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Taxol is one of the most potent and effective anticancer drugs and is originally isolated from Taxus species. To investigate the
specific regulatory mechanisms of taxol synthesis in Taxus wallichiana var. mairei, RNA-seq was conducted to reveal the
differences in transcriptional levels between wild type (WT) and “Jinxishan” (JXS), a cultivar selected from a population of
Taxus mairei that shows about 3-fold higher taxol content in the needles than WT. Our results indicated that high expressions
of the genes taxadienol acetyltransferase (TAT), taxadiene 5-alpha hydroxylase (T5H), 5-alpha-taxadienol-10-beta-hydroxylase
(T10OH), and 2-debenzoyl-7,13-diacetylbaccatin III-2-O-benzoyl-transferase (DBBT), which catalyze a series of key acetylation
and hydroxylation steps, are the main cause of high taxol content in JXS. Moreover, in the present study, the activation of
jasmonic acid (JA) signal transduction and its crosstalk with gibberellin (GA), auxin, and ethylene (ET) explained the elevation
of differentially expressed genes (DEGs) from the taxol biosynthesis pathway. This also indicates that taxol biosynthesis in T.
mairei is associated with the balance of cell development and defense. TF-encoding (transcriptional factor) genes, represented by
the ethylene-responsive transcription factor (ERF), basic/helix-loop-helix (bHLH), MYB, and WRKY families, were detected as
differentially expressed between JXS and WT, further indicating that the regulation of hormone signaling on taxol biosynthesis
genes was mediated by transcription factors (TFs). To our knowledge, this is the first study to illustrate the regulatory
mechanisms of taxol synthesis in a new cultivar of T. mairei with a high taxol content in its needles. These transcriptome data
provide reasonable explanations for the variation of taxol content between WT and JXS.

1. Introduction

Taxol, originally isolated from the bark of Taxus brevifolia
[1], is one of the most effective antitumor drugs for the treat-
ment of several cancers, such as breast, lung, and ovarian
cancers [2]. With the increasing incidence of cancer, the
commercial value of taxol has grown prominently. However,
due to limited resources and low productivity of Taxus spe-
cies, the production of taxol is not sufficient to meet market
demands [3].

Great efforts have been made to increase taxol produc-
tion. In addition to screening for Taxus species with high
levels of taxol [4], several alternative methods have been
explored, such as total synthesis of taxol [5], plant cell culture

[6], and taxol-producing fungi [7]. However, most of these
methods are difficult to scale because of the large quantity
of organic solvents consumed and low efficiency. Therefore,
for the foreseeable future, Taxus species will remain a source
for taxol and related precursors. In this regard, the supply of
taxol and its precursors will undoubtedly depend on under-
standing the taxol biosynthesis pathway.

The biosynthesis pathway of taxol has been basically elu-
cidated, and it involves 19 steps of enzymatic reaction [8]. It
is generally believed that the pathway can be divided into
three main stages. The first stage is the formation of a taxane
skeleton, which mainly concerns the cyclization of a gerany-
geranyl skeleton to form taxadiene under the catalysis of tax-
adiene synthase (TS). Second, taxadiene goes through a series
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of reactions, including hydroxylation, acylation on hydroxyl
groups, ketolation, and the formation of epoxypropane to
form baccatin III, one of the major substrates for the chemi-
cal semisynthesis of taxol. The reaction process in this stage is
complicated and requires multiple enzymes to cocatalyze the
reaction step by step [9]. Lastly, the assembly of a C13-side
chain attached to baccatin III is thought to be the final step
of the pathway [10]. Since Croteau et al. [2] demonstrated
the pathway of taxol biosynthesis, the key enzyme genes
related to taxol biosynthesis and the relationship between
the expression levels of these genes and the synthesis of tax-
anes have been extensively studied. Ajikumar et al. [11] have
successfully overexpressed genes, including TS and T5H in
Escherichia coli, and promoted the synthesis of taxodiene to
about 1 g·L-1. Zhou et al. [12] have cocultured yeast contain-
ing T5H and its reductase gene cytochrome P450 reductase
and E. coli containing TS that produces 33mg·L-1 of oxygen-
ated taxanes. The continued improvement in the efficiency of
taxol synthesis will undoubtedly depend on a comprehensive
understanding of its biosynthesis pathway, especially the
enzymes that catalyze each step and their encoding genes.

RNA-seq, a highly accurate and cost-effective DNA
sequencing technology, was developed as a powerful tool to
analyze the functional complexity of transcriptomes for non-
model organisms without a reference genome [13, 14]. In
addition, RNA-seq can detect very low-level transcripts and
provide information on the transcriptional structure and
gene expression profiles [15, 16]. Currently, RNA-seq has
been applied to investigate various aspects of taxol biosynthe-
sis in different Taxus species. Hao et al. [17] reported the
tissue-specific transcriptome of T. mairei using Illumina
sequencing and analyzed the expression levels of genes
related to taxol biosynthesis in three different tissues (root,
stem, and leaves). Yu et al. [18] investigated the differences
between Taxus media and T. mairei at the transcriptional
level and suggested that the variation in taxoid content may
be attributed to the differential expression of candidate genes
involved in taxoid biosynthetic pathways. The early response
of elicitation with methyl jasmonic acid (MeJA) in T. chinen-
sis cells was studied by Li et al. [3], who found that a series of
TFs, such as MYB, bHLH, ERF, AP2, and MYC, activated by
exogenous MeJA may be involved in the regulation of gene
expression in the taxol synthesis pathway. Deep sequencing
of T. media cells has revealed an important role for miRNA
in the regulation of gene expression associated with terpenoid
backbone and paclitaxel biosynthesis following induction
by MeJA [19]. However, a comprehensive understanding
of the regulation of gene expression profiles in response
to taxol biosynthesis is still lacking, which may be due to
the lack of genomic information.

Taxus wallichiana var.mairei, a member of the Taxaceae,
is a tall evergreen tree mainly distributed in southeastern
China [20]. T. mairei is a unique and endangered species in
China that is widely used for ornamental, material, and
medicinal purposes [21, 22], and it is considered a major
source for the cost-effective production of taxane drugs
[17]. The color of the aril in Taxus species is usually red,
but yellow has been reported in the arils of Taxus Lutea
[23]. In 2015, a cultivar with yellow arils was found in a

population of T. mairei, which was located in Wuxi, Jiangsu
Province, China. Based on the results of internal transcribed
spacer sequence analysis, this cultivar, named Jinxishan
(JXS), was a natural mutant of T. mairei. Interestingly, the
average content of taxol in the needles of JXS was determined
to 1.7-fold higher than that in the wild type (WT) [24], and
some superior individual trees of JXS showed even more
accumulation of taxol in the needles, making them an ideal
source for investigating the mechanisms of taxol biosynthe-
sis. Therefore, superior individual trees of JXS and WT were
analyzed by RNA-seq to describe the transcriptome and
reveal transcriptome profiles in the present study. This is
the first study to illustrate the taxol synthesis pathway based
on the transcriptome profile of a new cultivar of T. mairei
with a high taxol content in the needles. Our results provide
insight into the regulatory pattern and network formation in
the biosynthesis of taxol in Taxus species.

2. Materials and Methods

2.1. Plants of WT and JXS. Plants of WT and JXS were culti-
vated in a germplasm nursery for Taxus species located in
Wuxi, Jiangsu Province, China (120°32′E, 31°43′N). For
the cultivating stage, individuals of JXS and WT at the same
age were cultivated closely and under the same conditions,
such as sunshine and water. Needles of triplicate samples
were collected from 12-year-old WT and JXS plants in
March, June, September, and December of 2017, respectively,
for taxol determination. Moreover, needles of WT and JXS
were collected in June independently for RNA extraction.

2.2. Taxol Determination. Needles collected from WT and
JXS plants were dried at 65°C for about 6 h and powdered.
Five grams of powder was weighed with high precision and
added to 100mL, 50mL, and 50mL methanol in turn for
methanol reflux extraction, according to the method of Li
et al. [25]. The supernatants of the 3 extractions were com-
bined and condensed to 100mL. Then, the concentrates were
extracted with N-hexane in equal volume for 4 times. The
extracts were dried by rotary evaporation, and methanol was
added to dilute the products to 25mL. Before HPLC analysis,
the samples were filtered through 0.22μmmembrane filters.

The quantification of taxol was carried out using Agilent-
1100 high-performance liquid chromatography and an Agi-
lent DAD monitor. The separation of taxol was achieved on
a Curosil-PFP C18 column of 250mm × 4 6mm and 5μm
particle size. The mobile phase composed of acetonitrile
and water was gradient eluted at a flow rate of 2.6mL/min
under 30°C, and the injection volume was 10μL [25]. A stan-
dard solution of taxol was employed to create a standard
curve for quantification.

2.3. RNA Extraction. Total RNAs were isolated by a plant
RNA kit (Omega, Norcross, USA) according to the manufac-
turer’s protocol. DNA contamination was removed during
the RNA extraction process. The RNA quality was verified
by RNase-free agarose gel electrophoresis and a 2100 Bioana-
lyzer (Agilent Technologies, Santa Clara, CA). High-quality
RNA samples of the triplicates of JXS and WT were mixed

2 International Journal of Genomics



in equal quantity for cDNA library construction and subse-
quent RNA sequencing. Six mixed RNA samples from nee-
dles of JXS and WT were finally obtained.

2.4. Library Construction and Sequencing. After total RNA
was extracted, eukaryotic mRNA was enriched by oligo
(dT) beads. Then, the enriched mRNA was fragmented into
short fragments using fragmentation buffer and reverse
transcripted into cDNA with random primers. Second-
strand cDNAs were synthesized by DNA polymerase I,
RNase H, dNTP, and buffer. Then, the cDNA fragments
were purified with a QiAquick PCR extraction kit, end
repaired, poly(A) added, and ligated to Illumina sequenc-
ing adapters. The ligation products were size selected by
agarose gel electrophoresis, PCR amplified, and sequenced
using an Illumina HiSeqTM 4000 by Gene Denovo Bio-
technology Co. (Guangzhou, China).

2.5. De Novo Assembly and Read Annotation. Raw reads con-
tain adapters or low-quality bases that could affect subse-
quent assembly and analysis. Thus, to get high quality clean
reads, raw reads containing adapters, reads with more than
10% unknown nucleotides, and low-quality reads with over
40% low Q-value (≤20) bases were removed by the Perl pro-
gram (version 5.18.4). Clean reads of six RNA samples were
merged and de novo assembled using Trinity Package 2.0 to
construct unique consensus sequences as a transcriptome
reference. The unigene annotation was used with the
BLASTx program (https://www.ncbi.nlm.nih.gov/BLAST/)
with an E-value threshold of 10−5 for theNCBI nonredundant
protein (Nr) database (https://www.ncbi.nlm.nih.gov), the
Swiss-Prot protein database (https://www.expasy.ch/sprot),
the Kyoto Encyclopedia of Genes and Genomes (KEGG)
database (https://www.genome.jp/kegg), the (COG/KOG)
database (https://www.ncbi.nlm.nih.gov/COG), and Gene
Ontology (GO) classifications by Blast2GO (https://www
.blast2go.com/). Protein functional annotations were then
obtained according to the best alignment results.

2.6. Identification of DEGs. The clean reads were mapped
to the reference transcriptome using Bowtie2 by default
parameters, and the mapping ratio was calculated through
the following equation: mapping ratio = (unique mapped
reads number +multiple mapped reads number) / all reads
number. The gene abundances were calculated and normal-
ized to reads per kb per million reads (RPKM). Datasets of
three distinct biological samples from WT and JXS were
treated as a group, and the differential expression between
the two groups was analyzed using edge R package (https://
www.r-project.org/). Significant DEGs were identified with a
fold change ≥ 2 and a false discovery rate FDR < 0 05. DEGs
were then subjected to enrichment analysis of GO functions
and KEGG pathways. First, these DEGs were mapped to GO
(http://www.geneontology.org/) terms. The p values were
adjusted with the FDR correction, and a corrected p value ≤
0.05 was used for significantly enriched GO terms in DEGs.
Moreover, for KEGG enrichment analysis, pathways with an
FDR value ≤ 0 05 were recognized as enriched. The formula
was the same as that used for GO analysis.

2.7. Real-Time PCR Validation. Quantitative real-time PCR
(qRT-PCR) was conducted in an optical 96-well plate with
an ABI7500 system (ABI, USA) and commercial SYBR® Pre-
mix Ex Taq II (Tli RNaseH Plus; TAKARA, Shanghai,
China), using the same cDNA samples as used for the
RNA-seq experiment. Table S1 shows the primers for the
selected genes and the reference gene 18S. Real-time PCR
was carried out in a final volume of 20μL, which contained
1μL of cDNA. The PCR program was set as follows: initial
denaturation at 95°C for 30 s, 40 cycles of denaturation at
95°C for 5 s, and annealing and extension at 60°C for 34 s.
A melting curve was obtained at 95°C for 15 s and at 60°C for
1min followed by continuous heating. Two independent
biological replicates and three technical replicates for each
PCR reaction were performed. Data analysis was performed
with the REST 2009 software.

2.8. Statistical Analyses. Statistical analyses were conducted
using the SPSS software version 19.0, and one-way ANOVA
was applied to compare taxol content differences between
JXS and WT.

3. Results

3.1. Differences in the Taxol Content between WT and JXS.
The taxol contents in the needles of the collected samples
are shown in Figure 1. The taxol contents in JXS were signif-
icantly higher than that of WT in the different months of the
year (p < 0 01). Among them, the mean value of taxol in JXS
was 0.0051% in June, while the mean value in WT was only
0.0016%. The average content of taxol in JXS was about
3.2-fold higher than that in WT, and this was statistically sig-
nificant (p < 0 01).

3.2. Illumina Sequencing, Sequence Assembly, and Read
Annotation. Illumina high-throughput second generation
sequencing was used to obtain transcriptome data after total
RNA was, respectively, extracted from the needles of WT
(accession number: SRR8648837) and JXS (accession num-
ber: SRR8648838). In total, 55,961,361 and 62,206,034 high-
quality reads of 150 bp sequences were generated from WT
and JXS, respectively, after removing the adaptor sequences,
empty reads, and low-quality reads. The Q20 percentage, N
percentage, and GC percentage in WT and JXS were
98.96% and 98.61%, 0.02% and 0.01%, and 45.19% and
45%, respectively. All of the reads were assembled into
114,566 unigenes with a mean length of 761 bp and N50 size
of 1,484 bp, using the Trinity software. The sequences of the
unigenes were list in S2. The size distribution for these uni-
genes is shown in Figure 2. To gain preliminary insight into
the functions of these unigenes, we performed a BLASTx
search against the GenBank nonredundant protein database
(Nr) with an E-value of 10-5 as a cutoff, and 38,310 unigenes
(33.44% of the total) were annotated as Nr. Moreover, there
were 26,823 (23.41%) matching protein sequences in the
SwissProt database, 13,568 (11.84%) in the KEGG database,
and 24,473 (21.36%) in the KOG database (Table S3). A
number of Taxus unigenes showed high similarity to genes
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in other plant species. The largest number of Taxus
homologous genes was identified in Amborella trichopoda.

GO terms were used to classify the functions of predicted
unigenes. There were 5,290 out of 38,310 unigenes that were
annotated with Blast2GO and were categorized into 42 func-
tional groups in the three categories of molecular function,
cellular components, and biological processes by the WEGO
software. Among them, the seven GO terms of “metabolic

process,” “catalytic activity,” “cellular process,” “cell,” “cell
part,” “single-organism process,” and “binding” are pre-
sented in Figure 3(a). To further facilitate the functional clas-
sification of the unique sequences, the COG database was
used to evaluate the integrality of the transcriptome library.
In total, 24,473 out of 38,310 unigenes were divided into 25
different COG categories, which are represented by A to Z
(Figure 3(b)). Among them, the cluster for the R category
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“general function prediction only” was the largest group,
followed by the O category “posttranslational modification,
protein turnover, chaperones” and the T category “signal
transduction mechanisms.” Moreover, to understand the
metabolic pathways in WT and JXS, a total of 7,810 anno-
tated unigenes were assigned to 133 KEGG canonical
pathways. Among them, the three most represented path-
ways were metabolic pathways (43.8%), biosynthesis of
secondary metabolites (25.33%), and biosynthesis of antibi-
otics (12.57%) (Table S4).

3.3. GO and KEGG Enrichment Analysis of DEGs. The nor-
malized expression value of genes was calculated by the
RPKM method, and DEGs were identified and analyzed
using the FDR method. A total of 5,236 prominently
expressed unigenes were identified from the needles of WT
and JXS (Figure 4). Compared withWT, the expression levels
of 2,889 DEGs were upregulated and those of 2,347 DEGs
were downregulated in JXS.

Most of the 5,236 DEGs between WT and JXS were
significantly enriched in 6 GO terms. The most highly repre-
sented terms in the biological processes, cellular component,
and molecular function category were “metabolic process”
and “cellular process,” “cell part” and “organelle,” and “cata-
lytic activity” and “binding,” respectively (Figure 3(c)).
KEGG classifications were performed for a preliminary
understanding of the reason for high taxol content in JXS
compared to WT needles. DEGs enriched by KEGG were
mainly involved in metabolic pathways, biosynthesis of
secondary metabolites (diterpenoid biosynthesis and phe-
nylpropanoid biosynthesis), translation, and environmental

adaptation (p < 0 05) (Figure 3(d)). Apart from the path-
ways mentioned above, there were also a number of DEGs
participating in signal transduction, such as plant hor-
mone signal transduction.

3.4. DEGs Involved in Paclitaxel Biosynthesis. Taxol bio-
synthesis, a crucial part of diterpenoid biosynthesis, was
one of the most concerned pathways in the present study.
However, the taxol biosynthesis pathway was still incom-
plete, and only 11 genes were confirmed in the KEGG
database. To further analyze how these DEGs contribute
to the higher taxol in JXS, DEGs involved in the taxol bio-
synthesis pathway were identified by a reciprocal BLAST
search against the transcriptome using previously reported
enzymes as queries. Our transcriptome data revealed 109
genes involved in the taxol biosynthesis pathway (Table S5),
which were assigned to 11 functional genes, and 6 genes were
differentially expressed between JXS and WT (Table 1).
In our study, the unigenes corresponding to T5H, TAT,
T10OH, and DBBT were strongly upregulated, while
taxoid 13-alpha-hydroxylase- (T13OH-) and 10-deacetyl
baccatin III acetyltransferase- (DBAT-) encoding genes
showed a significantly decreased transcript abundance in
JXS. Among them, T5H and T10OH involved in
hydroxylation steps were more highly expressed in JXS,
which were 11.5 and 6.5 times of WT, respectively. These
results indicated that JXS had more active hydroxylation and
acylation reactions, except for the steps regulated by T13OH
and DBAT. Moreover, there is no difference between WT
and JXS for DBTNBT. The unigenes encoded for T7OH,
T2OH, TS, and BAPT showed 0.6-fold, 0.7-fold, 0.4-fold, and
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1.6-fold upregulation in JXS, respectively. However, any
difference in these genes is not significant.

3.5. DEGs Involved in the Plant Hormone Signal
Transduction Pathway. The plant hormone signal trans-
duction pathway is also considered to be crucial in affect-
ing paclitaxel biosynthesis. A large number of DEGs were
found in the plant hormone signal transduction pathway
between JXS and WT, which were mainly enriched in
JA, GAs, auxin, and ET signal transduction. Our RNA-seq
data showed that coronatine-insensitive protein 1- (COI1-)
and jasmonate ZIM domain-containing protein- (JAZ-)
encoding genes had significantly increased transcript abun-
dance, while the gene encoding for MYC2 showed 1.9-fold
upregulation in the JA signaling pathway of JXS. In the GA
signaling pathway, DELLA-encoding genes showed a similar
trend with the JAZ gene, while unigenes encoding for GID1
were downregulated. Moreover, JXS showed strongly upreg-
ulated genes corresponding to the auxin response factor
(ARF), SAUR, and GH3 in the auxin signaling pathway
and PRB1 in the SA signaling pathway, and only LAX (in
the auxin signaling pathway) had a trend opposite to the
others. For the ET signaling pathway, the unigene encoding
for the ERF1 TF was significantly upregulated in JXS. Most
of these DEGs were associated with cell growth and defense
response (Table 2).

Linolenic acid metabolism, tryptophan metabolism,
cysteine and methionine metabolism, and diterpenoid bio-
synthesis pathways were in response to the biosynthesis of
JA, auxin, ET, and GA, respectively. Our results showed
that two unigenes in the biosynthesis of JA, linoleate
9S-lipoxygenase (LOX), and oxophytodienoate reductase
(OPR) showed increased transcript abundance in JXS.
Similarly, genes encoding for GA3 in the biosynthesis of
GA and amidase domain-containing protein (AMDD) and
aldehyde dehydrogenase (aldA) in the auxin biosynthesis
pathway were significantly upregulated. These results
implied a high expression of JA, auxin, and GA in the
leaves of JXS. In contrast, in the biosynthesis of ET, a
series of genes corresponding to the met family, including

adenosylhomocysteinase (AHC1) and 1-aminocyclopro-
pane-1-carboxylate oxidase (ACO), displayed decreased
transcript abundance, which implied a lower ET level in
JXS (Table 2).

3.6. Regulation of the Expression of TFs between WT and JXS.
TFs can activate the coexpression of multiple genes in sec-
ondary metabolic pathways, thus effectively regulating sec-
ondary metabolite production. Our transcriptome data
showed that 975 unigenes were annotated to encode putative
TFs (Table S6). These TFs were largely represented by
families such as the ERF superfamily, MYB superfamily,
bHLH superfamily, and WRKY superfamily. The DEGs
encoding for TFs between JXS and WT were mainly
involved in the regulation of the secondary metabolites and
the defense response. Among them, the expression levels of
18 genes encoding for TFs showed a higher transcript
abundance, including the members of GRAS, G2, LBD,
bHLH, MYB, B3, NAC, and GeBP domain-containing TFs,
while 3 genes corresponding to zinc finger proteins (C2H2
and C3H) displayed dramatic decreases in expression in
JXS. Moreover, 5 out of 8 genes encoding for ERFs showed
a higher transcript abundance, and the remaining showed
lower expression levels in JXS. Abundant unigenes encoding
putative TFs between JXS and WT showed that transcription
regulation played a key role in taxol biosynthesis and the
defense response network (Table S6).

3.7. Validation of DEGs by qPCR. The expression levels of
the DEGs obtained by transcriptomic sequencing were ver-
ified by quantitative RT-PCR of 12 randomly selected
DEGs involved in taxol biosynthesis, plant hormone bio-
synthesis and signal transduction, and TFs. Our results
showed that the relative expression levels of 10 out of 12
tested genes were similar to those of transcriptomic sequenc-
ing, while the expressions of Unigene0087698 (GID1) and
Unigene0061245 (DELLA) in qPCR assays had opposite
expression patterns from RNA-seq analysis. It is notable that
genes encoding for GID1 and DELLA are involved in the GA
signaling pathway.

Table 1: Putative functional genes involved in taxol biosynthesis.

Unigene ID Description WT_rpkm JXS_rpkm

Unigene0083800 Taxadiene synthase (TS) 16.093 6.672

Unigene0014731 Taxadiene 5-alpha hydroxylase (T5H) 0.084 0.965∗

Unigene0087496 Taxadienol acetyltransferase (TAT) 3.382 10.698∗

Unigene0084941 5-Alpha-taxadienol-10-beta-hydroxylase (T10OH) 3.488 22.619∗

Unigene0013222 Taxane 13-alpha-hydroxylase (T13OH) 5.965 2.830∗

Unigene0105070 2-Debenzoyl-7,13-diacetylbaccatin III-2-O-benzoyl transferase (DBBT) 0.001 0.528∗

Unigene0077022 10-Deacetylbaccatin III-10-O-acetyl transferase (DBAT) 1.451 0.323∗

Unigene0100486 Baccatin-aminophenylpropanoyl-13-O-transferase (BAPT) 9.193 14.470

Unigene0075463 Taxoid 7-beta-hydroxylase (T7OH) 10.510 6.692

Unigene0014173 3′-N-Debenzoyltaxol N-benzoyltransferase (DBTNBT) 30.895 32.159

Unigene0095993 Taxoid 2-alpha-hydroxylase (T2OH) 10.458 7.108
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4. Discussion

T. mairei is a valuable source of paclitaxel [26–29]. However,
quite low taxol contents have been reported in the reproduc-
ible tissues of T. mairei, such as branches and leaves, which
are only 0.0013–0.0018% and 0.0004–0.0014%, respectively
[30]. The values in the barks and roots are as high as
0.0241% and 0.0353%, respectively [31, 32]. However,
obtaining taxol from barks or roots may cause permanent
damage, resulting in the destruction of Taxus plants. There-
fore, it is necessary to explore effective methods to separate
paclitaxel and ensure that resources of Taxus are not
destroyed. In the present study, a cultivar with yellow arils
was selected from a population of T. mairei and was named
JXS. Interestingly, the content of taxol in the leaves of JXS
is about 3 times higher than that of WT. These results
provide a new perspective for the extraction of taxol and
related precursors from reproducible tissues. However,
with limited knowledge of the regulation of taxol biosyn-
thesis, it is necessary to elucidate the specific biosynthesis

mechanism in JXS. Therefore, RNA-seq analysis was per-
formed on the leaves of JXS and WT. A large number of
unigenes were detected to have different transcriptional
levels between WT and JXS, and the expression levels of
most randomly selected genes in qPCR assays showed a
similar trend, which demonstrated the reliability of Taxus
transcriptome data accordingly (Figure 5).

Studies have confirmed that the genotype differences of
taxol accumulation are mainly determined by the expression
of DEGs in the taxol biosynthesis pathway [33–35]. There-
fore, known genes involved in the taxol biosynthesis pathway
were identified by RNA-seq analysis to elucidate the related
molecular mechanisms in the present study (Figure 6). Previ-
ous studies have proved that the acetylation step catalyzed by
TAT is the rate-limiting step for the downstream hydroxyl-
ation reactions [36]. DBBT is a key enzyme involved in the
downstream formation of 10-deacetyl-2-debenzoylbaccatin
III (10-DAB III), which is one of the most important precur-
sors for taxol synthesis [34]. In our results, genes encoding
for TAT and DBBT displayed a significant increase in JXS.

Table 2: Putative genes involved in plant hormone biosynthesis and signal transduction pathways.

Unigene ID Annotation
Fold

change
p value FDR

Putative genes involved in plant hormone signal transduction

Unigene0097028 Coronatine-insensitive protein 1 (COI1) 66.760 3 285E − 11 4 582E − 09
Unigene0075828 Protein TIFY 10B (TIF10B) 4.310 3 392E − 05 1 433E − 03
Unigene0076962 Protein TIFY 9 (TIFY9) 4.684 1 116E − 04 4 033E − 03
Unigene0000384 PREDICTED: transcription factor MYC2 isoform X1 (BHLH82) 1.879 1 646E − 03 3 779E − 02
Unigene0087698 GLP1 GID1-like protein (GID1C) 0.232 3 641E − 05 1 524E − 03
Unigene0002231 GLP1 GID1-like protein (GID1A) 0.277 4 347E − 04 1 264E − 02
Unigene0061245 DELLA protein RGL2 (RGL2) 13.737 2 024E − 05 9 064E − 04
Unigene0093951 Ethylene-responsive transcription factor 1-like protein (ERF1) 2.927 1 174E − 03 2 873E − 02
Unigene0065363 Auxin response factor 12 (ARF12) 64.041 9 467E − 11 1 236E − 08
Unigene0033519 Auxin-responsive protein SAUR71 (SAUR71) 2.576 1 876E − 03 4 179E − 02
Unigene0000975 Indole-3-acetic acid-amido synthetase GH3.6 (GH3.6) 4.998 4 095E − 10 4 745E − 08
Unigene0085639 Pathogenesis-related protein 1C (PRB1) 3.380 7 595E − 05 2 876E − 03
Unigene0069610 Auxin transporter-like protein 1 (LAX1) 0.276 3 603E − 07 2 470E − 05
Putative genes involved in plant hormone biosynthesis

Unigene0101434 Linoleate 9S-lipoxygenase (LOX1.1) 11.569 7 045E − 16 1 710E − 13
Unigene0054914 12-Oxophytodienoate reductase 1 (OPR1) 7.557 2 193E − 04 7 186E − 03
Unigene0098962 Ent-kaurene oxidase-like protein 1 (CYP701A7) 13.743 3 006E − 20 1 043E − 17
Unigene0107104 Cystathionine gamma-synthase 1, chloroplastic (CGS1) 0.002 5 143E − 04 1 455E − 02
Unigene0046234 1-Aminocyclopropane-1-carboxylate oxidase 1 (ACO1) 0.005 3 799E − 31 3 113E − 28
Unigene0104890 S-Adenosylmethionine synthase (metK) 0.001 5 879E − 14 1 139E − 11
Unigene0020386 Adenosylhomocysteinase A (AHC1) 0.001 5 092E − 28 3 182E − 25
Unigene0038147 5-Methyltetrahydropteroyltriglutamate-homocysteine methyltransferase (met6) 0.002 4 686E − 05 1 898E − 03
Unigene0039863 5-Methyltetrahydropteroyltriglutamate-homocysteine methyltransferase (met26) 0.002 2 037E − 03 4 447E − 02
Unigene0113472 Amidase domain-containing protein (AMDD) 9.589 8 688E − 09 8 028E − 07
Unigene0096072 Aldehyde dehydrogenase (aldA) 4.430 1 296E − 08 1 164E − 06
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Figure 5: Expression analysis of 12 randomly selected genes as determined by qPCR.
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Moreover, genes encoding for key enzymes T5H and T10OH
in the hydroxylation steps, which may be affected by the TAT
catalytic step, were also highly expressed in JXS, indicating a
series of more active hydroxylation reactions in the taxol bio-
synthesis pathway. These combined results implied a large
amount of 10-DABIII accumulated in the needles of JXS,
which may be the main reason for the high taxol content.
However, the unigene encoding for DBAT, which converts
10-DAB III to baccatin III as the last diterpenoid intermedi-
ate before taxol [37], showed a lower expression in JXS,
implying a lower conversion of 10-DAB III to taxol [38]. A
study has proved the limiting effect conducted by DBAT in
the taxol biosynthesis pathway [39]. The large accumulation
of 10DABIII could explain the downregulation of DBAT and
high accumulation of taxol in the leaves of JXS. A similar
phenomenon was also observed in the leaves of a new Taxus
yunnanensis cultivar with higher taxol accumulation [4].
Further investigation into the regulation of these genes is
thus required to further understand paclitaxel biosynthesis.
The expressions of these DEGs can further provide reason-
able explanations for the changes in the content of paclitaxel
between WT and JXS.

Increasing evidence shows that hormone signal transduc-
tion pathways have important regulatory effects on the bio-
synthesis of secondary metabolites [40, 41]. The JA
signaling pathway has been found to induce taxol biosynthe-
sis in Taxus cells [42]. In this study, a large number of JA-
related DEGs were identified, suggesting variations in JA bio-
synthesis and signaling between JXS and WT. The activation
of JA signaling was derived from the binding of COI1 to JAZ,
which marks the complex for degradation by the 26S protea-
some in the presence of JA-Ile and frees MYC2, which in turn
helps regulate the expression of a series of JA-inducible genes
[43, 44]. The increased transcript abundances of COI1, JAZ,
and MYC2 genes suggested a more activated JA signaling
pathway in JXS, which may provide an explanation for
the expression of downstream DEGs related to taxol

biosynthesis. Moreover, the upregulation of genes LOX
and OPR (α-linolenic acid pathway) in JXS further sug-
gested that the activation of the JA biosynthesis process
may lead to a higher JA level, which indicates the impor-
tance of the JA signaling transduction pathway (Figure 7).

The JA signal pathway has also been reported to crosstalk
with other signal transduction pathways in the biosynthesis
of secondary metabolites, such as GA, auxin, and ET signal-
ing [45–48]. DELLA protein, which has a similar role with
JAZ, participates in the activation of GA-responsive genes
by interacting with GID1 for degradation by the 26S protea-
some in the presence of F-box SLY1. The upregulation of the
GID1 gene and low expression of the DELLA gene in qPCR
assays (Figure 5), which showed an opposite trend from
RNA-seq analysis, indicated that JXS has a more activated
GA signaling pathway that interacts with the JA pathway in
taxol biosynthesis. It has been shown that DELLA interacts
with JAZ [49], participating in the release of TFs such as
PIF andMYC2 [47] to balance the JA and GA signaling path-
ways. Therefore, mutual promotion between JA and GA in
JXS could be a means for regulating development and the
defense response. Similarly, a more activated auxin signaling
pathwaywas also observed in JXS through the high expression
levels of a series of key genes encoding for ARF, SAUR, and
GH3, but not LAX. The synergistic effect between auxin and
JA as well as GA and JA in JXS further indicates a specific reg-
ulatory pattern between plant development and defense in
JXS. Given the complexity of multiple signal interaction net-
works, it is still necessary to conduct independent validations
to accuratelymeasure the expression levels of genes of interest.
Moreover, the decrease of a series of genes related to ET
biosynthesis (cysteine and methionine pathway) implied a
decrease in the ET level in JXS, which indicated that ET may
be involved in negatively regulating taxol biosynthesis. The
increased transcript abundance of the ERF1 gene in JXS may
be due to the regulation of JAZ [45]. Our results were basically
consistent with those of Zhang and Wu [50]. However, Sun
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Figure 7: DEGs assigned to plant hormone signal transduction. Red letters indicate the upregulation of gene expression; green letters indicate
the downregulation of gene expression.

11International Journal of Genomics



et al. [19] indicated that JA and ET regulate the increase of
paclitaxel content through a synergistic effect mediated by
MeJA. The reason could be the different response times
and ratios of a series of endogenous hormones (Figure 7).

TFs play a key role in the regulation of secondary metab-
olite production [51]. Many studies have reported a series of
TFs that can increase the expression of paclitaxel synthesis
genes [52–54]. Our results showed a differential expression
of several TF-encoding genes, including ERF, bHLH, MYB,
and WRKY, between JXS and WT, which may be involved
in the regulation of genes in the taxol biosynthesis pathway.
Lenka et al. reported that TcJAMYC2 had a negative regula-
tory role on the expression of genes encoding for TS, T5H,
DBAT, DBBT, PAM, BAPT, and DBTNBT. However, it has
also been reported that the overexpression of TcMYC2a
could increase the expression of TS, T5H, DBTNBT, T13H,
and TAT [55]. As the fatal point of the entire JA signaling
pathway [56], the MYC2 was 1.9-fold upregulated in JXS,
which showed a similar expression pattern with T5H, TAT,
T10OH, and DBBT, while opposite to T13H and DBAT, indi-
cating a specific regulatory role on the taxol biosynthesis.
Moreover, Li et al. [57] reported the positive regulation of
TcWRKY1 on its target gene DBAT, which was inconsistent
with our study. The reason could be attributed to the differ-
ent regulation patterns of WRKY in different Taxus species.
Interestingly, many ERFs, such as ERF114, ERF018, and
ERF016, were up- or downregulated in the needles of JXS,
which may act as negative or positive regulators on the genes
in the taxol biosynthesis pathway. Similar cases were also
reported by He et al. [4] and Zhang et al. [58], who con-
sidered that the dual regulations of ERFs as repressors and
activators were mainly mediated by hormonal signal trans-
duction. Therefore, one major regulatory mechanism of taxol
production in JXS is via the control of the expression of TFs,
which can probably be ascribed to the crosstalk between JA
and other hormonal signaling. Moreover, all of the other
TFs that were differentially expressed in the transcriptome
profiles between JXS and WT are involved in cell growth
and the defense response, such as NAC, LBD, and zinc fin-
gers. These results indicated that many genes encoding TFs
may mediate the regulation of plant growth and develop-
ment, as well as biotic and abiotic stress responses, thus reg-
ulating the production or activity of taxol biosynthetic
enzymes directly or indirectly. Therefore, characterization
of the DEGs that encode TFs might shed light on the regula-
tion of taxol biosynthesis in Taxus species.

5. Conclusion

The taxol content in the needles of a new cultivar of T. mairei
(JXS) is about 3-fold higher than in WT. Transcriptome
profiling was conducted for the first time to illustrate the reg-
ulatory mechanism of taxol biosynthesis in the leaves of JXS
and WT. The differentially expressed genes encoding key
enzymes in the taxol biosynthesis pathway explain the high
content of taxol in the needles of JXS. The variations of plant
hormone-related genes, including hormone signal transduc-
tion and hormone biosynthesis genes, might be responsible
for enhancement in the expressions of paclitaxel

biosynthesis genes in JXS. Moreover, DEGs encoding for
transcriptional factors were detected, which helps us under-
stand the regulatory patterns and molecular mechanisms of
hormone-mediated taxol biosynthesis. In summary, these
transcriptome data provide reasonable explanations for
the variation of taxol content between WT and JXS.
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