21.%1)
Current drinker 305 (7.7%) 17 (9.0%)

BMI (kg/m2) 24.5 (4.8) 24.4 (4.8) 0.8547*
Duration of diabetes (years) 5 (9) 6 (9) 0.0793*
Systolic blood pressure (mmHg) 131 (25) 135 (23) 0.0011*
Diastolic blood pressure (mmHg) 75 (13) 75 (16) 0.8312*
A1C (%) 7.2 (2.1) 7.3 (2.4) 0.8346*
LDL cholesterol (mmol/l) 3.20 (1.20) 3.10 (1.40) 0.3819*
HDL cholesterol (mmol/l) 1.25 (0.45) 1.25 (0.54) 0.7684*
Triglycerides (mmol/l) 1.28 (0.97) 1.17 (0.74) 0.0383*
Total cholesterol (mmol/l) 5.19 (1.30) 5.10 (1.41) 0.2859*
ACR (mg/mmol) 1.48 (5.05) 2.71 (10.40) �0.0001*
eGFR (ml � min�1 per 1.73 m�2) 109.2 (38.8) 100.0 (38.1) �0.0001*
Prior myocardial infarction 18 (0.5%) 5 (2.6%) �0.0001†
Prior stroke 107 (2.7%) 6 (3.2%) 0.7015†
Death (all-cause) 230 (5.8%) 93 (49.0%) �0.0001†

Medications at enrollment
Fibrates 104 (2.6%) 3 (1.6%) 0.4313†
Use of lipid-lowering drug other than fibrates and statins 4 (0.1%) 0 (0.0%) 1.0‡
Antihypertensive drugs other than RAS inhibitors§ 1,080 (27.2%) 77 (40.5%) �0.0001†
Oral antidiabetes drugs 2,382 (60.0%) 119 (62.6%) 0.4328†
Insulin 541 (13.6%) 33 (17.4%) 0.1441†

Medications during follow-up period�
Statins only 368 (9.3%) 6 (3.2) 0.0004†
Duration of use of statins in those who used statins only

(years) 1.71 (2.82) 2.00 (1.40)
RAS inhibitors only 1,036 (26.1%) 52 (27.4%) 0.6966†
Duration of use of RAS inhibitors in those who used RAS

inhibitors only (years) 2.28 (3.71) 1.49 (2.59)
Both statins and RAS inhibitors 626 (15.8%) 17 (9.0%) 0.00111†
Duration of combined use of statins and RAS inhibitors (years) 1.77 (3.08) 1.16 (3.22)
Fibrates 372 (9.4%) 10 (5.3%) 0.0555†
Lipid-lowering drug other than fibrates and statins 12 (0.3%) 1 (0.5%) 0.4559‡
Oral antidiabetes drugs 3,284 (82.7%) 144 (75.8%) 0.0142†
Insulin 1,312 (33.1%) 63 (33.2%) 0.9749†

Data are median (interquartile range) or n (%). RAS inhibitors included ACEIs and angiotensin II receptor blockers. *Derived from a
Wilcoxon two-sample test. †Derived from a 	2 test. ‡Derived from Fisher’s exact test. §RAS inhibitors included ACEIs and angiotensin
II receptor blockers. �From baseline (including use at baseline for all drugs except for statins and RAS inhibitors) to cancer, death or
censoring dates whichever came first.
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glucose intolerance and abnormal lipid metabolism and
eventually renal cancer, which were all prevented by
treatment with ACEIs. This anticancer effect appears to be
at least partially mediated through modulation of the
HMGCR and IGF-1 signaling pathways, with the latter
having complex effects on intermediary metabolism and
cellular growth. The tissue activity of IGF-1 is regulated by
the levels of its binding proteins as well as by the number

and responsiveness of its receptors. In this regard, low
levels of IGFBP3 are associated with increased risk of
cancer in clinical studies. On the other hand, downstream
signals of the IGF-1 pathway such as Akt/PKB and PKC�
can stimulate cell proliferation and promote cell mitosis
(43). Thus, given the cancer-enhancing effects of the RAS
components (12), interactions between IGF-1 signaling
molecules and the tissue RAS components have been
shown to stimulate the bcl-2 proto-oncogene–associated
cell proliferation and to inhibit the p53 anti-oncogene–
mediated cell death (44).

Cholesterol is essential for cell division and growth. In
the context, IGF-1 has been shown to regulate the induc-
tion and expression of a family of genes involved in
cholesterol biosynthesis (45). Thus, it is plausible that
overactivation of components of the RAS, IGF-1, and
HMGCR pathways may result in dysregulated growth and
eventually carcinogenesis, as evidenced by 1) reduced
expression of IGFBP3, 2) activation of the IGF-1 signaling
pathway (Akt/PKB and PKC�), and 3) increased HMGCR
expression in our UMX rat model. Of note, the interaction
between the combined use of statins and RAS inhibitors
was observed for multiple cancers in humans, including
cancer of genitourinary organs, whereas the mechanistic
exploration was made for kidney cancer in animals. In this
regard, a strong association between diabetes and kidney
cancer has been reported in a large cohort (46). If multiple

TABLE 2
HRs of use of RAS inhibitors and statins for cancer in type 2 diabetes

Exposures n at risk HR (95% CI) P

Main effect model 1*
Use of RAS inhibitors 1,770 0.52 (0.37–0.74) 0.0002
Use of statins 1,056 0.43 (0.25–0.65) 0.0002

Main effect model 2†
Use of RAS inhibitors 1,770 0.43 (0.29–0.63) 0.0001
Use of statins 1,056 0.38 (0.22–0.67) 0.0009

Multiplicative interaction model 1*
Use of RAS inhibitors 1,770 0.49 (0.34–0.71) 0.0001
Use of statins 1,056 0.26 (0.10–0.65) 0.0038
Use of RAS inhibitors 
 use of statins 682 1.98 (0.68–5.75) 0.2117

Multiplicative interaction model 2†
Use of RAS inhibitors 1,770 0.39 (0.26–0.60) 0.0001
Use of statins 1,056 0.24 (0.08–0.70) 0.0090
Use of RAS inhibitors 
 use of statins 682 1.89 (0.56–6.37) 0.3025

Additive interaction model 1*
Use of RAS inhibitors plus nonuse of statins vs. others 1,088 0.50 (0.35–0.72) 0.0002
Use of statins plus nonuse of RAS inhibitors vs. others 374 0.27 (0.11–0.67) 0.0049
Use of RAS inhibitors plus use of statins vs. others 643‡ 0.26 (0.15–0.45) �0.0001

Additive interaction model 2†
Use of RAS inhibitors plus nonuse of statins vs. others 1,088 0.41 (0.27–0.63) 0.0001
Use of statins plus nonuse of RAS inhibitors vs. others 374 0.26 (0.09–0.74) 0.0118
Use of RAS inhibitors plus use of statins vs. others 643 0.20 (0.11–0.38) �0.0001

Stratified Cox models on deciles of the likelihoods using statins and using RAS inhibitors during the follow-up period were used in all of the
analyses. The propensity scores were calculated using logistic regression with the drug use as the dependent variable and the following
variables as independent variables: age, sex, smoking status (current or ex), drinking status (current or ex), BMI, LDL cholesterol, HDL
cholesterol, triglyceride, A1C, systolic blood pressure, log10 (ACR � 1), estimated glomerular filtration rate, duration of diabetes, peripheral
arterial disease, retinopathy, sensory neuropathy, prior myocardial infarction, and prior stroke (the c statistics were 0.79 for use of statins
and 0.80 for use of RAS inhibitors). *Adjusted for LDL cholesterol–related risk (i.e., �2.80 mmol/l plus albuminuria and �3.80 mmol/l), age,
sex, BMI, smoking status (current plus ex), and alcohol drinking (current plus ex). RAS inhibitors included ACEIs and angiotensin II receptor
blockers. †Adjusted for LDL cholesterol–related risk (i.e., �2.80 mmol/l plus albuminuria and �3.80 mmol/l), age, sex, BMI, smoking status,
and alcohol drinking, HDL cholesterol, triglyceride, duration of diabetes, A1C, systolic blood pressure, estimated glomerular filtration rate,
and medications from enrollment to cancer, death, or censoring date (oral antidiabetes drugs, insulin, and fibrates), whichever came first, and use
of other antihypertensive drugs at enrollment. To avoid overfitting, the propensity score for cancer was used for all adjustments. In addition,
restricted spline functions of all continuous covariates were used to calculate the propensity score to improve adjustment for nonlinear
associations (the c statistic was 0.77). ‡39 patients who used both ACEIs/angiotensin receptor blockers and statins but at different time
periods were not counted as “Use of RAS inhibitors plus use of statins.”

TABLE 3
Additive interactions of use of RAS inhibitors and statins for the
risk of cancer in type 2 diabetes

Measures of additive
interaction of RAS
inhibitors with statins* Estimate (95% CI)

Model 1
RERI 0.39 (0.09–0.69)†
AP 1.57 (0.21–2.94)†
S 0.66 (0.50–0.86)

Model 2
RERI 0.53 (0.20–0.87)†
AP 2.65 (0.38–4.91)†
S 0.60 (0.46–0.78)

*Adjusted schemes for models 1 and 2 are available in Table 2.
†Statistically significant with RERI � 0, AP � 0, and S � 1 indicating
additive interaction.
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cancers in type 2 diabetes share some common “pathogen-
esis,” the IGF-1 signaling pathway is likely to play a role in
development of cancer.

Our study has certain limitations. First, the study is not
a clinical trial and the findings are only hypothesis gener-
ating. Second, we did not perform regular screening for
cancer in this cohort because of finite resources. The use
of principal discharge diagnosis to identify patients with
cancer may lead to the omission of a small number of
cancer events. Third, the current method of testing addi-
tive interaction does not allow us to quantify the interac-
tion using doses of statins and RAS inhibitors. Fourth, the
cohort was mainly clinic based, although the overall
clinical profile of patients was comparable to that of many
community-based cohorts (47). Last, the dysmetabolism
observed in the animal model may not be applicable to

humans, although the phenotypes exhibited by the UNX
model were highly commensurate with those of type 2
diabetes.

In conclusion, we observed a synergistic effect of the
combined use of RAS inhibitors and statins on reducing
cancer risk in type 2 diabetes, suggesting that cross-talk of
RAS and lipid metabolism may play an important role in
the elevated risk of cancer in type 2 diabetes. Diabetes
predisposes patients to increased risks of abnormal lipid
metabolism, and elevated RAS activity is more frequent in
the type 2 diabetic population than in the general popula-
tion. Presumably, type 2 diabetic individuals with high LDL
cholesterol or hypertension would be at risk of cancer via
similar mechanisms. Thus, our findings are especially
important and relevant to type 2 diabetes. Conversely,
given that cross-talk between the RAS and lipid metabo-
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FIG. 2. UNX-induced renal cell carcinoma in remnant kidney. Kidney tissues 10 months after the operation were obtained from sham rats (A),
untreated UNX rats (B), and UNX rats treated with the ACEI lisinopril (C). Periodic acid Schiff stain demonstrates invasive renal cell carcinoma
in remnant kidney of untreated UNX rats (B), but not of sham rats or UNX rats treated with the ACEI. Original magnification � 100. (A color
representation of this figure is available in the online issue.)
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lism exists in the general population for the development
of atherosclerosis, whether the findings of the present
study would apply to the general population warrants
further investigations.
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