
Identification of Common Differentially Expressed Genes
in Urinary Bladder Cancer
Apostolos Zaravinos1, George I. Lambrou2, Ioannis Boulalas1,3, Dimitris Delakas3, Demetrios A.

Spandidos1*

1 Laboratory of Virology, Medical School, University of Crete, Crete, Greece, 2 Choremeio Research Laboratory, First Department of Pediatrics, University of Athens, Athens,

Greece, 3 Department of Urology, Asklipieio General Hospital, Athens, Greece

Abstract

Background: Current diagnosis and treatment of urinary bladder cancer (BC) has shown great progress with the utilization
of microarrays.

Purpose: Our goal was to identify common differentially expressed (DE) genes among clinically relevant subclasses of BC
using microarrays.

Methodology/Principal Findings: BC samples and controls, both experimental and publicly available datasets, were
analyzed by whole genome microarrays. We grouped the samples according to their histology and defined the DE genes in
each sample individually, as well as in each tumor group. A dual analysis strategy was followed. First, experimental samples
were analyzed and conclusions were formulated; and second, experimental sets were combined with publicly available
microarray datasets and were further analyzed in search of common DE genes. The experimental dataset identified 831
genes that were DE in all tumor samples, simultaneously. Moreover, 33 genes were up-regulated and 85 genes were down-
regulated in all 10 BC samples compared to the 5 normal tissues, simultaneously. Hierarchical clustering partitioned tumor
groups in accordance to their histology. K-means clustering of all genes and all samples, as well as clustering of tumor
groups, presented 49 clusters. K-means clustering of common DE genes in all samples revealed 24 clusters. Genes
manifested various differential patterns of expression, based on PCA. YY1 and NFkB were among the most common
transcription factors that regulated the expression of the identified DE genes. Chromosome 1 contained 32 DE genes,
followed by chromosomes 2 and 11, which contained 25 and 23 DE genes, respectively. Chromosome 21 had the least
number of DE genes. GO analysis revealed the prevalence of transport and binding genes in the common down-regulated
DE genes; the prevalence of RNA metabolism and processing genes in the up-regulated DE genes; as well as the prevalence
of genes responsible for cell communication and signal transduction in the DE genes that were down-regulated in T1-Grade
III tumors and up-regulated in T2/T3-Grade III tumors. Combination of samples from all microarray platforms revealed 17
common DE genes, (BMP4, CRYGD, DBH, GJB1, KRT83, MPZ, NHLH1, TACR3, ACTC1, MFAP4, SPARCL1, TAGLN, TPM2, CDC20,
LHCGR, TM9SF1 and HCCS) 4 of which participate in numerous pathways.

Conclusions/Significance: The identification of the common DE genes among BC samples of different histology can provide
further insight into the discovery of new putative markers.
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Introduction

Cancer of the urinary bladder (BC) is the fifth most common

cancer in men. The peak prevalence of the disease is among

patients 60–70 years of age. BC is curable if diagnosed during the

early stages of the disease. Tumors of the urinary bladder develop

via two distinct but somewhat overlapping pathways: the papillary

and non-papillary. Approximately 80% of BCs consist of

superficial exophytic papillary lesions that originate from urothe-

lial hyperplasia. These typically low-grade papillary tumors may

recur, but rarely invade the bladder wall or metastasize. The

remaining 15–20% of tumors represent high-grade solid non-

papillary BCs that arise from high-grade intraurothelial neoplasia.

These tumors aggressively invade the bladder wall and have a high

propensity for distant metastasis [1].

Parallel gene-expression monitoring is a powerful tool for

analyzing relationships among bladder tumors, discovering new

tumor subgroups, assigning tumors to pre-defined classes,

identifying co-regulated or tumor stage-specific genes and

predicting disease outcome [2,3,4,5,6,7,8]. To date, much effort

has been spent in order to identify genes that display differential

expression (DE) between various tumor types vs. other tissue

groups, such as phenotypically normal tissue. However, the

reported DE genes vary among different study groups, depending
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on the microarray-based methodology and the number of cases.

One intriguing issue that has not as yet been contemplated

involves possible data that can be gathered regarding genes that

are differentially expressed simultaneously in all study tumor cases.

In the present study, we performed cDNA microarray analysis,

comprising in-house experimental as well as publicly available

data, to analyze the gene expression profile of BC and to

determine the DE genes between cancer and healthy tissue. The

detection of DE genes was performed in each sample individually,

as well as in each tumor group, as defined by histological

examination and reported data. Data were clustered with different

algorithms, and functions of the known DE genes were further

defined by Gene Ontology. Furthermore, we searched not only for

differences among tumor types, but rather for similarities. The

reason for this approach was that, although different tumor types

are expected to have differences in their expression profiles even

between individuals with the same tumor subtype, we hypothe-

sized that tumors possess similar characteristics that may

eventually lead to knowledge of the etiologies of carcinogenesis.

In a significant work by Goldstein et al. an attempt to detect a

common cell of origin for prostate cancers was reported. They

implied that, despite the differences that tumor cells do share,

there is a possibility of a common origin [9]. In the same direction

we attempted to identify common gene expression profiles among

different tumor tissues. At this point we should mention that gene

expression, particularly from tumor biopsies, represents literally a

‘‘snap-shot’’ of the state-space of the otherwise dynamic behavior

of the disease. Yet, this ‘‘snap-shot’’ might be adequate in order to

obtain useful information on the dynamics of the system of study.

Particularly in the case of tumors, it is the only tool we have in

order to extract information at the ex vivo level.

The present data support the value of microarray-based gene

expression signatures as these identify clinically important cellular

properties.

Materials and Methods

Tumor Tissue Sampling and Surgical Procedure
Ten urinary bladder cancer specimens from patients with newly

diagnosed BCs undergoing transurethral bladder tumor resection

at the Department of Urology, ‘‘Asklipieio’’ General Hospital,

Athens, as well as five normal tissue samples, were acquired after

the amount of tissue necessary for routine pathology examination

had been removed. The patients studied were of advanced age

(73.9612.0 years). The majority (6/10, 60%) were smokers or

former-smokers, whereas four (40%) were characterized by some

level of occupational exposure to agents associated with BC

(paints, chemicals, etc.). All tumor specimens were classified and

graded by the same pathologist. Histological grading was

performed using both the 1973 World Health Organization

(WHO) and the 2004 WHO/International Society of Urologic

Pathology (ISUP) classifications [1]. Tumor stage was assessed

according to the 2002 American Joint Committee on Cancer

staging system [10]. Written informed consent was obtained from

all patients included in this study. The study protocol was

approved by the Ethics Committee of the University of Crete.

Eligibility criteria used were electively dissected primary BCs and

the availability of DNA from normal and tumor tissue for

biomolecular analyses. Exclusion criteria were a history of

previous neoplasms and chemotherapy or radiation therapy prior

to surgery.

Tissue samples were obtained at surgery from the tumor and the

following three grossly normal selected sites (cold cup biopsies):

posterior wall, trigone, and area adjacent to the tumor. Parts of the

dissected normal samples were sent for histopathological analysis.

Tumor and normal tissues were frozen immediately in liquid

nitrogen, transported and stored at 280uC until DNA extraction.

Patients with non-muscle-invasive BCs were followed up with

periodical cystoscopic examinations and intravesical treatment as

indicated. Patients with invasive BCs were offered radical

cystectomy with or without systemic chemotherapy.

Immunohistochemistry
Sections, 3 mm thick, of formalin-fixed, paraffin-embedded

tissue were cut and placed on slides coated with 3-aminopropyl-

triethoxysilone. Slides were dried at 56uC for 1 h before

immunohistochemical staining. Tissue sections were deparaffi-

nized in xylene before rehydration in graded alcohols, and

endogenous peroxidase activity was blocked by treatment with 3%

H2O2 at room temperature for 15 min. Antigen unmasking was

performed by 30 min of incubation at 80uC in 10 mM trisodium

citrate (pH 6.1). Immunostaining and revelation were performed

on a Dako automate. Slides were incubated at room temperature

with primary polyclonal goat antibodies against anti-ErbB2 (1:800;

Dako), cyclin D1 (1:100; SP4; Epitomics), monoclonal antibody

against anti-p53 (1:250; E26; Epitomics) and monoclonal antibody

against anti-Ki-67 (1:100; SP6; Epitomics). Epitopes of the

primary antibody were localized by immunoperoxidase technique

using the secondary antibody avidin-biotin complex and peroxi-

dase substrate kit (kit 5001, Dako), according to the manufacturer’s

protocol. The sections were then treated with Chromagen 30–30

diaminobenzidene tetrahydrochloride to identify sites of immuno-

precipitation by light microscopy. Finally, sections were washed,

counterstained with hematoxylin, and mounted under cover slips.

No specific staining was observed when the primary antibody was

omitted from the protocol (negative control). Specificity of the

immunostaining was additionally controlled by simultaneous

staining of breast cancer samples with known ErbB2, cyclin D1,

p53 and Ki67 expression patterns. An experienced pathologist

scored the staining intensity at four levels (negative, weak,

moderate and strong), considering both color intensity and

number of stained cells.

Microarray Experimentation and Inclusion of Publicly
available Microarray Datasets

Oligos microarray chips (,57 k genes) were obtained from GE

HealthCare (IL) and AppliedMicroarrays (MA) (former Amer-

sham Biosciences) (CodeLink 57 k Human Whole Genome)

[11,12,13]. Hybridization was performed with the CodeLink

RNA amplification and Labeling kit as described by the

manufacturer, utilizing the Cy5 fluorescent dye. Slides were

scanned with a microarray scanner (ScanArray 4000XL). Images

were generated with ScanArray microarray acquisition software

(GSI Lumonics, USA). cRNAs from three experimental setups

were used in single experiments with internal spikes as controls.

The experimental setups consisted of 10 urinary BC samples of

different histology (see Tissue Sampling and Surgical Procedure

section) and 5 control samples. The scanned images were further

processed with the CodeLink Expression Analysis Software v5.0

from Amersham Biosciences (presently GE Health Care Inc.). The

experimental setup was analyzed based on the reference-design as

described previously [14,15,16] as presented in Figure S1A. All

tumor samples were compared against the mean value of the

control samples. Raw microarray data are available at the GEO

microarray database. All microarray data are MIAME compliant.

In order to expand the number of BC samples under

investigation, we included the following publicly available

microarray datasets in our analysis: 1) GSE89 dataset (GDS183)

Differentially Expressed Genes in Bladder Cancer
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[17], comprised of 40 BC samples; 2) GSE3167 dataset

(GDS1479) [18], comprised of 60 samples (9 controls and 51 BC

samples); 3) GSE7476 dataset [19], composed of 12 samples (3

controls and 9 BC samples) and 4) GSE12630 dataset [20],

comprised of 19 BC samples. In total, our pooled microarray

analysis was composed of 17 control samples (n = 5, for the

CodeLink platform; and n = 12, for the remaining microarray

platforms) and 129 BC samples (n = 10, for the CodeLink

platform; and n = 119, for the remaining microarray platforms).

Public data were used in their available normalized form, since

background correction and normalization had already been

performed.

Microarray Data processing
Microarray Data Filtering and Background Correction of

the CodeLink Platform. Filtering is performed based on the

signal intensity and on the criterion of whether this signal is above a

certain level. In our analysis, filtering was performed using the

equation: SvBLz1:5:sBL
, where S is the measured signal intensity,

BL is the local background measured and sBL is the standard deviation

of the local background. Signals with intensity lower than the above

measured, obtained a flag. Background correction was performed by

subtracting the median global background from the median local

background from the signal intensity. A threshold of 2 was set as cut-off,

meaning that spot intensity for at least one channel should be twice as

much as that of the background.
Microarray Data Normalization of the CodeLink

Platform. Microarray data were normalized by the default

procedure of the CodeLink software, i.e. spot intensities were divided

by the global median (global median normalization) [13]. Normalized

data were extracted, pre-processed and sorted with Microsoft Excel H.

For further data analysis the Matlab H (The Mathworks Inc.)

computing environment was used. Data were examined for their

distribution pattern for further choice of the statistical test method.
Microarray Data Cross-Normalization. Microarray data

were cross-normalized, using a quantile algorithm, in order to

account for the bias that was included due to experimentation,

different platforms and different sampling (Figure S2).

Normalization of cross-platform data has been previously

described [21,22,23] with very good correlations and consistency

between the CodeLink and Affymetrix platforms [24,25].

Creating a Common Gene List and BC Groups
In order to ensure that the results of our analysis were

comparable, we created a common gene list among all microarray

platforms. For this purpose, the NCBI Gene ID number was used

as a common reference. After comparing the DE genes among all

datasets, only those present in all platforms were selected for

further analysis. In total, this filtering approach yielded a gene set

of 11,837 unique records, simultaneously present in all microarray

platforms. Datasets were used as individual samples as well as in

tumor groups. The group distribution is presented in Table S1.

Microarray Data Statistics for the CodeLink Platform and
the Publicly available Microarray Datasets

In regards to the CodeLink platform, our approach consisted of

the following methodology. Each gene was tested for its significance

in differential expression using a z-test. Genes were considered to be

significantly differentially expressed if they obtained a p-val-

ue,0.05. Comparisons were made both among experiments as

well as within experiments. Set manipulation was then used in order

to discover further subsets that would characterize, if possible, all

tumor samples. For further analyses we used the genes that were

differentially expressed among tumor samples.

Regarding the comparison among genes of all of the available

microarray datasets, we used the following methodology:

a) First, we searched for differences, comparing all control

samples (considered as one group), against all tumor samples

(considered as another group), using a two-tailed two-sample

T-test. Since these groups contained samples which varied in

ethnicity and tumor grade, we controlled all bias by

comparing them as unified groups.

b) Second, we separated samples into groups (11 groups in total)

(Table S1), and each group was compared against all control

samples, using a two-tailed two-sample T-test.

c) Third, we compared samples individually for significant genes

among each experiment, using a two-tailed z-test, which is

referred to as ‘‘intra-experimental’’. This type of comparison

had a particularity. Since expression of the genes was

compared to the mean of the gene expression within the

same experiment, the DE genes would signify the difference

that each tissue sample exhibited in comparison with the

normal tissues. This means that the common genes among

them would be those genes that are common to the tumor

tissue.

d) We compared samples individually for significant genes i.e.

gene ratios, among experimental setups, using a two-tailed z-

test, which we refer to as ‘‘inter-experimental’’. In other

words, we searched for genes that exhibited different

expression from one sample to the next but not against the

control samples. Interestingly, the significant genes derived

from these included genes that were not DE. In other words,

these genes were identified among those whose expression

remained the same across all samples.

In order to identify the differentially expressed genes, we used

two methods. Genes were considered to be significantly differen-

tially expressed if they obtained a p-value,0.05. Comparisons

were made both among experiments as well as within experiments.

Set manipulation was then used in order to discover further subsets

that would characterize, if possible, all tumor samples. For further

analyses we used the genes that were differentially expressed

among tumor samples, on a need-to-use basis. In the case where

sample groups were compared, the mean of each gene was taken

against the mean of all control samples. In the case of individual

comparisons of samples, gene ratios were calculated against the

mean of all control samples.

False Discovery Rate (FDR)
The False Discovery Rate was calculated as previously

described [26,27,28].

Clustering Analysis
Clustering analysis was performed with the k-means algorithm.

In total, 81 clusters of the complete dataset of the CodeLink

platform and 100 clusters for all available datasets, were formed

and DE genes were further classified using two-way (genes-against-

samples) average-linkage hierarchical clustering with Euclidian

distance [29]. Clustering analysis and chromosome mapping were

in part performed with Genesis 1.7.2 (Technische Universitaet-

Graz, Austria) using Pearson’s correlation (r) and Spearman’s rank

order correlation (r) [30,31,32].

TFBM Analysis
In order to identify the transcription factors driving the

observed changes in the gene expression, we investigated the

Differentially Expressed Genes in Bladder Cancer
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Transcription Factor Binding Motifs (TFBMs) in the Transcrip-

tion Element Listening System Database (TELiS) (www.telis.ucla.

edu) [33]. The TRANSFAC transcription factor database was

used for the identification of gene transcription factor binding sites

[34].

Chromosome Mapping
Chromosome mapping appears to be a promising method for

identifying patterns among genes. The main idea reported initially

by Cohen et al. is to map genes on chromosomal regions and in this

way if correlations do exist they appear through the location of

genes on chromosomal regions, since consecutive genes are often

similarly expressed [30]. For chromosome mapping analysis, we

used the Gene Ontology Tree Machine, WebGestalt web-tool

(Vanderbilt University, The Netherlands, http://bioinfo.vander-

bilt.edu/gotm/) [35] and the Matlab H (The Mathworks Inc.)

computing environment.

Gene Ontology (GO) Analysis
Gene Ontology (GO) analysis was initially performed using the

eGOn online tool for Gene Ontology (The Norwegian University

of Science and Technology, Trondheim, Norway, http://www.

genetools.microarray.ntnu.no/egon/) in order to find missing gene

symbols [36]. WebGestalt web-tool (Vanderbilt University, The

Netherlands, http://bioinfo.vanderbilt.edu/gotm/) [35,37] was

used for gene function classifications. Relations of the differentially

expressed genes and the transcription factor binding motifs were

further investigated using the Pubgene Ontology Database (www.

pubgene.org). Gene definitions and functions were based on the

National Institute of Health databases (http://www.ncbi.nlm.nih.

gov/sites/entrez/).

GEO accession numbers
Array data were deposited at the Gene Expression Omnibus

(National Center for Biotechnology Information) with accession

numbers GSM678186 through GSM678385 (http://www.ncbi.

nlm.nih.gov/geo/query/acc.cgi?acc=GSE27448).

Results

Immunohistochemistry
Tumor samples were stained with antibodies for ErbB2, cyclin

D1, p53 and Ki-67. If present, anti-ErbB2 staining in tumor

samples is a membrane staining, diffuse in the urothelium

(Figure 1). All TCC samples (100%) showed moderate/strong

(++, +++) immunostaining, whereas no TCC sample showed no/

weak immunostaining (0, +). Thresholds for high labeling indices

were set for Ki-67 at $10% positive tumor nuclei and for p53 at

10 and 20%. T1/2-Grade III tumors exhibited the strongest

immunostaining (+++, .70%). T1-Grade I/II tumors showed

weak staining for anti-Ki-67 (40% and 7.5%, respectively),

whereas T1/2-Grade III tumors exhibited the strongest immuno-

staining (54%). Similarly, T1-Grade I/II tumors showed weak

staining for anti-p53 (10% and 35%, respectively), whereas T1/2-

Grade III tumors exhibited the strongest immunostaining (53%).

On the other hand, T1-Grade I/II tumors showed intense staining

for anti-Cyclin D1 (80% and 80%, respectively), whereas T1/2-

Grade III tumors exhibited weak immunostaining (31.8%).

CodeLink Platform Data Distribution and Analysis
Microarray data were investigated for their normal distribution

property. The normalized data followed a normal distribution as

presented in Figure S1B and S1C. Z-test statistics were applied

on the data, both on individual samples as well as on tumor

groups. In the case of tumor groups, genes that obtained a p-

value,0.05 were considered differentially expressed. In Figure
S3A–C the distribution of the p-values is presented. FDR was

calculated as previously reported [27,28]. FDR was calculated to

be 9.3% for a p-value,0.05 for tumors of the T1-Grade II group,

8.6% for p-value,0.05 for tumors of the T1-Grade III group and

11.03% for p-value,0.05 for tumors of the T2 and T3-Grade III

group (Figure S3D–F). The same procedure was followed for

each sample individually. Genes were plotted in box-plots in order

to examine the expression distributions in further detail. Box-plots

of tumor groups as well as those for individual samples are

depicted in Figure S4A and Figure S4B, respectively.

Analysis of Common Differentially Expressed Genes:
CodeLink Platform

In order to identify gene expression patterns in urinary BC, we

further analyzed our microarray data in such a way that common

patterns of expression among the different samples were identified.

We focused our analysis, not only on the differences between

tumor samples, but also on their similarities. It was not surprising

that such similarities did exist. Intersections of individual tumor

samples revealed 831 genes that were simultaneously differentially

expressed in all of the tumor samples (either up-, or down-

regulated). Of these DE genes, we identified 33 genes with

simultaneous increased expression and 85 genes with simultaneous

decreased expression in all BC samples, compared to normal

tissue.

Among the up-regulated genes, those presenting the highest fold

expression (mean6SD) were: hypoxia-inducible protein 2 (HIG2;

NM_013332.1) (2.7060.54); APC11 anaphase promoting com-

plex subunit 11 (ANAPC11; NM_001002245.1) (2.5060.60);

zo54e12s1 Stratagene pancreas (#937208) cDNA clone IM-

AGE:590734 39 similar to TR:G1022718 G1022718 NUCLEAR

RECEPTOR CO-REPRESSOR (NCOR1; AA156336.1)

(2.0161.13); UI-1-BB1p-atp-e-01-0-UIs1 NCI_CGAP_Pl6 cDNA

clone UI-1-BB1p-atp-e-01-0-UI 39, (BU754189; BU754189.1)

(1.8960.56). Similarly, the genes that exhibited the lowest fold

expression rates (mean6SD) were: tn52a12.x1 NCI_CGAP_

Kid11 cDNA clone IMAGE:2171998 39 similar to contains

PTR5.b2 MER22 repetitive element (AI565993; AI565993.1)

(23.1360.66); zx51b02r1 Soares_testis_NHT cDNA clone IM-

AGE:795723 59 (AA461577; AA461577.1) (22.7560.86); lacto-

transferrin (LTF) (ANKRD29; NM_173505.2) (22.2861.17);

HUMNK566 Human epidermal keratinocyte cDNA clone 566

(ODZ2; D29453.1) (22.1561.02); tumor necrosis factor

receptor superfamily, member 17 (TNFRSF17) (TNFRSF17;

NM_001192.2) (22.0760.73); and skeletal muscle LIM-protein

FHL1 mRNA (FHL1; U60115.1) (22.0660.87).

Regarding the three tumor groups (T1-Grade II, T1-Grade III

and T2/T3-Grade III), our analysis did not show a subset of genes

common to all groups. Therefore, we investigated the common

DE genes between pairs of tumor groups (Tables S2, S3, S4).

DE genes common to all individuals regardless of tumor group,

were further clustered using hierarchical clustering with Euclidean

distance. Groups of common genes in several combinations are

presented in Table S5.

Hierarchical Clustering with Euclidean Distance:

CodeLink Platform. We performed two-way average-linkage

hierarchical clustering with Euclidian distance for ,57 k genes. A

detailed view of the sample cluster dendrogram is displayed in

Figure 2. We partitioned the tumors into two main groups and

several subgroups based on the differential expression of their

genome. The first branch contained a T1-Grade II tumor and the

Differentially Expressed Genes in Bladder Cancer
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other contained tumors of T1-3-Grade II/III, which were further

clustered into additional subgroups.

K-means clustering: CodeLink Platform. K-means

clustering algorithm is another way of classifying data in order

to find patterns of expression. Our analysis was organized as

follows:

i. k-means of all genes and of all samples. The result of k-means

clustering of all genes and all samples is presented in

Figure 3A. We clustered data in 49 clusters along with

their centroids (Figure 3B). For each cluster group there

were several genes that characterized the cluster i.e.

characterized the sample that the genes belonged to.

ii. k-means of common DE genes in all samples. The common

DE genes among all samples were furthered clustered

(Figure 4A and 4B).

iii. k-means of tumor groups. To conclude the analysis based on

k-means clustering the tumor groups were analyzed as

defined above. The results are presented in Figure 5A
and 5B for cluster and centroids, respectively. Clusters of

tumor groups revealed both differences as well as similarities

between the different groups. For example, certain gene

categories revealed constitutive down-regulation in one tumor

group vs. the group of higher stage/grade, whereas other

gene categories exhibited constitutive up-regulation between

the corresponding groups (clusters 11, 24, 27, 30, 33, 41, 46).

At the same time several clusters included genes that

remained unchanged between tumor groups (clusters 21,

26, 35, 37, 45, 47, 48).

Principal Component Analysis (PCA): CodeLink Platform

i. PCA of all genes in all samples. PCA analysis of our data was

further carried out in order to search for other potential

patterns among the genes. The initial analysis was

performed with genes that were commonly DE among all

samples. Calculated principal components were plotted

against each other in scatter plots as presented in

Figure 6. PCA analysis of the genes was performed in

order to find further patterns in the expression data. To

perform the present analysis with all genes and in all

samples, the initial step was to plot scatter plots of all

combinations of the principal components (Figure 6A, B).

The genes manifested several patterns as noted in the circled

areas in Figure 6B. Then, samples were examined for the

percentage of variance they attributed to the principal

components (Figure 6C, D). Finally, a biplot was

Figure 1. T2-Grade III tumors exhibited the strongest immunostaining for anti-cerbB2 (+++, .70%), anti-Ki67 (.70%) and anti-p53
(85%). On the other hand, T1-Grade II tumors showed intense staining for anti-Cyclin D1 (80%), whereas T1-Grade III tumors exhibited weak
immunostaining. Representative H&E slides denote the histology of T1-Grade II, T1-Grade III and T2-Grade III tumors.
doi:10.1371/journal.pone.0018135.g001

Differentially Expressed Genes in Bladder Cancer
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constructed in order to examine sample classification with

respect to total gene expression (Figure 6E). As presented in

the circled areas in Figure 6E, samples were grouped into

two main categories: samples 22A (T2/T3-Grade III), 27A

(T1-Grade III) and 29A (T2/T3-Grade III) on one hand,

and the rest of the samples were grouped together. In order

to further resolve for differences based on PCA analysis we

compared gene expression as follows.

ii. PCA of common DE genes in all samples. PCA analysis of the

common DE genes is presented in Figure 7. Grouping of the

samples based on principal components showed different

classifications. Tumor samples 2A, 3A and 4A were grouped

distinctively as per the first three principal components

(Figure 7E). These three samples were grouped together

when the complete data set was considered. Resolving this

result with the common DE genes showed a difference

between tumor groups. Similarly, several different groupings

were obtained by PCA analysis of the common DE genes

among all samples, such as among tumor samples 22A, 10A,

samples 2A, 4A, 16A that formed a separate group and

samples 3A, 17A, 26A, 27A, 29A that formed another one

(Figure 7F). Similarly, plotting of the components grouped

samples 3A and 16A, as well as samples 2A, 4A and 10A in a

separate group.

iii. PCA of the tumor groups. PCA analysis of tumor groups

showed a distinct separation among the three groups (T1-

Grade II, T1-Grade III and T2/T3-Grade III) (Figure 8).

Transcription Factor Binding Motif (TFBM) Analysis:

CodeLink Platform. One of the main parts of our data analysis

included the determination of the over-represented TFBMs in the

promoters of the DE genes. This provides inferences about which

transcription factors are active. We searched for TFBMs in all

combinations of gene expression as presented in Table 1 and the

results are presented in Table S4. Attention was focused on two

transcription factors, YY1 and NFkB. YY1 appeared to commonly

regulate the expression of down-regulated genes in T1-Grade II

and simultaneously in T1-Grade III. NFkB, on the other hand,

appeared to regulate common DE genes between tumors of T1-

Grade III and those of T2/T3-Grade III. In particular, it

appeared that the p65 subunit of NFkB was a common

denominator for the two tumor groups.

Chromosome Mapping: CodeLink Platform. Chromosome

distributions of the expressed data were also carried out in an attempt

to search for more patterns in gene expression with respect to

chromosome gene expression distribution. Chromosome distribution

of the common DE genes is presented in Figure 9.

Common DE genes among all BC samples showed peaks of

gene expression in chromosomes 1, 2 and 11 (Figure 9A).

Chromosome 1 contained 32 (10.2%) DE genes, followed by

chromosomes 2 and 11, which contained 25 (7.9%) and 23 (7.3%)

DE genes, respectively. Chromosome 21 had the least number of

DE genes (n = 3; 0.9%).The down-regulated genes exhibited peaks

of gene expression in chromosomes 1 (5/36; 13.8%), 3 (4/36;

11.1%) and 11 (4/36; 11.1%). Chromosomes 4, 5, 6, 14, 15, 21, 22

and Y, did not present any down-regulated gene (Figure 9B). The

up-regulated genes showed peaks in chromosomes 1 (2/14; 14.2%)

and 7 (2/14; 14.2%); whereas chromosomes 1, 5, 7, 9, 10, 15, 16,

18, 19 and 22 contained 1 up-regulated gene (1/14; 7%)

(Figure 9C). In concordance, gene distribution manifested a

peak in chromosome 19 for common DE genes between groups

T1-Grade II and T2/T3-Grade III (Figure 9D), while chromo-

some X appeared to express most genes between down-regulated

genes in group T1-Grade III and simultaneously in up-regulated

genes in group T2/T3-Grade III (Figure 9E).

Furthermore, we examined the expression of all genes as

distributed on each chromosome. This was performed by

evaluating the mean gene expression for up- and down-regulated

genes separately, since up-regulated genes are those that are active

in tumor samples as compared to control and down-regulated

genes are those that are active in control samples as compared to

tumor samples. Hence, for tumor samples the maximum activity

occurred on chromosomes 9, 22, X and for control samples on

chromosomes 10, 19 and X.

A chromosomal correlation analysis was also carried out, as

previously described by Cohen et al. [30]. We used chromosomal

correlation maps to reveal common expression patterns among

genes (Figure 9G–L). In particular, we searched for common

chromosomal expression among all chromosomes. Those mani-

festing certain correlation patterns included chromosomes 1

(Figure 9G), 4 (Figure 9H), 8 (Figure 9I), 13 (Figure 9J), 21

(Figure 9K) and chromosome 22 (Figure 9L), with chromosome

4 manifesting the most prevalent correlation pattern (Figure 9H).

The fewest genes were mapped on chromosomes 13 and 21, which

indicated that gene activity does not correlate with the number of

genes active on a chromosome.

Functional Categories of differentially expressed genes

and Gene Ontology Annotation: CodeLink Platform. Gene

definitions were used according to the NCBI (http://www.ncbi.

nlm.nih.gov). Each gene can belong to more than one category.

Categories of known genes were Biological Process (30.94%), Cellular

Component (34.66%) and Molecular Function (33.76%). Furthermore,

biological process was divided as presented in Figure 10. We

searched further into the biological process category, and the

results of the functional annotation are presented in Figure 10B–
D. From the immense number of functions of the DE genes, five

categories were outlined: cell death, cell growth, metabolism,

development and RNA processing. Genes related to cell death

included MALT1, RHOT2, SON, CECR2, F2, PDE1B, PAK1,

PLA2G6, CRADD, DNM1L, PDCD7, PUF60, ADAMTSL4, PERP,

MARK4, DIDO1 and BCL2L1. Genes related to cell growth

Figure 2. Hierarchical clustering with Euclidean distance
revealed groups of genes of common and differential
expression.
doi:10.1371/journal.pone.0018135.g002
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Figure 3. K-means clustering of all genes and all individual samples. K-means cluster gave some distinct patterns among samples, such as in
clusters 1, 3, 4, 5, etc.
doi:10.1371/journal.pone.0018135.g003
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Figure 4. K-means clustering of common DE genes among all samples. Clusters (A) and centroids (B) are presented where no clear
distinction can be made between individual samples.
doi:10.1371/journal.pone.0018135.g004
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Figure 5. K-means clusters (A) and respective centroids (B) of tumor groups: T1-Grade II, T1-Grade III and T2/T3-Grade III.
doi:10.1371/journal.pone.0018135.g005
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included TFCP2L1, PRKCQ, FGF20, NDRG3 and FHL1. Genes

related to embryonic development included among others

ADAM10, TNFRSF17, MYF5, CAP2 and NDRG3. Genes related

to metabolism included among others ATP2B4, GOLGA2L1,

MMP24, RPLP1, APOC2. Finally, among the RNA processing

and transcription regulation genes were ZNF132, ZNF135 MYF5,

PPARG, ATOH8 and others.

Cell death-related genes had no other subcategories. Cell

growth-related genes were further divided into negative and

positive regulation of cell growth (11.1% respectively), regula-

Figure 6. PCA analysis of genes was performed in order to find further patterns in the expression data. The first step to perform the
present analysis with all genes and in all samples was to plot scatter plots of all combinations of principal components (A, B). Genes manifested
several patterns as it is seen in the circled areas in B. Then, samples were examined for the percentage of variance they attributed to the principal
components (C, D). Finally, a biplot was drawn on order to examine sample classification with respect total gene expression (E). As it is presented in
the circled areas in E, samples were grouped into two main categories: samples 22A (pT2- pT3-Grade III), 27A (pT1-Grade III) and 29A (pT2- pT3-Grade
III).
doi:10.1371/journal.pone.0018135.g006
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tion of growth (33.33%) and cell growth per se (44.4%).

Metabolism-related genes were subdivided into catabolic

processes (4.91%), regulation of metabolic processes (9.31%),

nitrogen compound metabolic process (10.49%), biosynthetic

processes (10.66%), macromolecule metabolic processes

(17.94%), cellular metabolic processes (20.14%) and primary

metabolic processes (21.15%). Finally, developmental genes

were further divided into embryonic development (2.67%),

negative regulation of embryonic development (2.67%), positive

regulation of developmental processes (9.33%), regulation of

developmental processes (9.33%), anatomical structure morpho-

genesis (10%), cellular developmental processes (5.33%), ana-

tomical structure development (21.33%) and multicellular

organismal development (26%).

In order to gain more insight into gene functions GO analysis

was performed on the groups of commonly regulated genes as they

were described in Table 1. Dendrograms were used with the

hypergeometric test for determining statistical significance, as

described by Zhang et al. [35,37] for genes that were differentially

expressed between tumor samples and tumor groups, respectively.

Figure 10E–L documents the significant (p,0.05) gene annota-

tions that were found with Gene Ontology analysis. Attention

should be focused on two categories: In the common down-

regulated genes, the prevalence of transport and binding genes was

observed (Figure 10E). At the same time, the prevalence of RNA

metabolism and processing genes among the up-regulated genes

was significant (Figure 10G). Regarding the DE genes that were

down-regulated in tumors of T1-Grade III and were simulta-

neously up-regulated in tumors of T2/T3-Grade III, genes were

identified whose significant functions were cell-cell communication

and signal transduction (Figure 10J).

Comparison between two groups: all tumor samples
versus all control samples

A two-sample T-test was performed in order to identify DE

genes between those two groups. This analysis revealed 434 DE

genes. Hierarchical clustering (HCL) showed a clear distinction

among tumor samples (Figure 11). It clustered groups of genes

according to their tumor class. k-means clustering on this gene

subset was also carried out in order to detect commonly expressed

genes (Figure 12). From the cluster analysis we were able to

identify three groups of genes that were down-regulated in all

samples: Clusters 79, 81, 82 represent genes that were down-

regulated in the majority of genes. Specifically, these genes were

BMP4, CRYGD, DBH, GJB1, KRT83, MPZ, NHLH1, TACR3 in

cluster 79; ACTC1, MFAP4, SPARCL1, TAGLN in cluster 81; and

TPM2 in cluster 82. No gene was simultaneously up-regulated in

all of the samples.

CDC20: A common marker among tumor

groups. Tumor samples were separated into groups as

described in Table S1. Each group was compared against all

control samples and identified DE genes. The goal of this analysis

was to identify genes that were simultaneously DE in all tumor

groups. Indeed, we identified one known gene, the cell division

cycle 20 homolog (Gene ID: 991) or CDC20. CDC20 is a cell cycle

regulator among other functions, and, to date, there are no other

reports linking it to bladder cancer. CDC20 appeared to be

commonly differentially expressed in all tumor groups, except for

the Ta-grade3 group. Its expression levels are depicted in

Figure 13. CDC20 appeared to be over-expressed in the

majority of the tumor samples.

LHCGR is the most common DE gene among the

individual tumor samples: The Intra-experimental

Case. We compared genes in tumor samples individually, as

ratios, within the same experiment. Our analysis showed that

LHCGR was the most common DE gene found among the tumor

samples. In particular, LHCGR was differentially expressed in 108/

129 (83.7%) samples (Figure 14A). We also outlined the genes

that appeared to be differentially expressed in at least one BC

sample. In this group both HCL and k-means clustering were

performed (Figure 14). However, no further groups of genes with

common expression were revealed.

Common genes that were not differentially expressed:

The Inter-experimental case. Similarly, as in the case of

Intra-experimental comparisons, we searched for DE genes among

all tumor samples. However, no surprising results were obtained

since DE genes were expected to be encountered across such a

wide range of samples. Yet another group of genes triggered our

interest: those genes that were not DE across all tumor samples.

Their importance lies in the fact that they were similar in all

bladder cancer types, regardless of population, sampling method

or microarray platform and experimentation procedure. The

results are presented in Figure 15. However, they did not give

groups of similar expression.

Combining the two cases: Intra-experimental vs. Inter-

experimental. Since the analysis of individual samples did not

provide distinct gene groups, we searched for genes that were: (a)

unchanged in the intra-experimental, and DE in the inter-

experimental comparisons; and (b) unchanged in the inter-

experimental and DE in the intra-experimental comparisons. For

case (a), two genes fulfilled both requirements: HCCS (holocytochrome

c synthase; ID: 3052) and TM9SF1 (transmembrane 9 superfamily

member 1; ID: 10548) (Figure 16). Moreover, the comparison for

case (b) revealed LHCGR (luteinizing hormone/choriogonadotropin

receptor; ID: 3973), a gene that also appeared to be the most common

DE gene among the tumor samples.

Transcription Factor Binding Motif (TFBM) Analysis:

Cross-Platform Comparisons. Across the commonly

expressed genes that were identified in the majority of tumor

samples, TFBM analysis was performed in order to identify

transcription factors (TFs) which might affect expression of the

genes. The TFs predicted by our analysis are summarized in

Table 2. Unexpectedly, the glucocorticoid receptor (GR) was

predicted as one of the TFs in the common gene set. In order to

find which gene was most commonly represented among the TFs,

we plotted the incidence of each gene as a function of the times of

appearance within the predicted TFs (Figure 17). The gene BMP4

(bone morphogenetic protein 4; ID: 652) had the most binding

sites for the predicted TFs. To our surprise, CDC20 and LHCGR

were not represented in the TFBM analysis.

Chromosome Mapping: Cross-Platform Comparisons.

Chromosome mapping was performed with the genes that were

identified as common, among all BC samples (Figure 18). In BC,

most chromosomes had inactivated (down-regulated) genes, versus

the control samples. However, two genes were an exception:

CDC20 (in chromosome 1) and HCCS (in chromosome X).

Pathway analysis of common genes. Considering that the

genes which were identified as being common play an important

role in bladder cancer, we further attempted to isolate those genes

Figure 7. PCA analysis of common DE genes. Scatter plots of principal components (A, B) are presented. Sample 2A attributes the observed
variance (D). Plotting of the components showed different groupings among samples as it is shown in E, F, G.
doi:10.1371/journal.pone.0018135.g007
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that may play a role in tumoral ‘‘cross-roads’’. In order to do so,

we hypothesized that the genes which would fulfill such a

requirement should participate in more than one familiar

pathways. Indeed, we encountered four genes that participated

in eight different pathways, as depicted in Table 3.

Functional Categories of differentially expressed genes

and Gene Ontology Annotation: Cross-Platform

Comparisons. Finally, GO terms in which the genes

participated were analyzed (Figure 19). Three main functions

were outlined: a) circulatory system regulation, b) reproductive

Figure 8. PCA analysis of tumor groups. Scatter plots of principal components are presented (A, B), observed variance (C, D) and biplot
classification of tumor groups with respect to principal components (E).
doi:10.1371/journal.pone.0018135.g008
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organ and sex development, and c) catecholamine metabolism.

This enrichment showed that the predicted gene set has more than

a dual role.

Discussion

Several studies have focused on the expression profiling of

urinary bladder cancer using microarrays. The purpose of these

studies was the classification of bladder cancer, the definition of

biological phenotypes, the identification of gene expression

patterns in superficial and invasive human bladder cancer, the

identification of superficial, muscle-invasive, and metastasizing

transitional cell carcinoma of the bladder. [17,18,38,39,

40,41,42,43,44,45]. In the present study, the experimental

pathologic cases were carefully selected in order to obtain at least

one pair from each tumor group: T1-Grade II, T1-Grade III and

T2/T3-Grade III. Furthermore, in our pooled microarray

analysis, a wide range of data from publicly available microarray

datasets was included, increasing the number of specimens under

investigation, to 129 BC samples and 17 controls in total.

To date, the main approach in microarray analysis has been the

discovery of differences between pathogenic samples. The purpose

of these studies was to detect patterns that discriminate between

further subcategories of pathogenic samples, such as tumors.

However, the fact that, instead of bearing differences, various

tumors can also possess many similarities explained by their

common origin or by a common general mechanism of

tumorigenesis, has been neglected. Since tumors do possess similar

characteristics regardless of the tumor type, it would be reasonable

to assume that such common phenotypical manifestations would

be reflected from genomic i.e. transcriptional similarities. There-

fore, we focused our analysis, not only on the differences between

tumor samples, but also on their similarities. We focused on the

genes that simultaneously exhibited differential expression (either

up- or down-regulation) among the different subclasses of BC,

compared to the normal tissue.

Therefore, instead of searching for classification patterns

between tumor samples based on gene expression profiles we

used a reverse engineering approach in order to search for

common patterns among different tumor samples. Since there are

expected differences between even similar samples, simply due to

the diversity that characterize biological systems, the chances of

finding common mechanisms are scarce. However, one could

argue that even if similarities are found, these may be attributed to

the fact that, from a huge gene pool, several similarly expressed

genes are expected to exist. Yet, if this process is random, then

similarities should include genes or functions that do not provide

any meaning with regards to the tumor/samples under study. In

other words, if we detect common genes with similar expression

among different, unconnected samples, this implies that several

Table 1. Transcription binding motif analysis of common DE genes and conditions between DE genes.

Common Gene Conditions TFBMs

Common DEs up-regulated among all
samples (p,0.002, FDR,40%)

V$ELK1_01 V$NRF2_01 V$SRF_Q6 V$E2_Q6

Common DEs down-regulated among all
samples (p,0.01, FDR,37.5%)

V$ARP1_01 V$AHRARNT_01 V$AP2_Q6 V$VMAF_01 V$ISRE_01 V$SP1_01 V$CDXA_01

Common DEs among pT1-Grade II
and pT1-Grade III (p,0.002, FDR,30%)

V$AP4_01 V$RORA2_01 V$EGR1_01 V$MZF1_01

Common DEs among pT1-Grade II
and pT2-pT3 Grade III (p,0.0002,
FDR,10%)

V$AHRARNT_01 V$EVI1_05 V$OCT1_03 V$HEN1_02 V$CAP_01

Common DEs among pT1-Grade III
and pT2-pT3-Grade III (p,1025,
FDR,20%)

V$NFKB_C (p = 10210) V$NFKAPPAB65_01
(p = 1026)

V$GRE_C V$CREBP1_01 V$EVI1_03

Common DEs up-regulated in
pT1-Grade II and down-regulated
in pT1-Grade III

Non significant

Common DEs up-regulated in
pT1-Grade II and down-regulated
in pT2-pT3Grade III (p = 0.0002,
FDR,40%)

V$VJUN_01

Common DEs up-regulated in
pT1-Grade III and down-regulated
in pT2-pT3Grade III (p,0.0002,
FDR,20%)

V$E2F_02 V$CREBP1_01 V$IK3_01

Common DEs down-regulated in
pT1-Grade II and up-regulated in
pT1-Grade III (p,0.0005, FDR,20%)

V$YY1_02 (p = 1027) V$AP4_01 V$E2F_02 V$ELK1_01

Common DEs down-regulated in
pT1-Grade II and up-regulated in
pT2-pT3Grade III

Non significant

Common DEs down-regulated in
pT1-Grade III and up-regulated in
pT2-pT3Grade III (p,0.0002, FDR,40%)

V$EGR1_01 V$EGR2_01

Attention is drawn to two very important transcription factors YY1 and NFkB. It appeared that down-regulated genes in T1-Grade II and up-regulated in T1-Grade III are
commonly regulated by YY1. Also, common DE genes between T1-Grade III and T2- pT3-Grade III appear to have transcription factor NFkB as a common denominator.
doi:10.1371/journal.pone.0018135.t001
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common mechanisms among tumors, should indeed exist. In order

to include population and platform bias, we used all the available

control samples from all the microarray platforms that we studied.

Goldstein et al. and Hirsch et al. [9,46], investigated common

signatures for BC and cancer/lipid metabolism. These studies

suggest that biological systems on their way to disease follow

similar paths. Similarly, our approach aimed to identify similar

patterns among groups of different BC types.

Figure 9. Chromosome distribution of common differentially expressed genes. Common genes between all samples (A) showed peaks of
gene expression in chromosome 1, 11 and 19. Down-regulated genes (B) showed peaks of gene expression in chromosome 1 and 11. Up-regulated
genes (C) showed a peak in chromosomes 1 and 7. In concordance gene expression manifested a peak in chromosome 19 for common DE genes
between groups pT1-Grade II (group I) and pT2- pT3-Grade III (group III) (D), while chromosome X appeared to express most of genes between down-
regulated genes in group pT1-Grade III (group II) and simultaneously in up-regulated genes in group pT2- pT3-Grade III (group III) (E). The median
expression of all samples with respect to chromosomes is presented in (F) (numbers above and below bars indicate the chromosome). It appeared
that the most active chromosome is chromosome 9 for all tumor samples while controls manifest maximum median activity at chromosome 10 and
X. Correlation maps for all chromosomes has revealed some patterns within chromosomes 1 (G), 4 (H), 8 (I), 13 (J), 21 (K), 22 (L). Especially on
chromosome 4 it appeared that there is both negative as well as positive co-expression for the majority of the tumor samples.
doi:10.1371/journal.pone.0018135.g009
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Clustering and classification
The CodeLink Case. We initially determined gene groups

among the BC samples. This approach outlined differences

between samples. We identified 831 genes that were

differentially expressed in all 10 tumor samples simultaneously.

On the other hand, k-means clustering outlined several groups

with differential expression, such as clusters 3, 4, 5, 10, 12, 14 in

Figure 3B. When clustering for DE genes using only the k-means

algorithm, no clear distinction were detected among individual

samples, meaning that there were no clear differences among

samples. Furthermore, we investigated the presence of common

profiles, searching for simultaneously common up- and down-

regulated genes, among all tumor samples. Thirty-three genes

were up-regulated and 85 genes were down-regulated in all 10 BC

samples vs. the 5 normal tissues, simultaneously. The first finding

from classification analysis was that normal urothelium,

superficial, and muscle-invasive bladder cancers, showed distinct

gene expression profiles, as revealed by hierarchical clustering and

principal component analyses (Figure 8E). Yet, PCA analysis

indicated two main groups of expression profiles in all samples

Figure 10. Thirty-one percent (30.94%) of genes were attributed to Biological Process. Within biological processes (A) genes for growth
(B), metabolism (C) and development (D) were selected. Dendrograms (DAG trees) of Gene Ontology analysis of known differentially expressed genes
in all combinations as they are presented in Table S5 was performed. Interestingly, common up-regulated genes were attributed to RNA processing
and metabolism (G). The results include those combinations that have manifested significant function annotations at the p,0.05 level.
doi:10.1371/journal.pone.0018135.g010
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when tested individually and not in groups (Figure 6E). On the

other hand, when PCA analysis was carried out for the DE genes,

only the samples were grouped into additional clusters

(Figure 7E–G). K-means clustering of all genes and all samples,

as well as clustering of tumor groups, revealed 49 clusters.

Moreover, k-means clustering of common DE genes in all samples

revealed 24 clusters.

We did not identify any genes that were commonly DE in all

tumor groups, simultaneously. Yet, we identified such genes in

tumor group pairs. Thirty-eight common DE genes were identified

between tumor groups T1-Grade II and T1-Grade III; 44 DE

genes were identified between groups T1-Grade II and T2/T3-

Grade III; and 33 DE genes were identified between groups T1-

Grade III and T2/T3-Grade III. The DE genes were also

analyzed in 6 different combinations between paired tumor

groups, i.e. all possible combinations of DE genes that were up-

regulated in one tumor group, and down-regulated in the other

(Table S5).

Cross-Platform Comparisons. The cross-platform analysis

after the inclusion of a larger microarray dataset, provided us with

an additional view of our concept. The number of common DE

genes was now confined to a smaller group of genes. In total, 17

genes appeared to be commonly expressed among all BC samples:

BMP4, CRYGD, DBH, GJB1, KRT83, MPZ, NHLH1, TACR3,

ACTC1, MFAP4, SPARCL1, TAGLN, TPM2, CDC20, LHCGR,

TM9SF1 and HCCS.

In regards to BMP4, there is only one previous report linking it

to bladder cancer, which suggests that its expression plays a

growth inhibitory role [47]. To date, there is no publication

indicating a connection among CRYGD, GJB1, KRT83, MPZ,

NHLH1, TACR3, ACTC1, MFAP4, SPARCL1, TAGLN, TPM2,

LHCGR, TM9SF1 and bladder cancer. Future investigation needs

to confirm the implication of these genes in urinary bladder

cancer. Cluster analysis revealed a common group of genes when

all controls and all BC samples were compared as two separate

groups. For the majority of the genes, there are no known reports

Figure 11. Hierarchical clustering (HCL) of between all control and all tumor samples, both considered as two separate groups. HCL
made distinctions between the different platforms, indicating that the DE genes were adequate to do such a classification. Hence, similarities from
this group would be expected to be due to the tissues per se.
doi:10.1371/journal.pone.0018135.g011
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Figure 12. K-means clustering of DE genes between all tumor groups and all control samples.
doi:10.1371/journal.pone.0018135.g012
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Figure 13. CDC20 expression across all samples. Apart from 9 samples, the gene appeared to be up-regulated in the rest 120 samples.
doi:10.1371/journal.pone.0018135.g013

Figure 14. LHCGR expression (A) and HCL of differentially expressed genes analyzed with one-sample z-test (B). (C) K-means clustering
of DE genes in Intra-experimental comparison. (D) centroids.
doi:10.1371/journal.pone.0018135.g014
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Figure 15. K-means clustering of unchanged genes in the inter-experimental comparison.
doi:10.1371/journal.pone.0018135.g015
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linking them to bladder cancer. Notably, regarding the commonly

regulated CDC20, Kidokoro et al. recently mentioned that it has

potential therapeutic properties [48].

TFBMs
The CodeLink Case. Regarding TFBM analysis, Yin Yang 1

(YY1) and NFkB were among the most common transcription

factors regulating the expression of the identified DE genes. The

transcription factor (TF) YY1 commonly regulated the expression

of the down-regulated genes in T1-Grade II and simultaneously in

T1-Grade III. YY1 has been identified to target a plethora of

potential target genes, the products of which are important for

proliferation and differentiation, and has therefore been proposed

as an important prognostic marker for several human tumors

[49,50,51,52,53]. The mechanisms of YY1 action are related to its

ability to initiate, activate, or repress transcription depending on

the context in which it binds. YY1 over-expression has been

reported to affect the clinical behavior of several cancer types

Figure 16. HCCS and TM9SF1 were simultaneously unchanged in the intra-experimental and differentially expressed in the inter-
experimental comparisons. Expression profiles of HCCS (A) and TM9SF1 (B).
doi:10.1371/journal.pone.0018135.g016

Table 2. Predicted transcription factors (TFs) for 14 out of 17 genes commonly regulated in bladder cancer samples.

TFBM Inc. Gene IDs and Names

_WTGAAAT_UNKNOWN 4 8404 1421 4807 6870 SPARCL1 CRYGD NHLH1 TACR3

_CCAWWNAAGG_V$SRF_Q4 2 7169 6876 TPM2 TAGLN

_V$STAT3_02 2 652 10548 BMP4 TM9SF1

_RNGTGGGC_UNKNOWN 3 2705 652 4359 GJB1 BMP4 MPZ

_V$HMEF2_Q6 2 652 7169 BMP4 TPM2

_V$SRF_Q4 2 7169 6876 TPM2 TAGLN

_V$SMAD_Q6 2 652 6876 BMP4 TAGLN

_V$HEN1_01 2 652 4239 BMP4 MFAP4

_V$SRF_Q6 2 7169 6876 TPM2 TAGLN

_TTGTTT_V$FOXO4_01 4 8404 652 3052 4359 SPARCL1 BMP4 HCCS MPZ

_V$ZIC3_01 2 2705 4807 GJB1 NHLH1

_V$TTF1_Q6 2 652 7169 BMP4 TPM2

_V$GR_Q6_01 2 4359 4807 MPZ NHLH1

_V$HEN1_02 2 652 4239 BMP4 MFAP4

_V$ZIC1_01 2 2705 7169 GJB1 TPM2

_V$SRF_Q5_01 2 7169 6876 TPM2 TAGLN

_V$CEBPB_02 2 1621 4807 DBH NHLH1

_V$POU1F1_Q6 2 652 4807 BMP4 NHLH1

_SCGGAAGY_V$ELK1_02 3 2705 10548 3052 GJB1 TM9SF1 HCCS

_CAGGTG_V$E12_Q6 4 2705 652 4239 4807 GJB1 BMP4 MFAP4 NHLH1

_YNGTTNNNATT_UNKNOWN 2 652 7169 BMP4 TPM2

_WGGAATGY_V$TEF1_Q6 2 652 4359 BMP4 MPZ

doi:10.1371/journal.pone.0018135.t002
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[54,55]. Recently, a dual role of YY1 in cancer development has

been suggested, either through over- or under-expression,

depending on the tumor type. In bladder cancer, significant

differences have been detected between superficial TCC with

carcinoma in situ, and normal specimens, as well as between

muscle-invasive carcinoma and normal tissue [56].

Figure 18. Average gene expression with respect to their corresponding chromosomes.
doi:10.1371/journal.pone.0018135.g018

Figure 17. Incidence of genes among predicted transcription factors. The most prevalent gene was BMP4.
doi:10.1371/journal.pone.0018135.g017
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NFkB, on the other hand, appeared to regulate common DE

genes between tumors of T1-Grade III and those of T2/T3-Grade

III. In particular, the p65 subunit of NFkB was a common

denominator for the two tumor groups. Zhong et al. demonstrated

that transcriptionally inactive nuclear NFkB in resting cells

consists of homodimers of either p65 or p50 complexed with the

histone deacetylase HDAC1 [57]. Only p50-HDAC1 complexes

bound to DNA and suppressed NFkB-dependent gene expression

in unstimulated cells. Appropriate stimulation caused nuclear

localization of NFkB complexes containing phosphorylated p65

that associated with CBP and displaced the p50-HDAC1

complexes. These results demonstrated that phosphorylation of

p65 determines whether it associates with either CBP or HDAC1,

ensuring that only p65 entering the nucleus from cytoplasmic

NFkB -IKB complexes can activate transcription. The inhibitory

protein, NFKBIA, sequesters the transcription factor, NFkB, as an

inactive complex in the cytoplasm.

Cross-Platform Comparisons. BMP4 appeared to be the

gene with the most predicted transcription factor binding sites.

Also, when we examined the CodeLink platforms individually,

NF-kB was identified as a TF with a putative role in gene

regulation. Moreover, in the cross-platform comparisons we

identified the GR as a significantly implicated transcription

factor. Interestingly, both GR and NF-kB are two TFs that are

in interplay, at least in inflammation. The role of GR is already

known in hematologic malignancies. The role of NF-kB has also

been mentioned in drug resistance of neoplasias. However, their

role in BC is still unknown. Their appearance in the present

analysis, indicates a putative implication. GR has previously been

mentioned to participate in the oncogenesis of bladder cancer

[58]. Yet, it is still unclear whether the GR plays a role in BC.

Another TF predicted by our analysis was STAT3, previously

mentioned to be expressed in BC initiating cells [59].

Chromosome Mapping
The CodeLink Case. Chromosome mapping may be proven

to be a useful tool in the detection of gene expression patterns.

One-way ANOVA test showed significant differences between

samples 4A and 29A in up-regulated genes, as far as chromosome

gene expression is concerned (p,0.05) (Figure 20A), while no

differences were observed between down-regulated genes

(Figure 20B). The mean gene expression showed a maximum

on chromosome 9 (Figure 9F). This was interesting since the

relations between chromosome 9 and BC have been previously

reported [60,61]. Chromosome 9 has been reported to undergo

deletion of its long arm. Although, chromosome 1 manifested a

peak in gene number distribution (Figure 9A), gene expression

did not correlate with genes. Moreover, on chromosome 9, three

genes belonged to the commonly expressed genes. These were

LRRC8A (commonly down-regulated), C9orf103 and PTPDC1

(commonly up-regulated). There are no reports for these three

genes in regards to their relationship to BC. Our attention was

drawn to chromosome X, which is generally known to possess

active genes in cancer cells that are silenced in somatic cells. In

chromosome X, the gene FHL1 belonged to the commonly down-

regulated genes. Notably, it was recently reported that this gene is

hypermethylated and contributes to the invasion and migration of

BC [62]. Its expression among all samples, irrespective of the

tumor type, makes it an attractive target for further investigation as

a marker for tumor cell migration and invasion.

In order to gain further insight on gene expression with respect to

correlations between BC samples, we constructed correlation maps

as previously reported [30]. We searched for patterns among all

chromosomes. Yet, the most interesting pattern was manifested in

chromosome 4 which showed the greatest number of positive and

negative regulation between samples (Figure 9H). In chromosome

4, six genes were mapped: TACR3, RNF150, ANXA10, CENTD1,

EXOC1 and GRSF1. Interestingly, GRSF1 is a gene that is involved

in RNA binding and also stimulation of translation of viral mRNAs

in vitro. This gene was over-expressed in all samples except for case

29A, which is probably explained by the fact that all patients

received BCG treatment. From these genes, none belonged to a

common gene expression group, which makes the finding of

correlated expression stronger. In particular, samples 4A, 10A, 16A

and 17A showed positive correlation while 2A and 3A manifested

negative regulation with samples 4A, 10A, 16A, 17A and 27A.

The gene TACR3 belongs to a family of genes that function as

receptors for tachykinins. There are no reports on the role of

TACR3 in BC. Also, RNF150 a ring finger protein, has not been

previously reported regarding its relationship to BC. Similarly,

ANXA10, a gene that encodes a member of the annexin family is

reported for the first time to be correlated with bladder cancer.

Members of this family play a role in cell growth and signal

transduction. Likewise, the gene CENTD1 which contains a RAS-

associating homology domain has no previous reports regarding its

relationship to BC.

Table 3. Pathway participation of common genes in bladder cancer.

Pathway Genes Average expression

KEGG Cardiac muscle contraction 70 7169 ACTC1 TPM2 p,0.01 22.8730277 22.9625465

Dilated cardiomyopathy 70 7169 ACTC1 TPM2 p,0.01 22.8730277 22.9625465

Hypertrophic cardiomyopathy
(HCM)

70 7169 ACTC1 TPM2 p,0.01 22.8730277 22.9625465

Calcium signaling pathway 3973 6870 LHCGR TACR3 p,0.01 24.7375153 21.0159812

Neuroactive ligand-receptor
interaction

3973 6870 LHCGR TACR3 p,0.01 24.7375153 21.0159812

Pathway Commons Signaling by GPCR 3973 6870 LHCGR TACR3 p,0.01 24.7375153 21.0159812

Class A/1 (Rhodopsin-like
receptors)

3973 6870 LHCGR TACR3 p,0.01 24.7375153 21.0159812

Wikipathways Striated Muscle Contraction 70 7169 ACTC1 TPM2 p,0.01 22.8730277 22.9625465

Peptide GPCRs 3973 6870 LHCGR TACR3 p,0.01 24.7375153 21.0159812

Four genes (ACTC1, TPM2, LHCGR, TACR3) appeared to participate in 8 different pathways.
doi:10.1371/journal.pone.0018135.t003
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Furthermore, in chromosome 8 (Figure 9I) the gene DENND3

was commonly down-regulated among the BC samples. There is

no evidence linking it to BC. In chromosome 13 (Figure 9J), two

genes were commonly down-regulated in the BC samples: RXFP2

and KL. Notably, RXFP2 has been reported to participate in male

reproductive system malignancies and diseases. In a recent report,

it was suggested that this gene is involved in uterine fibroids, where

it was reported to be down-regulated in all diseased samples [63].

RXFP2 is also considered to be a stimulator of genes promoting

proteolysis such as the MMP and TIMP families [64].

Finally, the chromosomes with the majority of commonly up- or

down-regulated DE genes were chromosomes 1 (6 genes), followed

by chromosome 17 (5 genes). In chromosome 1, OTUD7B is a

commonly down-regulated gene which has been reported to

interact and regulate NFkB activity [65,66,67]. NFkB, was

predicted from our analysis as a key factor regulating DE genes

among Grade III tumors. The gene ADAMTSL4, commonly

down-regulated, belongs to the ADAMTS family of proteins with

cell adhesion and angiogenetic properties. It has been reportedly

involved in adult acute leukemia and ovarian cancer, which makes

its involvement in BC a significant finding [68,69]. The gene

ATF3, down-regulated in all samples, encodes for a transcription

factor, and has been previously reported to be involved in BC, and

in particular to be up-regulated in hTERT transformed cells [70].

ACBD3, commonly up-regulated, is a gene that participates in the

maintenance of the Golgi structures of cells. It has been reported

recently that the protein ACBD3 is released in asymmetric cell

division in neural cells [71]. RAB3B, commonly down-regulated,

participates in the regulation of exocytosis. It has been reported to

play a role in rituitary adenomas [72,73]. No reports have been

found for the GPR153 gene.

In chromosome 17, the following genes belonged to the

common expression groups: NCOR1, GFAP, QRICH2, ANAPC11

and PER1. NCOR1, commonly up-regulated, is a transcription

repressor of thyroid-hormone receptors. It has been reported to be

linked to bladder cancer cells. In particular, it has been shown that

over-expression of this gene was linked to the regulation of nuclear

receptors such as PPARgamma and VDR, where PPARgamma

(PPARG) was differentially expressed in our dataset. Interestingly, it

has been reported that NCOR1 over-expression provides a target

for therapies with histone deacetylase inhibitors, such as vorinostat

[74]. There are no reports for the role of GFAP in BC. QRICH2

(glutathione rich 2) is a gene whose functions are unknown. Its

appearance in BC makes an interesting target for further

investigation. ANAPC11, commonly up-regulated, appears to be

a very important factor in the regulation of cell cycle progression,

whereas its aberrant expression is linked to tumor progression

[75,76]. The presence of this gene in our samples implies that it

Figure 19. GO terms annotation of the common gene set. Three functions could be outlined a) circulatory functions, b) reproductive organ
development and catecholamine metabolism.
doi:10.1371/journal.pone.0018135.g019
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also plays a role in bladder cancer and cell cycle progression. It

could also imply that its over-expression is a marker of good

prognosis since all patients responded positively to therapy. PER1,

commonly down-regulated, is a very important gene since it is the

primary circadian pacemaker of the brain. Furthermore, it has

been reported to suppress tumor cell proliferation [77] and its

expression varies with aggressiveness due to polymorphisms of the

gene in prostate cancers [78].

Cross-Platform Comparisons. In the case of cross-

platform comparisons, inactivated genes were predicted. Also,

three genes appeared to be activated i.e. over-expressed: CDC20,

TM9SF1 and HCCS. Special interest was given to HCCS. It is

located on the X chromosome and to date, there are no reports

linking it to bladder cancer. Yet, it is one of the few activated genes

that was common to all samples. HCCS is a mitochondrial gene,

which means that it is inherited from the mother alone.

Considering that mitochondrial dysfunction is closely related to

cancer progression [79,80], HCCS may play an interesting role in

bladder cancer.

Pathway Analysis
The CodeLink Case. In search for common pathways, when

the CodeLink dataset was analyzed alone, the urinary bladder cancer

pathway was identified as the first and most prevalent one.

Cross-Platform Comparisons. Since the Cross-Platform

Comparisons identified 17 common genes among all of the tumor

samples, the following question arose: how can we identify the

most significant among them? Considering the multi-dimensional

nature of cancer biology, there are more than one factor or gene

that affects tumor behavior. This phenomenon is encountered in

many aspects of cancer biology, from tumorigenesis to drug

resistance and prognosis. Therefore, we hypothesized that the

most significant genes, if any, should participate simultaneously in

a variety of functions/pathways. The key aspect here is that all of

them are common to all of the samples studied in the present

work. Therefore, common pathway participation should also be

expected to exist among samples. Hence, mapping those genes on

known pathways revealed four genes that participate in 8 different

pathways. The following were the most prevalent genes in

pathway participation, and were found to be down-regulated in

BC: ACTC1, TPM2, LHCGR and TACR3, To date, there are no

reports linking them to BC. However, their inactivation in a

variety of known pathways implies that they have a putative role.

Interestingly, LHCGR, ACTC1 and TPM2 comprise the top-3

down-regulated genes compared to the control samples.

GO analysis
The CodeLink Case. GO analysis and functional gene

annotations provided further insight into the expression profile

of the common genes. We searched within five main categories of

GO annotations: cell death, cell growth, metabolism, development

and RNA processing (Figure 10). First of all, we tested the genes

for their functions and searched among those genes for the ones

that manifested common expression patterns. Second, we

analyzed common families of genes between the samples and

tumor groups for significant functions.

Three cell death-related genes were commonly regulated in all

samples: PUF60, ADAMTSL4 and BCL2L1. PUF60 was recently

reported as a novel factor of tumor progression [81]. This is in

agreement with the present study, since it was also up-regulated in

the BC samples. ADAMTSL4 was described in the previous

section. Finally, BCL2L1, commonly down-regulated, is a

mitochondrial gene expressed by the nucleus. It is localized in

the mitochondrial membrane and facilitates the release of

cytochrome C which is considered to be an effector of apoptosis.

Consistent down-regulation of the BCL2L1 gene indicates that it

could be considered for use as a prognostic or therapeutic marker

in BC. The second category included developmental genes, i.e.

genes known to participate in embryonic development

(Figure 10D). TNFRSF17 belongs to the Tumor Necrosis Family

receptors. One of its functions is the activation of NFkB factor and

it also participates in B-cell maturation. Also, it participates in

embryonic B-cell development [82]. KL (klotho) encodes a type-I

membrane protein that is related to beta-glucosidases. In a recent

report, KL promoted apoptosis and growth inhibition in lung

cancer cells [83]. This implies a similar function for BC.

Regarding the metabolism-related genes we outlined: NPC1L1,

NCOA5 and ELOVL3. NPC1L1 codes for a protein that takes up

free cholesterol into cells through vesicular endocytosis and also

participates in lipid metabolism. It has been indirectly linked to

carcinogenesis through inhibition of its function [84]. NCOA5 is a

Figure 20. One-way ANOVA showed significant differences
between samples 4A and 29A in up-regulated genes (A) while
there were no significant differences in down-regulated genes
(B) as both groups were mapped on chromosomes.
doi:10.1371/journal.pone.0018135.g020
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nuclear estrogen co-activator and hence indirectly linked to

metabolism. It has been reported to regulate c-MYC expression

as a downstream target of TIP30 [85]. Finally, ELOVVL3

participates in fatty acid chain elongation and formation of

neutral lipids. It has been reported that this gene is controlled by

steroid hormones in mouse models [86]. Lipid metabolism is

involved indirectly with BC and in particular through the PPARG

gene [87]. As another example we could refer to the metabolism

of arachidonic acid as an important tumor promotion factor [88].

The link between lipid metabolism and BC warrants further

investigation.

Finally, analysis of all DE genes as well as the groups with

common expression revealed the prevalence of transport and

binding genes, and RNA processing genes (Figure 10E–G). In

particular, prevalence of transport and binding genes was noted

in the common down-regulated DE genes; the prevalence of

RNA metabolism and processing genes in the up-regulated DE

genes; as well as the prevalence of genes responsible for cell

communication and signal transduction in the DE genes that

were down-regulated in T1-Grade III tumors and up-regulated in

T2/T3-Grade III tumors. The RNA processing genes included

NCOR1 (as previously discussed), ZNF135 and ATF3. ZNF135 is a

zinc finger protein for which not much is known. It was

consistently down-regulated in all samples, which denotes a

possible role in BC.
Cross-Platform Comparisons. The GO analysis results

were different in the case of Cross-Platform Comparisons. A total of 17

genes with several functions, apart from cell growth or cell death,

was obtained. Thus far, there are no reports connecting catechol,

diol, phenol or catecholamine metabolism with bladder cancer.

Moreover, it was interesting to attribute developmental functions

to the identified common genes.

Conclusions
In the present work we employed microarray analyses in order

to identify the common gene expression profile in bladder cancer.

Previous gene expression studies have focused on identifying

differences between tumor samples of the same type. Using a

reverse engineering approach, we searched for common expres-

sion profiles among tumor samples. Through this investigation we

were able to identify several important factors that warrant

further investigation both as prognostic markers and as

therapeutic targets. Such approaches may provide a better

insight into tumorigenesis and tumor progression. The present

findings reveal that tumors probably possess common character-

istics. This type of gene expression analysis will provide further

insights in the identification of universal tumor markers and will

therefore aid in the development of more effective therapeutic

approaches.
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