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Abstract: Lactiplantibacillus plantarum can adapt to a variety of niches and is widely distributed in
many sources. We used comparative genomics to explore the differences in the genome and in
the physiological characteristics of L. plantarum isolated from pickles, fermented sauce, and human
feces. The relationships between genotypes and phenotypes were analyzed to address the effects of
isolation source on the genetic variation of L. plantarum. The comparative genomic results indicate
that the numbers of unique genes in the different strains were niche-dependent. L. plantarum isolated
from fecal sources generally had more strain-specific genes than L. plantarum isolated from pickles.
The phylogenetic tree and average nucleotide identity (ANI) results indicate that L. plantarum in
pickles and fermented sauce clustered independently, whereas the fecal L. plantarum was distributed
more uniformly in the phylogenetic tree. The pan-genome curve indicated that the L. plantarum
exhibited high genomic diversity. Based on the analysis of the carbohydrate active enzyme and
carbohydrate-use abilities, we found that L. plantarum strains isolated from different sources exhibited
different expression of the Glycoside Hydrolases (GH) and Glycosyl Transferases (GT) families and
that the expression patterns of carbohydrate active enzymes were consistent with the evolution
relationships of the strains. L. plantarum strains exhibited niche-specific characteristicsand the results
provided better understating on genetics of this species.

Keywords: Lactiplantibacillus plantarum; comparative genomics; diversity; carbohydrate metabolism

1. Introduction

Lactic acid bacteria (LAB) are microorganisms commonly found in the gut of humans
and animals [1]. The major LAB in the intestinal tract of humans are streptococci and
enterococci, which are usually regarded as pathogens. Other genera are very minor com-
ponents (<0.01% of the total bacterial population), such as Ligilactobacillus, Lactobacillus,
and Limosilactobacillus. However, Lactobacillus and their fermented products in the gut can
affect multiple physiological aspects, including the composition of the intestinal microbiota,
immune responses, tumorigenesis, the serum cholesterol level, and blood pressure [2].

L. plantarum is an LAB that can be found in the gastrointestinal tracts of human and
animals, meat, fish, fermented vegetables, and dairy products [3–5]. Since the first genome-
wide sequencing of Lactococcus lactis subsp. lactis IL1403 [6], a series of whole-genome
sequencing of LAB has been launched worldwide [7–9]. With the rapid development of se-
quencing techniques, the genomes of multiple L. plantarum strains have been sequenced [7].
This advancement has provided a better understanding of the relationships among geno-
types and functions and the directions of strain evolution [8,9]. Comparative genomics
allows horizontal comparison of the genomes of multiple bacterial strains so inter-strain
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differences can be investigated more efficiently and conveniently [10] in order to enable
better functional analysis at the molecular level [11].

Several studies have depicted the genetic diversity of L. plantarum strains using
different phenotypic and genotypic approaches, such as amplified fragment length poly-
morphism (AFLP) [12], random amplified polymorphic DNA (RAPD) [13], multilocus
sequence typing (MLST) [14], and microarray-based comparative genome hybridization
(CGH) [15,16]. These studies revealed that various L. plantarum strains generally exhibited
high conservation for genes involved in protein and lipid synthesis or degradation and
high diversity for genes involved in sugar transport and catabolism.

A previous comparative genomics study on 54 L. plantarum strains revealed that
L. plantarum isolated from various niches exhibited high genetic diversity and distinct
phylogenetic patterns [10]. However, a genomic characterization of 108 L. plantarum strains
using pan-genome analysis revealed no direct connections between genomic traits and the
niche [17]. Moreover, the associations between genotypes and phenotypes have not been
fully considered and investigated [18].

In this study, we studied the genomics of 133 L. plantarum strains isolated from various
niches. We analyzed their core genes, pan genes, and phylogenetics (on the basis of
homologous genes) and explored the functional genomics from a comparative genomics
perspective. Furthermore, to establish an efficient method to rapidly select strains with
application potential on the basis of their genetic features, we explored the relationships
between genotypes and carbohydrate use capacity.

2. Materials and Methods
2.1. Chemicals and Reagents

Cellobiose, sorbose, xylose, mannose, glucuronic acid, ribose, trehalose, and fucose
were purchased from Sinopharm Chemical Reagent Co., Ltd. (Shanghai, China); arabinose
and raffinose were purchased from Sigma-Aldrich (Shanghai) Trading Co., Ltd. (Shanghai,
China); and fructooligosaccharides were purchased from Bao Lingbao Biotechnology Co.,
Ltd. (Dezhou, Shandong Province, China).

2.2. L. plantarum Strains

In this study, 324 samples were collected for isolation of L. plantarum, including
126 pickles, 32 fermented sauces, and 166 human feces. The samples were serially diluted,
plated on solid MRS medium, and cultured at 37 ◦C for 24 h. The colonies with the char-
acteristics of lactic acid bacteria were picked up, purified, and identified by 16S rRNA
sequencing. If multiple strains of L. plantarum are isolated and identified in the same sample,
only one strain is selected for the genomic analysis. Thus, a total of 114 strains of L. plan-
tarum were obtained in this study, including 32/11/71 strains from pickles/fermented
sauce/feces, respectively. The strains were reserved at the Culture Collections of Food
Microbiology in Jiangnan University.

Meanwhile, 19 strains of L. plantarum with a complete genome were selected from the
NCBI database, covering a wide range of niches (Table S1).

2.3. Draft Genome Sequencing of L. plantarum

L. plantarum strains were inoculated in MRS medium and cultured at 37 ◦C for 12–16 h,
and the bacterial sludge was collected by centrifugation at 8000× g for 5 min. Draft genome
sequencing was performed by Novogene Co., Ltd. (Beijing, China) using an Illumina HiSeq
2000 sequencing platform.

2.4. Genomic Assembly, Prediction, and Functional Annotation

SOAPdenovo software was used for genome assembly and verification of single bases,
GapCloser software was used to fill gaps within the genome [19,20], the open reading
frame (ORF) was predicted using Glimmer and Genmark software [21], and protein BLAST
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(BLASTp) from Clusters of Orthologous Groups (COG) Proteome Database was used for
ORF homology comparison and functional annotation.

2.5. Mapping of Homologous Gene Venn Diagram and Phylogenetic Tree Construction

PGAP software was used to calculate the core genome of L. plantarum [22]. Orthol-
ogous gene prediction was performed on the genome of each strain using OrthoMCL
software [23]. The orthologous gene was then aligned using MAFFT v7.3 software [24], and
the Venn diagram was generated using Perl script. Phylogenetic trees were constructed on
the basis of the 1620 core genes using PHYLIP v3.6 [25].

2.6. Average Nucleotide Identity (ANI) Analysis

PYANI was used to calculate the orthologous average nucleotide identity of the
genome. PYANI (https://github.com/widdowquinn/pyani) is a Python3 module. We
clustered and visualized the obtained matrix using R package heatmap software. ANI is
the average value based on the comparisons of all orthologous protein-encoding genes of
the pairwise genomes and is a classic method for judging whether strains belong to the
same species [26]. Strains with an ANI value of over 95% are generally considered to be of
the same species [27].

2.7. Carbohydrate-Active Enzyme Analysis

Carbohydrate-active enzyme (CAZy) in L. plantarum was annotated with HMMER
v3.0 [28]. The target protein sequence was aligned with hmmscan-parser.sh from the
dbCAN prediction platform and the best hit was reserved [29]. The genome was considered
to contain the corresponding CAZys when the CAZys analysis was consistent with the
annotation results of the dbCAN prediction platform. The detailed carbohydrate-active
enzyme family information was obtained on the CAZyme (http://www.cazy.org/) [30].
The database mainly included glycoside hydrolase (GHs), glycosyltransferases (GTs),
carbohydrate esterases (CEs), carbohydrate-binding enzymes (CBM), auxiliary active
enzymes (AAs), and polysaccharide lyases (PLs).

2.8. Determination of the Carbohydrate Utilization Capacity of L. plantarum

A series of MRS media were prepared using different carbohydrates as the sole carbon
source (10 gL−1). The pH was adjusted to 7.0, and bromocresol purple was added to
the medium as an acid production indicator (0.75%, w/v). A medium with glucose and a
carbohydrate-free medium were used as the positive and negative controls, respectively.
The sterilized medium was dispensed into sterile 96-well plates (200 uL for each well). The
bacterial strains were resuspended in PBS and cultured in the medium (1%) at 37 ◦C for
12–24 h. The use of carbohydrate by the bacteria was indicated by the color change of the
medium (from violet to yellow).

3. Results
3.1. Genome Characteristics of 133 L. plantarum Strains

The detailed information of the 114 L. plantarum strains is shown in Table S1. In total,
11/32/71 strains were isolated from fermented sauce/pickles/feces, respectively. While the
19 reference strains were isolated from various sources, including sauerkraut, baby drop-
pings, brewing, saliva, pickles, dairy products, fermented sausage, raw milk, Drosophila,
silage, fermented bean paste, feces, fermented tamarind pulp, and cheese. The basic
genomic characteristics of L. plantarum strains are shown in Table 1. We found that the
genomic size of the 114 strains ranged from 2.94 to 3.90 Mb, and the number of genes
ranged from 2767 to 3650. The genomic size and gene number of the strains isolated
from fermented sources exhibited a narrower range than those isolated from feces. The
19 reference strains had similar genomic size and number of genes to the 114 strains, and
specific strains had a larger number of genes. The GC content is an important indicator of
bacterial classification and is associated with many genetic characteristics [31]. We found

https://github.com/widdowquinn/pyani
http://www.cazy.org/
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that the GC content of our L. plantarum strains ranged from 44.08% to 46.55%, in which
seven strains had GC contents over 46% (Table S1). The GC content of the 19 reference
strains ranged from 44.08% to 44.90%, which was less than that of the 114 strains.

Table 1. Basic characteristics of 133 Lactiplantibacillus plantarum strains.

Source of Isolation Number of
Strains

Genomic Size
(Mb)

Number of
Genes GC Content (%)

Fermented sauce 11 3.14–3.45 3049~3416 45.43–46.33
Pickles 32 3.23–3.50 2931–3464 45.16–46.55
Feces 71 2.94–3.90 2767–3487 45.25–46.29

Others * 19 2.95–3.69 2860–3650 44.08–44.90
* The source of isolation “others” include sauerkraut, baby droppings, brewing, saliva, pickles, dairy products,
fermented sausage, raw milk, Drosophila, silage, fermented bean paste, feces, fermented tamarind pulp, and
cheese. The detailed information is shown in Table S1.

The genes of the bacterial strains can be divided into core genes, non-essential genes,
and unique genes [32]. We identified 1620 core genes in the 133 L. plantarum strains
(Figure 1), which was consistent with the previously reported L. plantarum core gene value
of 1709 [17]. L. plantarum had more core genes than other LAB [24,33], which may explain
their high adaptability to diverse niches.
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3.2. Analysis of the Phylogenetic Tree with Regard to Homologous Genes

Bacterial adaptation to the environment depends not only on the presence or absence
of specific genes, but also on the accumulation of specific allelic variations of conserved
genes [34]. We conducted phylogenetic analysis of the 133 L. plantarum strains to study the
role of genetic variation and to reveal their evolutionary relationships (Figure 2).
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Figure 2. Phylogenetic tree based on sequence similarities among all the 1620 core genes. “Others” stands for the sources
of isolation of the 19 reference strains, including sauerkraut, baby droppings, brewing, saliva, pickles, dairy products,
fermented sausage, raw milk, Drosophila, silage, fermented bean paste, feces, fermented tamarind pulp, and cheese.

As shown in Figure 2, the 133 strains fell into two clusters (cluster A and B). Cluster A
contained six strains, namely, VHuNHHMY9L1, FXJKS21M3, FSCDJY76L1, FZJTZ29M8,
FHuNHHMY22M4, and DHLJZD13L6. We found that the clustering was not affected by
various niches in cluster A, possibly due to the small number of strains within the cluster.

Cluster B contained 127 strains and could be subdivided into B-1, B-2, B-3, B-4, B-5, and
B-6 clusters. We found that some strains isolated from pickles and fermented sauce were
clearly distinguished in the phylogenetic tree. Eight strains isolated from fermented sauce
accumulated in the B-1 cluster, five of which aggregated in the same branch under the B-1
cluster. More strains isolated from pickles accumulated in the B-6 cluster than in the B-1
cluster. Interestingly, fecal L. plantarum strains exhibited no specific distribution patterns.

The genomic evolution of L. plantarum within the same niche was also affected by
other factors. For the strains isolated from pickles, eight strains clustered in cluster B-6 and



Genes 2021, 12, 241 6 of 13

were distinct from other isolates. This may be related to the recycling time and salinity of
old brine of different pickles (Table S1), which can affect the composition of microbiota in
pickles [35] and may explain the genomic differences in L. plantarum strains.

3.3. Average Nucleotide Identity (ANI) Analysis

We found that the ANI values of L. plantarum strains isolated from pickles exceeded
99% (Figure 3). Specifically, the ANI values for the eight strains isolated from Chongqing
pickles were 99.23%, and the ANI values of L. plantarum strains isolated from fermented
sauce in Heilongjiang were above 99.23%. However, the ANI values of strains isolated
from pickles and fermented sauce were between 98.85% and 99.02%.
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Our ANI analysis revealed that six L. plantarum strains, namely, FZJTZ29M8, FHuN-
HHMY22M4, FXJKS21M3, FSCDJY76L1, VHuNHHMY9L1, and DHLJZD13L6, signifi-
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cantly differed from the other 127 strains. The maximum ANI value across these two
groups was 95.23%, whereas the ANI values among the six strains were between 99.23%
and 99.29%.

The ANI threshold for differentiating strains within the same species was updated
to 96% [36] in 2018 (strains with an ANI value greater than 96% are considered the same
species). Due to the small difference between our inter-cluster ANI (95.23%) and the
accepted threshold, we speculated that these six strains were of a separate species or
subspecies in the L. plantarum group.

3.4. Analysis of Carbohydrate-Active Enzymes

In viewing the annotation results of carbohydrate-active enzymes (CAZy), we found
that the 114 L. plantarum strains contained all six major families of glycoside hydrolase
(GH), glycosyl transferase (GT), carbohydrate esterase (CE), carbohydrate-binding enzyme
(CBM), auxiliary active enzyme (AA), and polysaccharide lyase (PL). We found that the
most abundant CAZy genes in the L. plantarum strains belonged to the GH family, followed
by the GT, CBM, CE, AA, and PL families (Figure 4). We observed no significant differences
in the number of genes in the families of PL, AA, CE, and CBM for L. plantarum strains
isolated from different niches.
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different niches.

To further clarify the differences in CAZy for L. plantarum strains isolated from differ-
ent niches, we next characterized the genes of CAZy using heat maps (Figure 5). Our results
indicate that all the strains contained the genes encoding for the AA3 family proteins. The
AA3 enzymes belong to the glucose–methanol–choline (GMC) oxidoreductase family and
can be divided into four subfamilies: AA3_1 (mostly cellobiose dehydrogenases), AA3_2
(including both aryl alcohol oxidase and glucose 1-oxidase), AA3_3 (alcohol oxidase), and
AA3_4 (pyranose 2-oxidase). CBM50 was present in all strains, and was found attached to
various enzymes from families GH18, GH19, GH23, GH24, GH25, and GH73, i.e., enzymes
cleaving either chitin or peptidoglycan. The GH family were the most abundant enzymes
in the CAZy database, which is required for the degradation of glycosidic linkages between
carbohydrates [37]. We found that the GH family members encoded in all strains were GH1,
GH109, GH13_31, and GH25. The GT family mainly encodes for glycosyltransferases. We
identified GT2 (required for cellulose synthesis) and GT4 (required for sucrose synthesis)
in all strains.

Our results reveal that L. plantarum strains isolated from different niches encoded
different CAZy enzymes. Specifically, nine strains isolated from feces in Zhejiang did not
contain the GH65 family (required for rhamnose use). Moreover, fecal L. plantarum strains
had fewer GH36 genes than those isolated from pickles and fermented sauce. The increased
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number of GH36 genes may help L. plantarum strains isolated from pickles to use raffinose,
which is a carbohydrate commonly found in plants [38]. The GH43 and GH68 families
were found only in the strains isolated from feces, and the GT27 family was found only in
the strains isolated from pickles. The GH42 family, which includes β-galactosidase and
α-L-arabinosidase, was only found in the strain DHLJZD26L1.
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3.5. Analysis of Carbohydrate Use Ability

We further explored the relationships between carbohydrate use-related genes and
carbohydrate use capabilities. We analyzed the ability of different L. plantarum strains
in using 11 carbohydrates (see the Materials and Methods section), including cellobiose,
sorbose, xylose, mannose, glucuronic acid, ribose, trehalose, fucose, arabinose, raffinose,
and fructooligosaccharides (FOS) (Figure 6). Our results indicate that all L. plantarum
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strains were able to use cellobiose, mannose, ribose, and fucose, which was consistent
with the results in Bergey’s Manual of Systematic Bacteriology. Consistent with a previous
report [8], we found that all L. plantarum strains used FOS. Finally, none of the 114 strains
were able to use glucuronic acid, and only 31.25% of the strains could use raffinose.
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These findings indicate that the L. plantarum strains isolated from different niches
showed various abilities to use specific carbohydrates. Although 25% of the L. plantarum
strains isolated from pickles did not use xylose, 66.67% and 76.39% of L. plantarum strains
isolated from fermented sauce and feces, respectively, were unable to use xylose. Among
the 114 strains, 6 strains, including 5 fecal strains, were unable to use sorbose. We found
that three strains did not use trehalose, and 11 strains did not use arabinose, of which five
were isolated from fermented sauce in Heilongjiang and six from feces. All strains isolated
from pickles were able to use arabinose.

Strains isolated from feces used xylose and raffinose less efficiently than those isolated
from pickles and fermented sauce. Thus, our results indicate that the ability of L. plantarum
to use carbohydrates was strain-specific and, to some extent, niche-specific (dependent on
the available carbon sources of that niche).

4. Discussion

In this study, comparative genomic analyses were performed for the 133 L. plantarum
strains isolated from different sources. The phylogenetic tree and ANI analyses indicate
that the niche affected the survival and selection, and thus the genomes, of the various
L. plantarum strains. Indeed, environmental selection pressure promotes genomic mod-
ifying processes such as horizontal gene transfer or gene deletion, which improve the
adaptability of the strain to a specific niche [39–41]. The strains isolated from feces were
found in each cluster of the phylogenetic tree (Figure 2), which indicates that the fecal
strains showed greater similarity to those isolated from food sources. Siezen et al. studied
the sugar-metabolizing capabilities of 185 L. plantarum strains isolated from different niches
and found that the sugar-metabolizing capability of L. plantarum differed according to the
food niche, whereas the sugar-metabolizing capability of strains isolated from human feces
was not uniform [18]. Consistent with our results from this study, these findings indicated
that human fecal L. plantarum strains originated from various food sources. We found that
a higher proportion of strains isolated from feces diverged later in the phylogenetic tree
than those isolated from pickles and fermented sauce, indicating that L. plantarum found in
the human gut is inoculated via diet.

The use of carbohydrates by L. plantarum was not only closely related to the CAZy
expressions but also to the expressions of transporters (phosphoglucose transferase (PTS)
or ABC transport system) and regulatory proteins. Transporters, regulatory proteins, and
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related CAZys together constitute an operon that enables sugar metabolism. Wang et al.
reported that L. plantarum ST-III, WCFS1, and JDM1 contained a large number of phos-
phoglucose transferase (PTS) systems and displayed broad adaptability to various sub-
strates [42]. In L. plantarum, hexose is transported to the cells, phosphorylated by the PTS
and permease systems, and fed into the glycolytic pathway and converted to pyruvate [43].

The abilities of the 114 L. plantarum strains to use 11 sugars were determined in this
study. Our results indicate that all of the strains could use cellobiose, mannose, ribose,
fucose, and FOS (Figure 6). According to the CAZy analysis, all of the strains contained
5–12 GH1 families (including β-glucosidase). The reaction catalyzed by β-glucosidase is
the most important step in cellobiose degradation. In addition, some strains contained the
PTS system, including EIIA, EIIB, EIIC, and HPr. Thus, our findings indicated that all of
the L. plantarum strains were able to use cellobiose. Mannose-6-phosphoisomerase (EC
5.3.1.8) and the PTS system IIA and IIB (for transporting mannose) are mainly involved
in the metabolism of mannose and were found in all the strains. We identified genes
involved in ribose metabolism in all strains, such as ABC transporter, purine nucleoside
phosphorylase (EC 2.4.2.1), pyrimidine nucleoside phosphorylase (EC 2.4.2.2), and ribose
5-phosphate isomerase A (EC 5.3.1.6). FOS, generally considered as prebiotics, can be
used by the intestinal bacteria to produce SCFAs, which have beneficial properties for the
host [44]. FOS is made up of a sucrose molecule linked (to its fructose residue) to an extra
1–3 fructose molecules via β-1,2 glycosidic linkages. β-Fructofuranosidase belongs to the
GH32 family and is important for the hydrolysis of FOS. In this study, GH32 family was
only found in part of the 114 strains, although all the strains metabolized FOS.

Most of the 114 L. plantarum strains used trehalose, L-arabinose, and sorbitol, and fewer
than half of the strains used xylose and raffinose. None of the strains used glucuronic acid.
Trehalose consists of two glucose molecules linked via 1,1 glycosidic bonds, which can be
hydrolyzed by α-glucosidase (GH13). In this study, we found that 111 strains used trehalose.
L-arabinose is a naturally occurring pentose. In lactobacilli, L-arabinose is transported into
the cells via transporters, converted to ribulose (by L-arabinose isomerase—EC 5.3.1.4), and
then phosphorylated (by ribulose kinase—EC 2.7.1.16), converted to xylulose phosphate
(by L-ribulose-5-phosphate 4-epimerase—EC 5.1.3.4), and finally metabolized. In this study,
we observed differences in the use of L-arabinose among the 114 strains. We found that
103 strains used L-arabinose. Genes related to arabinose metabolism were also identified,
including L-arabinose isomerase, L-ribulose-5-phosphate 4-epimerase (EC 5.1.3.4), and
L-ribulose-5-phosphate 4-epimerase (EC 5.1.3.4). The gene araA (encoding L-arabinose
isomerase) was not found in the other 11 strains that did not use L-arabinose. In lactobacilli,
the xylose is transported into the cell by the cotransporter Xy1E/Xy1T and the binding
protein system Xy1FGH. Intracellular xylose is converted to xylulose by xylose isomerase
(encoded by xylA) under the regulation of Xy1R. Xylulose is phosphorylated (to form
xylulose-5 phosphate) by xylulose kinase (encoded by xylB), which then enters the pentose
phosphate pathway [45]. Our results indicate that only 41 of the 114 strains used xylose.
We also identified XylH and the xylulose kinase XylB in these strains. However, xylH
was not found in the other 73 strains that did not use xylose. Raffinose is a trisaccharide
composed of galactose, glucose, and fructose molecules linked by α-1,6 and α-1,3 glycosidic
linkages [46]. The genes for α-galactosidase (EC 3.2.1.22) and β-fructofuranosidase (EC
3.2.1.26), which hydrolyze raffinose, were found in all 114 strains. However, not all strains
used raffinose. The gene rafP (encoding for raffinose permease) was only found in the
strains capable of using raffinose. In addition, we found that none of the strains use
glucuronic acid, probably due to the lack of the GT1 and GT101 families.

5. Conclusions

In summary, the comparative genomic results show that the number of strain-specific
genes has a certain relationship with the niche in which they are located. The strains from
kimchi and fermented sauce were distinctly distinguished, while the strains from feces
were mixed in the branches of the phylogenetic tree. The core functions of L. plantarum were
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concentrated on carbohydrate metabolism and amino acid metabolism, which provide
molecular support for strains to metabolize multiple sugars. Moreover, we found that
the ability of L. plantarum strains to use carbohydrates correlated with the carbohydrate
metabolism-related genes, including genes encoding glycosidases and transporters. We
have previously established that protein BLAST (BLASTp) alignment of the glycosidases
and transporters against the protein database of gut bacteria provides effective and reliable
predictions on the oligosaccharide-using abilities of gut bacteria [47–49]. Further literature
mining of the carbohydrate metabolism–related genes would improve the prediction
accuracy of this method. Here, we showed that the carbohydrate-using phenotypes of
L. plantarum strains could be predicted on the basis of certain genetic traits. Finally, we
found that a small number of genes did not correspond to the carbohydrate-metabolizing
phenotype, probably because the genes were lost in specific niches.
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