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Abstract

Background: Novel therapeutic strategies for the healing of nonunion, which has serious effects on the quality of
life of patients, are needed. We evaluated the therapeutic effect of local transplantation of human stromal vascular
fraction (SVF) cells on fracture healing in a rat non-healing fracture model and compared the effects between
freshly isolated (F) and cryopreserved (C)-SVFs.

Methods: Non-healing fracture model was induced in the femur of female immunodeficient rats (F344/N Jcl rnu/
rnu) with cauterizing periosteum. Immediately after the creation of non-healing fracture, rats received local
transplantation of F and C-SVFs suspended in phosphate-buffered saline (PBS) or the same volume of PBS without
cells using the same scaffold as a control group. During 8 weeks post-surgery, radiologic, histological,
immunohistochemical, and biomechanical analyses were performed to evaluate fracture healing. The comparison of
radiological results was performed with a chi-square test, and the multiple comparisons of immunohistochemical,
histological, and biomechanical results among groups were made using a one-way analysis of variance. A
probability value of 0.05 was considered to denote statistical significance.

Results: At week 8, in 60% of animals receiving F-SVF cells and in 50% of animals receiving C-SVF cells, the fracture
radiologically healed with bone union whereas nonunion was observed in the control group. The healing potential
was also confirmed by histological and biomechanical assessments. One of the mechanisms underlying healing
involving intrinsic angiogenesis/osteogenesis was enhanced in F- and C-SVF groups compared with that in the
control group. Human cell-derived vasculogenesis/osteogenesis, which was also confirmed in an in vitro
differentiation assay, was also enhanced in the F- and C-SVF groups compared with that in the control groups and
could be another mechanism for healing.
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Conclusions: SVF cells can enhance bone healing and cryopreserved cells have almost equal potential as fresh
cells. SVF cells can be used for improving nonunion bone fracture healing as an alternative to other mesenchymal
stem cells and the effect of SVF cells can be maintained under cryopreservation.

Keywords: Adipose, Cryopreservation, Fracture, Angiogenesis, Osteogenesis, Rat model

Background

In fracture repair, 5-10% of closed fractures and 17% of
open long bone fractures result in nonunion, which se-
verely diminishes the quality of life of patients [1-3].
Therefore, the establishment of novel therapeutic strat-
egies to promote the healing of nonunion fractures is
warranted. A sufficient blood supply to the fracture site,
neovascularization, and osteogenesis are essential for the
formation of new bone and avoiding nonunion of a frac-
ture [4—7]. Recently, stem cell-based therapy has become
a useful option to promote fracture healing [8, 9]. Evi-
dence has shown that transplantation of bone marrow-
derived stromal cells promote the healing of fractures
via angiogenesis and osteogenesis [10-12]. However,
such autologous cell therapies require the collection of a
large number of cells from the patient and the use of a
rather invasive procedure [10].

Adipose tissue has increasingly been garnering atten-
tion as a promising source of undifferentiated mesenchy-
mal stem cells [13]. Adipose-derived stem cells (ADSCs)
have multilineage potential equivalent to that of bone
marrow-derived stem cells and can be easily obtained in
large amounts from subcutaneous adipose tissue [14,
15]. However, the preparation of ADSCs involves cell
culture and the process takes a few weeks from cell iso-
lation to therapeutic application. Cells isolated from the
stromal vascular fraction (SVF) of enzymatically digested
adipose tissue, which are referred to as adipose-derived
regenerative cells, include ADSCs, macrophages, peri-
cytes, fibroblasts, blood cells, and vessel-forming cells,
such as endothelial and smooth muscle cells and their
progenitors [16—18]. Preparation of SVF cells for trans-
plantation, which can be available within 3-4 h after tis-
sue collection, involves cell separation, seeding of
scaffold cells, and a one-stage surgical treatment at the
same time as fracture repair surgery [19]. This reduction
in the time required for the overall process can facilitate
the practical use of SVF cells and bypass biological and
regulatory issues associated with extensive ex vivo pro-
cessing and cellular expansion. The efficacy of ADSCs or
SVF therapy has been reported in several clinical fields,
including cardiology, urology, and plastic and recon-
structive surgery [20-23]. In orthopedics, the effects of
SVF therapy for knee osteoarthritis have been well de-
scribed [24—29]. However, there is scant evidence of
bone healing with the use of SVF cells [30], thus the

applicability of SVF cells for the healing of fractures re-
mains to be explored.

As clinical therapeutic applications of SVF cells con-
tinue to expand, the rapid development of cell banking
is expected in future clinical scenarios. Cryopreservation
is an appropriate solution since SVF cells can be easily
frozen and stored, while maintaining the proliferative
capacity and differentiation potential [31]. Recent studies
have demonstrated the therapeutic potential of rat SVF
for bone fracture in 8 human patients [32]; while cryo-
preserved SVF cells have been shown to facilitate bone
healing in an equine carpal chip fracture [33] and rat
bone defect model [34]. However, no study has com-
pared the therapeutic benefits of fracture healing using
the same animal model between freshly isolated and
cryopreserved SVFs.

In this study, we evaluated the therapeutic effects of
transplantation of human SVF cells for fracture healing
in a rat model of non-healing fracture and compared the
therapeutic effects of freshly isolated (F) and cryopre-
served (C)-SVF cells.

Methods

Preparation of SVF cells

Human SVF cells were extracted from 10 female donors
(mean age, 65.2 + 5.5 years; body mass index, 25.5+ 3.0
kg/m?) undergoing intra-articular injection of SVF for
treatment of knee osteoarthritis using the Celution® 800/
CRS system (Cytori Therapeutics Inc., San Diego, CA,
USA). The collection of human SVF cells was approved
by the local Institutional Review Board and informed
consent was obtained from all donors. All subjects
underwent a liposuction procedure under general
anesthesia, and 100-360 mL of adipose tissue was ob-
tained. The extracted tissue was then processed using
the Celution® 800/CRS System in accordance with a pre-
viously described method [29]. Briefly, subcutaneous adi-
pose tissue was removed, minced, and then digested
with a mixture of highly purified collagenase. After di-
gestion, SVF cells were concentrated by centrifugation at
1500 rpm for 5min, extracted from the system, and
counted. Thereafter, the cells were suspended in 100 pL
of phosphate-buffered saline (PBS) for fresh use. The
remaining cells were cryopreserved for 3 months before
local transplantation as described previously [14]. Briefly,
SVEF cells were isolated and frozen in 20% human serum
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albumin (10 g/50 mL, Nihon Pharmaceutical Co., Ltd,,
Tokyo, Japan) and 10% dimethyl sulfoxide (DMSO) in
lactated Ringer’s solution at — 80°C and then cooled at
- 1°C/min from 4 °C to — 50 °C, and at — 10 °C/min to —
80°C. Prior to transplantation, the SVF cells were
thawed in a water bath at 37 °C for 2 min, washed rap-
idly, and suspended in 10 volumes of PBS. Afterward,
the cells were centrifuged at 1500 rpm for 6 min, washed
in PBS, and suspended in 100 pL of PBS.

Cell viability

Cell viability was calculated using the NC-100™ Nucleo-
Counter® Automated Cell Counting System (ChemoMe-
tec A/S, Allerod, Denmark). The total cell count and the
count of non-viable cells were determined by staining of
cell nuclei with propidium iodide before and after lysis
of the cell membrane [29].

Operative procedures

Female athymic nude rats (F344/N Jcl rnu/rnu; age, 9
weeks; body weight, 140-160g) were obtained from
CLEA Japan (Tokyo, Japan). The protocols for all animal
procedures were approved by the local Ethics Commit-
tee (Permission No; P150701) and conducted in accord-
ance with the Japanese Physiological Society Guidelines
for the Care and Use of Laboratory Animals. Anesthesia
was induced by intra-peritoneal administration of a mix-
ture of ketamine hydrochloride (60 mg/kg) and xylazine
hydrochloride (10 mg/kg). Non-healing femoral fractures
were induced by cauterizing the periosteum around the
fracture site [35, 36]. Immediately after fracture induc-
tion, the rats received local transplantation of 1.0 x 10°
human F- or C-SVFs suspended in 100 uL of PBS using
atelocollagen gel (Koken Co., Ltd., Tokyo, Japan), or the
same volume of PBS without cells using the same scaf-
fold as a control group (n = 10/group). The rats were eu-
thanized with an overdose of ketamine and xylazine for
biomechanical and histological analyses, and the femurs
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were directly frozen for biomechanical analysis or snap
frozen in liquid nitrogen and stored at — 80 °C for histo-
logical analysis over the indicated time course (Fig. 1).
Six rats were excluded due to death or infection. All
three dead animals were included in the initial 20 cases
of the operation and died on the day of surgery or the
day after surgery. All three infections occurred within 2
weeks after surgery. Finally, remained 90 rats were in-
cluded for analysis.

Radiologic assessment

Radiographs of the fractured legs of anesthetized rats
fixed in the supine position were obtained at postopera-
tive weeks (POW) 0, 4, and 8 (n=10/group). Fracture
union was identified by the presence of bridging callus
on two cortices [37]. The radiographs of each animal
were examined by two observers (YT and MF) blinded
to the course of treatment. To evaluate the fracture heal-
ing process, relative callus areas around the fracture sites
on radiographs at each time point were quantified using
Image] software (National Institutes of Health, Bethesda,
MD, USA).

Micro-computed tomography (CT) assessment

To quantify callus formation, micro-CT of the harvested
fractured legs of five rats was performed for each group
at POW 8 using a micro-CT imager (R_mCT2 FX;
Rigaku Corporation, Tokyo, Japan), as described previ-
ously [38]. Three-dimensional reconstruction of the ra-
diographs was performed using built-in software. The
region of interest was defined as an area extending 3
mm proximally and distally to the fracture line. The fol-
lowing parameters of the callus were calculated from the
region of interest using bone microstructure software
(TRI/3D-BON-FCS64; Ratoc  System Engineering,
Tokyo, Japan): total tissue volume, callus bone mineral
content, and bone volume fraction (the ratio of bone
volume to tissue volume). Callus bone mineral content

Model preparation & SVF injection

=

RS

v RT-PCR (n=15)

Day 0 Week 2 Week 4 Week 8
n=96 "
excluded because of )
death (n=3) or Sacrifice Sacrifice Sacrifice
infection (n=3) (n=30) (n=30) (n=30)
n=90
v" Radiograph v Immunostaining (n=15) v Radiograph (n=30) ¥~ Radiograph (n=30)

Fig. 1 A schematic of the study design, the time course of the study, and the number of animals at each stage. SVF, stromal vascular fractions
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was calibrated by scanning hydroxyapatite phantoms of
known densities that were provided by the system
manufacturer.

Histological assessment

Samples were sectioned to thicknesses of 6mm,
mounted on slides, and fixed with 4% paraformaldehyde
at 4°C for 5min. Hematoxylin and eosin (HE) and
safranin-O staining were performed to histologically
evaluate the endochondral ossification of five animals in
each group on POW 4 and 8. The degree of fracture
healing was evaluated using the 5-point scale proposed
by Allen et al. [39].

Biomechanical analysis of fracture union

Biomechanical evaluation of five rats from three groups
was performed at POW 8. Fractured femurs and the
contralateral non-fractured femurs were harvested. After
removal of the intra-medullary fixation pins, a standard-
ized 3-point bending test was performed using a load
torsion and bending tester (MZ-500S; Maruto Instru-
ment Co., Ltd., Tokyo, Japan) as previously described
[40]. Each bone was positioned with the posterior sur-
face downward and force was applied directly to the
fracture site with crosshead at a speed of 2 mm/min
until rupture occurred. The load and displacement were
analyzed and recorded using an attached computer and
software supplied with the testing machine during the 3-
point bending test. The ultimate stress (N), extrinsic
stiffness (N/mm), and failure energy (Nmm) were calcu-
lated using a load-deformation curve. The percentage ra-
tio of each parameter of the fractured (right) femur vs.
the unfractured (left) femur was calculated for each rat
from the load deflection curve. The relative ratio of the
fractured (right) femur to the non-fractured (left) femur
was calculated for each group and averaged.

Assessment of intrinsic angiogenesis and osteogenesis

Fluorescent immunostaining of the rat endothelial cell
(EC) marker isolectin B4 was performed at POW 2 to
quantify the regenerated capillaries and to evaluate neo-
vascularization (n = 5/group). Osteogenesis was assessed
with antibodies against the rat osteocalcin (OC) antigen
(200 mg/mL, Santa Cruz Biotechnology, Inc., Dallas, TX,
USA, SC18319) to identify rat osteoblasts (OBs) at POW
2 (n=5/group), as previously described [41]. Briefly, rat
OBs were incubated with fluorescein isothiocyanate
(FITC)-conjugated primary antibodies against isolectin
B4 (Vector Laboratories, Burlingame, CA, USA, FL1201)
and the rat OC (dilution, 1:100) at room temperature for
1 h followed by Alexa Fluor 488-conjugated donkey anti-
goat IgG antibody (dilution, 1:200; Life Technologies,
Carlsbad, CA, USA, A11055) at room temperature for 2
h. Nuclei were counter-stained with 4',6-diamidino-2-
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phenylindole (DAPI) solution (dilution, 1:100; Dojindo
Laboratories Co., Ltd., Kumamoto, Japan) for 5 min. The
number of capillaries was determined by staining of iso-
lectin B4 and OC-positive cells in five randomly selected
fields in each section and counted under a fluorescent
microscope, and the counts were averaged.

Assessment of human cell-derived vasculogenesis and
osteogenesis

Following transplantation of human cells, double im-
munofluorescence staining (n = 5/group) was performed
to evaluate vasculogenesis and osteogenesis at the frac-
ture site at POW 2 and 8 using anti-human CD31
(hCD31) anti-mouse antibody (dilution, 1:100; Santa
Cruz Biotechnology, SC53411), anti-human OC (hOC)
anti-rabbit antibody (dilution, 1:100; Santa Cruz Biotech-
nology, SC30044), and anti-human nuclear antigen
(hNA) anti-mouse antibody (dilution, 1:100; EMD Milli-
pore Corporation, Billerica, MA, USA, MAB1281). In
addition, rat-specific isolectin B4-FITC-conjugated anti-
body was used to detect the existence of rat ECs. The
samples were incubated with the primary antibodies at
room temperature for 1h and then with Alexa Fluor
594-conjugated goat anti-mouse (R37121) or Alexa Fluor
488-conjugated goat anti-rabbit IgG (1200; Life Tech-
nologies, A11008) at room temperature for 2 h to detect
hCD31 and hNA or hOC, respectively. Finally, the nuclei
were counter-stained with a DAPI solution (dilution, I:
100) for 5 min. Cells positive for hNA and hOC at the
fracture site were accepted as differentiated human OBs.
The numbers of rat ECs positive for isolectin B4 and
human-derived differentiated ECs positive for hCD31
were compared, as were the numbers of rat OBs and dif-
ferentiated human OBs.

To verify no antibodies species cross-reactivity, nega-
tive primary antibody controls, using PBS rather than
the primary antibodies, in the dual labeling were
conducted.

Assessment of gene expression

Real-time polymerase chain reaction (RT-PCR) was per-
formed to assess the expression levels of rat-specific
marker genes (BMP-2, HIF1-a, and VEGF) at POW 2 in
five rats from each group. Granulated and callus tissues
surrounding the fracture sites were harvested at POW 2.
Total RNA was extracted from tissue using the RNeasy
Mini Kit (Qiagen, Valencia, CA, USA) and reverse-
transcribed into ¢cDNA using the High-Capacity cDNA
Reverse Transcription Kit (Applied Biosystems, Foster
City, CA, USA). RT-PCR amplification of the cDNA was
performed in triplicate using SYBR Green reagent (Ap-
plied Biosystems) and an ABI PRISM 7700 Sequence
Detection System (Thermo Fisher Scientific, Waltham,
MA, USA). Relative gene expression was normalized
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against the housekeeping gene glyceraldehyde 3-
phosphate dehydrogenase using the comparative cycle
threshold method [42].

In vitro assessment of the differentiation potential of ECs
The differentiation potential of ECs was assessed as de-
scribed previously [43]. Briefly, ECs were cultured in the
wells of 12-well plates at a density of 1.0 x 10* cells/well
in endothelial growth medium supplied with the EGM™-
2 Endothelial Cell Growth Medium BulletKit™ (Lonza
Biologics, Portsmouth, NH, USA) with four replicates
(EC basic medium, hydrocortisone, fibroblast growth
factor-basic, vascular endothelial growth factor, recom-
binant human long R3 insulin-like growth factor-1, as-
corbic acid, epidermal growth factor, gentamicin,
amphotericin-B [GA]-1000, and heparin) supplemented
with 10% fetal bovine serum (FBS) and then incubated
at 37 °C under an atmosphere of 5% CO,/95% air for 1
week. To demonstrate the ability of ECs to take up 1,1'-
dioctadecyl-3,3,3",3"-tetramethylindocarbocyanine (Dil)-
labeled acetylated low-density lipoproteins (acLDLs)
(Biomedical Technologies, Inc., Stoughton, MA, USA)
and to bind to lectin extracted from Ulex europaeus
(Molecular Probes, Eugene, OR, USA), the ECs were first
incubated with DilacLDLs (10 mg/mL) at 37 °C for 4h
and then fixed with 1% paraformaldehyde for 10 min.
After washing, the ECs were continuously incubated
with FITC-labeled lectin extracted from U. europaeus
(10 mg/mL) for 1 h, then mounted using DAPI mounting
medium, and viewed under an inverted fluorescence
microscope. ECs positively stained for uptake of acLDLs
and binding of lectin extracted from U. europaeus were
counted in five randomly selected fields in each section,
and the counts were averaged. The formation of endo-
thelial tubular structures was also assessed in vitro using
Matrigel cell culture matrix (BD Biosciences, San Jose,
CA, USA). Briefly, ECs cultured in endothelial basal
medium-2 were seeded into the wells of 48-well plates
coated with Matrigel cell culture matrix and cultured at
37°C for 48h. Following, tubular formation was ob-
served under a microscope and the total tube length was
calculated from three randomly selected low-power
fields of each plate.

In vitro assessment of osteogenic differentiation potential
Osteogenic differentiation assays were performed as pre-
viously reported [15, 43, 44]. Briefly, monolayer cultures
of F- and C-SVF cells were cultured in a-minimum es-
sential medium (Invitrogen Corporation, Carlsbad, CA,
USA) supplemented with 10% FBS, 100 U/mL of penicil-
lin/streptomycin solution, 0.1 mM dexamethasone, 50
mM  ascorbate-2-phosphate, and 10mM  f-
glycerophosphate (all, Sigma-Aldrich Corporation, St.
Louis, MO, USA) and incubated at 37°C under an
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atmosphere of 5% C0O2/95% air. To assess the capability
to undergo osteogenesis, the cells were cultured in
osteogenic medium at a density of 1.0 x 10° cells/well in
four replicates. The medium was changed every 3 days.
Osteogenesis was assessed by staining for alkaline phos-
phatase (ALP) on day 14 and alizarin red staining on day
21. On day 14, ALP was collected from the cells in a
monolayer culture with the osteogenic medium. After
centrifugation at 1500 rpm for 5min, the supernatant
was collected for measurement of ALP [45]. To quantify
the induced mineralization in alizarin red staining, the
bound stain was dissolved in cetylpyridinium chloride
monohydrate (Sigma-Aldrich Corporation, St. Louis,
MO, USA) and measured at an optical density of 550
nm [46].

Statistical analysis

All values are reported as the mean + standard deviation
(SD). All analyses were conducted using StatView 5.0
software (Abacus Concepts, Inc., Berkeley, CA, USA).
Comparisons among three groups were performed using
the chi-squared test or one-way analysis of variance
followed by post hoc Tukey’s test. Comparisons between
two groups were made using Mann—Whitney U test. A
probability (p) value of < 0.05 was considered statistically
significant.

Results

Cell viability

In total, 5.1 x 10" +2.0 x 107 *¥F cells were obtained by
liposuction and purified. There was no significant differ-
ence in the ratio of viable SVF cells between the F- and
C-SVF groups (89.6% +2.8% vs. 83.6% +2.2%, respect-
ively, p = 0.29).

Radiologic and micro-CT assessment

Representative radiographs of the fractured sites and the
fracture healing ratio of each group are shown in Fig. 2a.
At POW 8, the fracture was radiologically healed with
formation of bridging callus and bone union in 60% (6/
10) of rats receiving F-SVF and 50.0% (5/10) receiving
C-SVE. There was no significant difference in the ratio
of bone union between the two groups, whereas the frac-
ture sites of all rats in the control group failed to unite
and showed no formation of bridging callus. The fre-
quency of morphological fracture healing in the control
group was significantly lower than in the F- and C-SVF
groups. Moreover, the callus area was significantly larger
in both the F- and C-SVF groups than in the control
group at POW 4 and 8, whereas there was no significant
difference between the F- and C-SVF groups (Fig. 2b)
(POW 4: F-SVF, 23.0+02mm* C-SVF, 25. 4+12.9;
control, 6.4 + 4.1, respectively; not significant for F-SVF
vs. C-SVF; p<0.05 for the F- or C-SVF group vs. the
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Fig. 2 a Representative plain radiographs for each group (n = 10/group). b Comparison of the callus areas of the three groups (n = 10/group).
Data are presented as the mean + SD. ¢ Representative micro-CT axial images of the three groups. d Quantitative comparison of bone mineral
content and volume fraction among the three groups (n = 10/group). *; p < 0.05 for F- or C-SVF vs. control; NS, not significant. F-SVF, freshly
isolated stromal vascular fraction; C-SVF, cryopreserved stromal vascular fraction

PBS [control] group; POW 8: F-SVF, 18.0 +7.1; C-SVF,
14.4 + 11.4; control, 7.4 + 3.8, respectively; not significant
for F-SVF vs. C-SVF; p<0.05 for F- or C-SVF vs. con-
trol). Bone union was confirmed by the disappearance of
the fracture line in the F- and C-SVF groups by micro-
CT, as shown in representative axial views of the frac-
ture sites presented in Fig. 2c. The bone mineral content
and bone mineral density were significantly higher in
both SVF groups than in the control group at POW 8,
while there was no significant difference in either par-
ameter between the F- and C-SVF groups (Fig. 2d; bone
mineral content (mg): F-SVF, 72.5 + 21.1; C-SVF, 76.7 +
18.8; control, 24.5 + 10.5, respectively; not significant for
F-SVF vs. C-SVF; p<0.05 for F- or C-SVF vs. control;
bone volume fraction (%): F-SVF, 55.7 +10.2; C-SVF,
52.2 £ 12.5; control, 11.1 +5.5, respectively; not signifi-
cant for F-SVF vs. C-SVF; p<0.05 for F- or C-SVF vs.
control).

Histological assessment

Histological evaluations with HE and safranin-O staining
demonstrated complete union at POW 8 after the for-
mation of bridging cartilage callus at POW 4 in the F-
and C-SVF groups. In contrast, although the formation
of a thick callus was observed, the callus was finally

absorbed, but the fracture gaps were not filled with the
bridging callus and the granulation tissues were not
joined at POW 8 in the control group (Fig. 3a). There
was no significant difference in the degree of fracture
healing between the F- and C-SVF groups at POW 4
and 8, as assessed in accordance with the classification
scheme proposed by Allen et al. [39]. However, the ex-
tent of fracture healing was significantly greater in the F-
and C-SVF groups as compared to the control group at
POW 4 and 8 (Fig. 3b) (POW 4: F-SVF, 2.0+0.71; C-
SVF, 1.8 + 0.45; control, 0.8 + 0.45, respectively; not sig-
nificant for F-SVF vs. C-SVF group; p < 0.05 for F-SVF
vs. control and C-SVF vs. control; POW 8: F-SVF, 2.4 +
1.3; C-SVF, 2.2 + 1.3; control, 0.8 + 0.45, respectively; not
significant for F-SVF vs. C-SVF; p<0.05 for F-SVF vs.
control and C-SVF vs. control).

Biomechanical assessment of fracture healing

The ultimate stress, extrinsic stiffness, and failure energy
values of the fractured femur vs. the contralateral intact
femur were significantly higher in the F- and C-SVF
groups than the control group, while there were no sig-
nificant differences between the F- and C-SVF groups
(Fig. 4a—c; ultimate stress: F-SVF, 0.79 + 0.29; C-SVF,
0.71+£0.26; control, 029+0.21, respectively; not
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Fig. 3 a Representative histologic sections of the fracture sites stained with HE and safranin-O/fast green of the three groups. b Comparison of
the degree of fracture healing using a 5-point scale among the three groups (n = 5/group). *; p < 0.05 for F- or C-SVF vs. control; NS, not
significant. F-SVF, freshly isolated stromal vascular fraction; C-SVF, cryopreserved stromal vascular fraction
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Fig. 4 Results of functional recovery after fracture assessment by the biomechanical three-point bending test at POW 8 (n = 5/group).
Comparison of the percentage of each parameter (a ultimate stress; b failure energy; ¢ extrinsic stiffness) indicating the ratio of each value at the
fracture sites to contralateral intact sites. *; p < 0.05 for F- or C-SVF vs. control; NS, not significant. F-SVF, freshly isolated stromal vascular fraction;
C-SVF, cryopreserved stromal vascular fraction
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significant for F-SVF vs. C-SVF; p<0.05 for F-SVF vs.
control and C-SVF vs. control; extrinsic stiffness: F-SVF,
0.88 £ 0.25; C-SVF, 0.94 +0.36; control, 0.15+ 0.14, re-
spectively; not significant for F-SVF vs. C-SVF; p < 0.05
for F-SVF vs. control and C-SVF vs. control; failure en-
ergy: F-SVF, 0.71+0.34; C-SVF, 0.65+0.36; control,
0.34 + 0.13, respectively; not significant for F-SVF vs. C-
SVF; p<0.05 for F-SVF vs. control and C-SVF vs.
control).

Intrinsic vascularization and osteogenesis at POW 2
Vascular staining with isolectin B4 showed a marked in-
crease in ECs at the fracture site in the F- and C-SVF
groups as compared to the control group at POW2
(Fig. 5a). The capillary density assessed by isolectin B4-
positive cells was significantly greater in the F- and C-
SVF groups than in the control group (F-SVF: 134.0 £
21.8/mm? C-SVF: 118.0 + 24.4/mm?; control: 24.0 + 8.4/
mm?; not significant for F-SVE vs. C-SVF; p<0.05 for
control vs. F-SVF or C-SVF; Fig. 5b). At the fracture site,
the ratio of OB-positive cells was significantly greater in
the F- and C-SVF groups as compared with the control
group, with enhanced intrinsic osteogenesis observed
lining the new bone surface (F-SVE: 96.0 + 28.6/mm?; C-
SVF; 78.0 +22.8/mm? control: 8.0 +4.8/mm? not sig-
nificant for F-SVF vs. C-SVF; p <0.05 for control vs. F-
SVF or C-SVF; Fig. 5c).
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Human cell-derived vasculogenesis and osteogenesis
Immunostaining of human ECs at POW 2 revealed dif-
ferentiated hCD31 and ECs at the fracture sites in the F-
and C-SVF groups (Fig. 6a). Moreover, differentiated
hNA and hOC double-positive OBs were markedly more
prevalent in the newly formed bone surface in the F-
and C-SVF groups than the control group. However,
there were significantly fewer differentiated hCD31-
positive ECs than isolectin B4-positive rat ECs in the F-
and C-SVF groups (Fig. 6b), and significantly fewer dif-
ferentiated human OBs than OC-positive rat OBs in the
F- and C-SVF groups (Fig. 6¢). No differentiated human
ECs and OBs were observed at POW 8. Negative control
experiments showed minimal background staining at-
tributed to the secondary antibodies.

Assessment of gene expression

RT-PCR revealed that the expressions levels of BMP-2,
HIF1-a, and VEGF at POW 2 were greater in the F- and
C-SVF groups than the control group, while there were
no significant differences between the F- and C-SVF
groups (Fig. 7a—c; BMP-2: F-SVF, 5.70 + 0.91-fold; C-
SVE, 6.2 +0.75; control, 1.1 +0.55, respectively; not sig-
nificant for F-SVF vs. C-SVF; p < 0.05 for F-SVF vs. con-
trol and C-SVF vs. control; HIF1-a: F-SVF, 9.65 + 1.45-
fold; C-SVEF, 7.92 + 1.12; control, 1.80 + 0.67, respectively;
not significant for F-SVF vs. C-SVF; p <0.05 for F-SVF
vs. control and C-SVF vs. control; VEGF: F-SVF, 34.43 +
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4.45-fold; C-SVF, 29.24 +2.28; control, 3.75+ 1.20, re-
spectively; not significant for F-SVF vs. C-SVF; p <0.05
for F-SVF vs. control and C-SVF vs. control).

In vitro differentiation potential of SVF cells

Double-positive staining for the uptake of acLDLs and
binding of lectin extracted from U. europaeus were ob-
served in both the F- and C-SVF groups, without signifi-
cant differences between the F- and C-SVF groups
(19.6 + 4.8 vs. 17.2 £ 3.2, respectively, p = 0.42; Fig. 8a, b).
Additionally, both groups showed formation of vascular
tube-like structures and demonstrated high potential for
tube formation without significant differences between

the F- and C-SVF groups (8.7+3.5 vs. 7.2 £ 2.9 mm, re-
spectively; p = 0.31; Fig. 8¢, d).

Regarding osteogenic differentiation, monolayer cultures of
the F- and C-SVF groups were positive for ALP and alizarin
red staining (Fig. 8e). There were no significant differences in
ALP activity and alizarin red mineralization between the F-
and C-SVF groups (ALP activity: 187.7 224 vs. 1654 +
22.8 x 10 ng/mL, p = 0.28; alizarin red mineralization: 1.80 +
1.49 vs. 1.70 + 0.9, p = 0.90 Fig. 8, g).

Discussion
The main findings of this study were that (1) transplant-
ation of human SVF cells at the site of a nonunion
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fracture in an immunodeficient rat model could enhance
bone healing in terms of radiological, histological, and
biomechanical properties, and (2) cryopreserved SVF
cells exhibit a therapeutic effect equivalent to that of
fresh specimens. To the best of our knowledge, this
study is the first to compare the therapeutic potential of
fresh vs. frozen specimens for fracture healing. Based on
these findings, transplantation of SVF cells is expected
to be a feasible treatment option for nonunion in the
near future and cryopreservation could be useful to effi-
ciently preserve SVF cells while maintaining angiogenic
and osteogenic potentials.

Our results show that local transplantation of F- and
C-SVFs promoted radiological ossification more effi-
ciently as compared to the control group, and 50-60%
of fractures were healed at POW 8. Additionally, plain
radiographs revealed that the density of the callus area
was greater in the F- and C-SVF groups than the control

group, and micro-CT showed higher bone mineral con-
tent and volume fraction of the callus in both SVF
groups than the control group at POW 8. This outcome
is supported by histological evaluation based on the clas-
sification scheme proposed by Allen et al. [36]. Add-
itionally, in the early process of fracture healing at POW
2, immunostaining of both SVF groups demonstrated ca-
pillary perfusion via neovascularization and the enhance-
ment of osteogenesis. These favorable observations in
the SVF groups led to improved functional recovery of
nonunion fractures as confirmed by the biomechanical
3-point bending test. Similarly, Nomura et al. [30] re-
ported promotion of bone formation via angiogenesis
and osteogenesis in a rat model of distraction osteogen-
esis, and Shoji et al. [37] reported that transplantation of
ADSCs accelerated bone healing in a rat model of non-
healing fracture via enhancement of osteogenesis and
angiogenesis. Our results agree with those of these
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previous studies. The present study is the first to test the
therapeutic potential of SVF cells using a rat model of
non-healing fractures and strengthens the hypothesis
that adipose-derived tissue can promote fracture healing.
However, the rate of fracture union using SVF cells in
this study was relatively lower than with the use of
ADSCs (50-60% vs. 90%, respectively) [37], which could
be due to difference in the preparation of the animal
model and/or cell composition, especially the number of
transplanted ADSCs. Hence, in future studies, compari-
sons of ADSCs and SVF cells in the same animal model
under identical conditions should be considered.

The results of immunofluorescence analysis showed
that intrinsic angiogenesis and osteogenesis were en-
hanced to a greater extent in both SVF groups than the
control group. Additionally, RT-PCR analysis with rat-
specific primers showed that the expression levels of
osteogenic and angiogenic cytokines (BMP2 and VEGF)
were upregulated in both SVF groups as compared to
the control group. These results indicate that the mecha-
nisms underlying the osteogenic and angiogenic effects
of SVF cells might involve paracrine effects on resident
cells and that interactions between transplanted human
SVFs and resident cells are critical for fracture repair.
Previous studies [47-50] have shown that transplant-
ation of adipose tissue can promote tissue regeneration
through the secretion of various cytokines, as well as in-
creased expression of angiogenic cytokines (HGEF,
VEGEF), hematopoietic cytokines (G-CSF), and cytokines
that promote bone formation (BMP-2). We also ob-
served upregulated expression of HIFl-a in both SVF
groups. HIF, which is an upstream molecule of VEGF
and the angiopoietin-1 signaling pathway, is reportedly
upregulated under hypoxic conditions in vitro [51]. Our
results also indicate that the SVF cells produced HIF1-a
at the hypoxic fracture site created by cauterizing the
periosteum during preparation of the nonunion model
and, thereby, enhanced intrinsic angiogenesis through
upregulation of VEGF.

Immunohistochemical analysis showed that transplant-
ation of human ECs and OBs at the fracture sites pro-
moted differentiation into osteoblastic and endothelial
lineages, which might be a mechanism underlying the
osteogenic and angiogenic effects of SVF cells. Based on
these findings, we next examined the differentiation po-
tential of F- and C-SVF cells in vitro and found a high
potential for the formation of vascular tube-like struc-
tures and remarkable osteogenesis potential, as revealed
by ALP and alizarin red staining. Several studies of tissue
regeneration with the use of ADSCs have provided direct
evidence for the differentiation of ADSCs into multiple
cell lineages in vitro as well as in vivo [30, 37, 52-54].
ADSCs have been shown to differentiate into ECs secret-
ing VEGF and leptin when transplanted in the ischemic
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hind-limb of mice [52]. Other studies have reported the
osteogenic capability of ADSCs using a mouse model of
calvarial defects [53] and the chondrogenic multipotency
of ADSCs for regeneration of articular cartilage [54].
The results of the present study are in line with those of
previous studies. However, there were significantly fewer
human ECs and OBs than resident cells at week 2, as de-
termined via immunofluorescence analysis. These results
suggest that the therapeutic effect of SVF cells is mainly
dependent on a paracrine effect rather than differenti-
ation potential, probably because SVF contains many
kinds of cells and their progenitors despite the low pro-
portions (2-16%) of multipotent stem cells [55, 56].
Thus, a comparative study between SVF cells and
ADSCs using the same animal model would be desirable
in the future to reveal the detailed mechanism of bone
healing.

Regarding cell viability, all tested parameters of frac-
ture healing were similar between models of cryopre-
served and freshly isolated SVF cells. Previous studies
have demonstrated no significant effect of cryopreserva-
tion on the viability, proliferation, and differentiation of
ADSCs [57-59], which is consistent with our results.
Lee et al. [60] reported that 10% DMSO was sufficient to
reduce apoptosis of ADSCs in vitro. In this study,
DMSO was used as a freezing medium, which led to fa-
vorable results in fracture healing in the cryopreserved
group. However, we observed a 10% decrease in bone
union rate in the cryopreservation group compared to
the fresh SVF group. This suggests that the cryopreser-
vation period could potentially influence cell viability
and therapeutic effect. Although a study conducted on
the ADSC stored for longer than 10 years has reported
that long-term cryopreservation maintains cell viability
with certain negative effects on osteogenic potential of
ADSCs [61], for better clarity on SVF, comparison be-
tween different cryopreservation periods using the same
animal model is ideal and should be considered. Several
recent studies have reported the therapeutic potential of
cryopreserved SVF has for bone healing in equine frac-
ture [33] and rat bone defect models [34]. However, to
the best of our knowledge, our study is the first to com-
pare the therapeutic benefits of fracture healing using
the same animal unhealing fracture model between
freshly isolated and cryopreserved SVFs, and strengthen
the evidence of usefulness of cryopreservation of SVFs
to efficiently maintain angiogenic and osteogenic
potentials.

There were some limitations to this study that should
be addressed. First, the number of samples was small,
which limits the ability to make generalized conclusions.
A larger sample size is ideal to discern differences in the
therapeutic effects between the F- and C-SVF groups.
Second, only female rats were tested because females are
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less likely to fight and incur leg injuries. However, male
rats could have been used as a nonunion model, thus fu-
ture studies of both male and female rats should be con-
sidered. Third, we used immunodeficient rats as a model
since it is commonly used in similar studies on xenotrans-
plantation [9, 37, 41], which prevents grafted human tis-
sue/cell rejection. However, several articles have reported
that the specific immune-response signal accelerates bone
healing during the late stage of fracture repair [62, 63].
Thus, immunodeficiency condition may interfere with the
outcome of practical therapeutic effects of SVF. Therefore,
challenges remain in directly translating the results of this
study into clinical practice. Fourth, we experienced 3
deaths and 3 infections in 96 operations. Three dead ani-
mals were included in the initial 20 cases of the operation
and died on the day of surgery or the day following.
Therefore, the cause of death was attributed to intraopera-
tive blood loss due to the immaturity of the surgical pro-
cedure and the prolonged surgery time. Although the
primary cause of infection remains unknown, the pro-
longed surgery time and immunodeficient conditions
might have a significant influence. Based on the above, a
treatment by an experienced surgeon is desired in clinical
setting and indication for immunodeficient patient should
be carefully considered. Fifth, the adipogenic potential of
SVFs are mutually exclusive to osteogenic potential in
bone healing. In this study, we focused on the osteogen-
esis and angiogenesis and did not assess the negative effect
of the adipogenesis at the fracture site on bone healing,
which should therefore be assessed in future studies. Fi-
nally, based on our results, about half of the rats did not
achieve bone union even after SVF administration. Thus,
it is necessary to identify factors influencing bone union in
SVF treatment.

Conclusions

In summary, human SVF cells were transplanted in im-
munodeficient rats for the treatment of non-healing
fractures. SVF cell administration radiologically, histo-
logically, and biomechanically enhanced fracture healing
via intrinsic angiogenesis/osteogenesis and human cell-
derived vasculogenesis/osteogenesis. These results con-
firm that SVF treatment can improve fracture repair,
suggesting that transplantation of SVF cells is a promis-
ing strategy for the treatment of nonunion in future clin-
ical settings. Furthermore, our data established that
cryopreserved specimens have almost equal potential for
fracture healing as fresh specimens, indicating that the
effect of SVF cells on angiogenesis and osteogenesis can
be maintained under cryopreservation.
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