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Abstract

Polarity establishment, the spontaneous generation of asymmetric molecular distributions,

is a crucial component of many cellular functions. Saccharomyces cerevisiae (yeast) under-

goes directed growth during budding and mating, and is an ideal model organism for study-

ing polarization. In yeast and many other cell types, the Rho GTPase Cdc42 is the key

molecular player in polarity establishment. During yeast polarization, multiple patches of

Cdc42 initially form, then resolve into a single front. Because polarization relies on strong

positive feedback, it is likely that the amplification of molecular-level fluctuations underlies

the generation of multiple nascent patches. In the absence of spatial cues, these fluctua-

tions may be key to driving polarization. Here we used particle-based simulations to investi-

gate the role of stochastic effects in a Turing-type model of yeast polarity establishment.

In the model, reactions take place either between two molecules on the membrane, or

between a cytosolic and a membrane-bound molecule. Thus, we developed a computa-

tional platform that explicitly simulates molecules at and near the cell membrane, and implic-

itly handles molecules away from the membrane. To evaluate stochastic effects, we

compared particle simulations to deterministic reaction-diffusion equation simulations.

Defining macroscopic rate constants that are consistent with the microscopic parameters

for this system is challenging, because diffusion occurs in two dimensions and particles

exchange between the membrane and cytoplasm. We address this problem by empirically

estimating macroscopic rate constants from appropriately designed particle-based simula-

tions. Ultimately, we find that stochastic fluctuations speed polarity establishment and permit

polarization in parameter regions predicted to be Turing stable. These effects can operate at

Cdc42 abundances expected of yeast cells, and promote polarization on timescales consis-

tent with experimental results. To our knowledge, our work represents the first particle-

based simulations of a model for yeast polarization that is based on a Turing mechanism.
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Author summary

Many cells need to generate and maintain biochemical signals in specific subcellular

regions. This phenomenon is broadly called polarity establishment, and is important in

fundamental processes such as cell migration and differentiation. A key polarity factor

found in diverse organisms, including yeast and humans, is the protein Cdc42. In yeast,

Cdc42-dependent polarization occurs through a self-reinforcing biochemical signaling

loop. Directional cues can guide polarity establishment, but interestingly, yeast can polar-

ize in the absence of such a cue. The mechanism thought to underlie this symmetry break-

ing involves the amplification of inhomogeneities in molecular distributions that arise

from molecular-level fluctuations. We investigated the effects of random fluctuations on

polarization by performing particle-based simulations of the Cdc42 signaling network.

We found that fluctuations can facilitate polarization, allowing faster polarization, and

polarization over a broader range of concentrations. Our observations may help under-

stand how polarity works in other systems.

Introduction

Cell polarity refers to the localization of signaling molecules to specific regions of the plasma

membrane, and is required for fundamental cellular processes such as migration, directed

growth, and differentiation. In the yeast Saccharomyces cerevisiae, polarization is required for

directed growth during budding and mating. Because of its experimental tractability, yeast rep-

resents a powerful model organism for studying polarity establishment. Normally, yeast polari-

zation involves internal or external spatial cues such as bud scars and pheromone gradients.

However, polarization still occurs if these cues are removed [1].

Mathematical models have been used to explain spontaneous pattern formation by bio-

chemical systems since the 1950s [2,3]. These models use diffusion-driven instabilities to gen-

erate symmetry breaking without relying on mechanisms such as diffusional barriers, directed

transport, and molecular cross-linking. Instead, these systems require: (1) positive feedback to

amplify local fluctuations; (2) chemical species that diffuse at different rates; and (3) a mecha-

nism for limiting the growth of the polarity site. Models in which patterning can be induced

by an arbitrarily weak perturbation (e.g. molecular-level fluctuations) are called Turing-type.

Goryachev and Polkhilko were the earliest to use a Turing-type model to study yeast polariza-

tion [4]. Other, non-Turing type models of polarity require perturbations of finite strength to

induce pattern formation [5].

A common approach to modeling the spatiotemporal dynamics of polarizing biochemical

systems is to use reaction-diffusion equations (RDEs) in the form of non-linear partial differ-

ential equations (PDEs). RDEs are deterministic and ignore stochastic effects intrinsic to

chemical reactions and thermal diffusion. In some systems, stochastic effects have been shown

to expand the parameter space that leads to patterning and accelerate pattern formation [6,7].

Many modeling approaches are used to study stochastic effects in biological signaling net-

works, including stochastic differential equations, such as chemical Langevin equations [8,9];

spatially discretized, temporally-continuous approaches, such as the spatial Gillespie algorithm

[10–12]; exact Brownian dynamics, such as Green’s function reaction dynamics [13,14]; and

direct particle-based simulations, as implemented in Smoldyn and MCell [15,16]. We cannot

adequately cover the full spectrum of approaches and computational tools here, but refer the

reader to excellent reviews that describe the theoretical underpinnings and software imple-

mentations of these methods [17–20]. In Table 1, we describe advantages and limitations for
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some of the more common methods. Hybrid approaches, such as the method described in

[21], that mix particle simulations with a deterministic partial differential equation solver are

most similar to the approach we take here.

The effects of noise in non-Turing models of yeast polarization have been investigated

using a variety of stochastic methods [21,23–25]. Typically, these models make simplifying

assumptions to reduce the complexity of the polarity system. Some models, such as the neutral

drift polarity model, used particle-based approaches; others, like models based on wave-pin-

ning, used Gillespie or stochastic PDE-based approaches [26,27]. Other investigations of sto-

chasticity in polarization with more detailed signaling models, including the Turing-type

Goryachev–Pokhilko model, leveraged Gillespie and stochastic PDE approaches [28,29]. Here,

we present particle-based simulations of the Goryachev–Pokhilko model, and compare them

to RDE simulations of the same system to evaluate stochastic effects on polarization. In this

model, reactions occur between either two reactants on the membrane, or between a reactant

on the membrane and a reactant in the cytoplasm. Exchange can occur between the membrane

and cytoplasm. We design our simulations to explicitly track molecules at and near the cell

membrane, where polarization occurs, and implicitly handle molecules away from the mem-

brane. We consider two different scenarios. In the first, we treat the cell membrane and the

nearby cytoplasm as purely two-dimensional (2D) and ignore the remaining bulk cytoplasm.

In the second, we approximate the bulk cytoplasm by attaching a molecular reservoir in which

we only track molecular abundances. Molecules are stochastically exchanged between the 2D

particle-based domain and the reservoir with rates determined by diffusion, thus creating a

quasi-three dimensional system (Fig 1).

An outline of our paper is as follows. First, we demonstrate that our particle-based simula-

tions generate results consistent with deterministic rate equations in the well-stirred limit. We

then show how deviations from this idealized behavior occur as spatial effects become impor-

tant. These deviations occur when the 2D reactions become diffusion-influenced, and it is no

longer possible to describe the kinetics of second-order reactions with a single macroscopic

rate constant [30,31]. Interestingly, existing models of the yeast polarity system contain sec-

ond-order rate constants that appear to fall within this diffusion-influenced regime, calling

into question the validity of the model equations (Fig C in S1 Text). However, existing theories

for computing second-order rate constants from microscopic parameters do not take into

account the situation in which chemical species can transition between different diffusional

states, e.g. membrane versus cytosolic. Therefore, we empirically determined second-order

Table 1. Computational approaches for simulating spatial and temporal stochasticity in biochemical reaction networks. Additional approaches not listed here are

referenced via reviews in the text.

Approach Spatially

discretized?

Temporally

discretized?

Comment

Stochastic partial

differential equations

Yes Yes More efficient than particle-based simulations. Breaks down in low concentration limits.

Spatial Gillespie Yes No Can be more efficient than particle-based simulations. Can suffer from artifacts due to spatial

discretization.

Hybrid particle-based-

PDE methods

(this work)

No Yes Approximation of full particle-based methods by explicitly modeling only a portion of the

domain of interest and implicitly modeling the remainder using either deterministic or stochastic

methods.

Fully particle-based No Yes More accurate than PDE and Gillespie approaches. Computationally demanding.

Exact Brownian dynamics No No More accurate than particle-based simulation in terms of physical description, but can come at a

higher computational demand [22]. Also called an “event-driven” approach, but this can cause

confusion with Gillespie-type approaches.

https://doi.org/10.1371/journal.pcbi.1006016.t001
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rate constants by fitting rate equations to results from particle-based simulations. Each poten-

tially diffusion-influenced bimolecular reaction was simulated in combination with the rele-

vant membrane-cytoplasm exchange reactions. Our results demonstrate that in many cases

the chemical kinetics of this expanded system can be well-approximated using a single second-

order rate constant. This empirical mapping between the microscopic and macroscopic

regimes allows us to compare the polarization results from particle-based simulations to solu-

tions of the corresponding RDEs.

We show that molecular fluctuations increase the rate at which polarization occurs in a

purely 2D system, lacking the cytoplasmic reservoir. Polarity also occurs over a broader range

of Cdc42 concentrations. These observations are consistent with previous reports in other sys-

tems where Turing patterning was enhanced due to either particle-based fluctuations [6,7] or

sufficiently strong perturbations [32,33]. We also show that stochastic effects inherent to parti-

cle-based simulations can generate large scale variability in polarization dynamics and meta-

stable multi-patch states. This is in agreement with theoretical and experimental [4,34,35]

demonstrations of emergent, competing multi-polar states. Moving on to particle-based simu-

lations with the quasi-3D molecular reservoir, we find that the particle-based simulations still

exhibit enhanced polarization compared to the deterministic RDEs within parameters repre-

sentative of a typical yeast cell. In the quasi-3D particle-based simulations, the resolution of

multi-patch states takes place on a timescale of minutes, consistent with experimental mea-

surements [34,35]. To our knowledge, our work represents the first particle-based simulations

Fig 1. Computational modeling schematics. (A) Molecules at the cell membrane and a thin slice of adjacent cytoplasm are simulated explicitly. Both compartments

are modeled as 2D surface. (B) In the quasi-3D simulations, a well-stirred compartment representing bulk cytoplasm is added to approximate 3D effects. (C) Reaction

scheme for a Turing-type model of Cdc42-dependent yeast polarity establishment from Goryachev and Polkhilko [4].

https://doi.org/10.1371/journal.pcbi.1006016.g001
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of a model for yeast polarization that is based on a Turing mechanism. Our simulations under-

score important effects of stochasticity on polarity establishment, including more rapid com-

petition between polarity sites and increased robustness to changes in molecular abundances.

Results

Formulation of the 2D particle-based simulation approach

We first considered a purely 2D computational domain representing molecules in the cell

membrane and a thin volume of cytoplasm adjacent to the membrane. Molecules in the mem-

brane or cytoplasmic layer were differentiated by their diffusivity and reactivity. We neglect

the rest of the cytoplasm until later (see subsection “A quasi-3D approach to full cell simula-

tions”). The spatial coordinates of molecules were treated as continuous variables, while time

was discretized in intervals of Δt. Thermal diffusion was handled using the Euler-Maruyama

method [36]. First-order or unimolecular reactions were assigned probabilities of occurring in

Δt given by Pi = 1 –exp(-kiΔt), where ki was the rate constant for the i-th reaction. If the first-

order reaction involved the dissociation of two molecules, then the two products were placed a

distance of �s apart, with one of the molecules located at the position of the complex, and the

orientation angle chosen at random from a uniform distribution. For second-order or bimo-

lecular reactions, we assumed that two molecules react with probability Pλ = λΔt when they are

within a distance �%. Thus, if the two reactants are within a reactive range �%, they react with an

average rate λ. This approach is based on the Doi method [37]. It is distinct from the classic

diffusion-limited Smoluchowski approach, where molecules react upon finding one another

for the first time and molecular radii are adjusted to reach the desired kinetics [38].

Connection to the macroscopic limit

Investigating the role of molecular fluctuations in polarity establishment requires a way to

compare particle-based simulation results to the deterministic behavior of the system in the

macroscopic limit, where the spatiotemporal dynamics of biochemical concentrations are gov-

erned by reaction-diffusion equations (RDEs). Therefore, we needed a way to relate micro-

scopic parameters to macroscopic rate constants in two dimensions. For first-order reactions,

this is trivial, and follows the relation noted above. The situation is more complicated for sec-

ond-order reactions.

In chemical kinetic theory, there are two limiting regimes for second-order reactions. The

first is the diffusion limit, in which two particles react when they encounter one another for

the first time. The diffusion limit represents the maximum rate at which a second-order reac-

tion can proceed. In 3D, it is possible to define a macroscopic rate constant in the diffusion

limit by considering the diffusional flux through an absorbing sphere of radius �% located at the

origin, when the concentration C of the reactant is held fixed at infinity [39,40]. The flux into

the sphere is given by J ¼ 4pD�%C, where D is the sum of the diffusion coefficients of the reac-

tants. From this expression, the second-order rate constant in the 3D diffusion limit is defined

to be k ¼ 4pD�%. In 2D, diffusion-limited second-order rate constants are not well-defined

[11,30]. However, we were able to estimate a time scale by computing the flux through an

absorbing circle of radius �% when the computational domain remains finite (see Appendix A

in S1 Text for details). In this case, the flux is given by J ¼ 2pDC=lnðrmax=�%Þ, where rmax char-

acterizes the size of the computational domain. In contrast to the 3D case, in the limit rmax!

1, the 2D flux goes to zero. Thus, we used the flux on a finite domain to estimate a time scale

for second-order diffusion-limited reactions, kDL ¼ 2pD=lnðrmax=�%Þ, which has the units of a

2D second-order rate constant. This expression is represented by the red curve in Fig 2.
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The other regime for second-order reactions is the reaction limit. In this limit, multiple

encounters on average are required before the reaction occurs. We computed a second-order

rate constant in the reaction limit by assuming the reactants are uniformly distributed. In 2D,

this produces an overall reaction rate of ðp�%2=AÞlNANB, where p�%2 is the capture area, A is the

area of the system, λ is the microscopic reaction rate, and NA and NB are the particle numbers

for the two reactants. This leads to a second-order rate constant of kRL ¼ p�%2l. The reaction

limit is illustrated by the black dashed line in Fig 2.

In 3D, the l � �% theory of Erban, Chapman and co-workers can be used to compute macro-

scopic rate constants from the underlying microscopic parameters (λ, D, and �%) regardless of the

reactants’ diffusion coefficients [39,40]. The theory assumes the two reactants have a summed dif-

fusivity D, and that reactions proceed with rate λ if the two reactants are within �% of one another.

In general, the l � �% theory cannot be extended to 2D, because in the diffusion limit, the rate at

which a 2D second-order reaction proceeds cannot be described using a single rate constant [30].

Despite that, we used the l � �% formulism to compute 2D rate constants (Appendix A in S1 Text,

Figs A and B in S1 Text). Comparing calculations using the l � �% formulism (green dashed line,

left panel, Fig 2) to the results based on particle simulations (yellow diamonds, left panel, Fig 2),

we find they are accurate predictions of reaction kinetics if the system is not too far from the reac-

tion limit. We then attempted to estimate λ values from rate constants used in published models

of yeast polarity establishment. In doing so, we discovered that several published second-order

rate constants appeared to be larger than our estimate for the diffusion limit, kDL (Fig C in S1

Text). However, the considerations discussed above do not take into account the fact that mole-

cules involved in polarity can transition between the cell membrane and cytoplasm. As discussed

next, the different diffusion coefficients associated with these different cellular compartments fur-

ther complicates the mapping between microscopic and macroscopic parameters.

In the biochemical network that drives polarity, reactive chemical species can exchange

between the membrane, where diffusion is relatively slow, and the cytoplasm, where diffusion

Fig 2. Illustration of the different reaction regimes (reaction-limited, diffusion-influenced, and diffusion-limited

regimes) and the range of validity of the 2D λ � �ϱ theory. The left panel shows estimated rate constants (yellow

diamonds) for the 2D second order reaction A+B! C obtained by fitting chemical rate equations (black curves, right

panels) to results from particle-based simulations (yellow curves, right panels). The reaction limit, kRL ¼ p�%2l, is

indicated by the black dot-dashed line and the estimate for the diffusion limit kDL ¼ 2pD=lnðrmax=�%Þ is represented by the

red curve. The results from the 2D l � �% theory are shown as the green-dashed line. Parameters chosen are DA = DB =

½D (x-axis of left panel), λ = 2.5554 s-1, rmax = 2.5 μm, �%� = 0.05 μm. Simulations were conducted on a L = 5 μm domain.

https://doi.org/10.1371/journal.pcbi.1006016.g002
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is relatively fast. The reactivity of these species also changes depending upon whether they are

in the membrane or cytoplasm. Existing methods to estimate 2D macroscopic rate constants

from microscopic parameters under diffusion-limited conditions [30] do not consider the

effect of membrane-cytoplasm exchange. Here, we were able to overcome this issue by empiri-

cally estimating effective rate constants by fitting chemical kinetic equations to results from

our particle-based simulations.

We conducted particle-based simulations of reversible second-order association reactions

that accounted for mass exchange between the cytoplasm and membrane in a purely 2D sys-

tem. Briefly, for each parameter set, we started with previously published rate constants from

RDE models for polarity establishment [28,35,41], used the l � �% formalism to estimate λ’s,

then performed particle simulations and fit rate equations to the simulation results to compute

the macroscopic rate constants. For purely 2D simulations, significant changes to the pub-

lished parameter values were made to facilitate polarization for benchmarking purposes. For

whole cell, quasi-3D simulations, parameters were held close to published values with excep-

tions for the bimolecular reactions obtained from the fitting procedure. We present the fits for

the purely 2D and quasi-3D cases (Fig 3; Figs. I and M in S1 Text), as well as the rate constants

(Table 2, Table A in S1 Text). Fitting the simulation results to appropriate chemical rate equa-

tions produced good estimates for the quasi-3D case (Fig 3, bottom row) and reasonable ones

for the purely 2D case (Fig 3, top row). Additional analyses of the polarity network, discussed

below, further supported the validity of the mapping.

Microscopic fluctuations speed polarity establishment and increase

robustness

We compared stochastic particle-based and deterministic reaction-diffusion-based simula-

tions. First, we focus on our results in the purely 2D system. Our initial conditions for the

Fig 3. Empirical estimates for macroscopic rate constants in the yeast polarity model for the two different

parameter sets. Results from particle-based simulations that include membrane exchange are shown as yellow curves.

Fits to the simulation results using appropriate rate equations are shown as black curves. Top row, parameters used for

purely 2D simulation. Bottom row, parameters used for quasi-3D simulation. The rate constants are reported in

Table 2.

https://doi.org/10.1371/journal.pcbi.1006016.g003
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particle-based simulations had all molecules in the cytoplasm in inactive and uncomplexed

states. As expected, stochastic fluctuations permitted escape from this spatially homogeneous

initial state, ultimately leading to polarization (Fig 4A, S1 Movie). To fairly compare particle

simulation results with solutions to the RDEs, molecular distributions from particle-based

simulations at t = 1 second were used as initial conditions for the RDEs (see Models and Meth-
ods and Fig D in S1 Text). The two simulation methods generated similar polarized distribu-

tions (Fig 4B).

To quantitatively compare polarization between the two approaches, we used the function

H(r), which measures the deviation of a particle distribution from a uniform distribution

based on the pairwise distance distribution (see Models and Methods and Fig 5C). H(r) and the

Table 2. Microscopic parameters and effective macroscopic rate constants for reversible/irreversible bimolecular reactions of the form A + B$ C.

Usage Reaction Membrane on/off rates Mean fitted

kAon

(1/s)

kAoff

(1/s)

kBon

(1/s)

kBoff

(1/s)

kf kr (1/s)

2D Cdc42Dm + BemGEFm! Cdc42T 36 13 10 40 0.040 μm2s-1 -

Cdc42Dm + BemGEF42! Cdc42T 36 13 - - 0.184 μm2s-1 -

BemGEFm + Cdc42T$ BemGEF42 10 40 - - 0.054 μm2s-1 31.4

q3D Cdc42Dm + BemGEFm! Cdc42T 36 0.65 10 10 0.16 μM-1s-1 -

Cdc42Dm + BemGEF42! Cdc42T 36 0.65 - - 0.16 μM-1s-1 -

BemGEFm + Cdc42T$ BemGEF42 10 10 - - 0.79 μM-1s-1 0.37

The rates constants kAon and kBon are the rates at which the reactants, A and B, associate with the membrane, respectively, and the rate constants kAoff and kBoff are the

corresponding off rates. Mean fits were computed over simulations using five separate initial conditions; see Table A in S1 Text for more details, and Table 3 for pre-

fitting target parameters. These values refer to parameters used in Fig 3.

https://doi.org/10.1371/journal.pcbi.1006016.t002

Fig 4. Simulations of polarity establishment within the Turing unstable regime. Snapshots of total Cdc42-GTP (both Cdc42-GTP and Bem1-GEF-Cdc42-

GTP). Top: Particle-based simulations. Red dots represent individual molecules. Bottom: Reaction-diffusion partial differential equation simulations. (A)

Individual molecules in particle-based simulations, and individual pixels in 100x100 grid RDE simulations. Scale bar, 0.5 μm. (B) To compare the polarity patches,

2D histograms of the final polarized states were computed, where both distributions were binned on coarsened 20x20 grids.

https://doi.org/10.1371/journal.pcbi.1006016.g004
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related metric, Ripley’s K-function, have been used frequently to study clustering in biology

[42,43]. Positive values of H(r) correspond to increased density of the distribution at distances

r relative to a uniform distribution. A maximum in H(r) denotes a characteristic size. We use

this measure of spatial heterogeneity to quantify polarity. At steady-state, polarized distribu-

tions from the particle-based and RDE simulations had essentially identical H(r) curves (Fig E

in S1 Text), suggesting the two systems were equivalently parameterized. We calculated H(r)

over time for simulations using different parameter values to quantitatively compare polariza-

tion dynamics from particle-based and RDE simulations. Rather than choosing the r that max-

imizes H(r) under different conditions, we chose r = 0.5 μm for our analyses. This value

allowed comparisons across all data sets, including those where the simulation domain size

was varied. Qualitative features of our results do not depend on our choice of r, nor on the par-

ticle-based time point used to initialize the RDEs (Figs F and G in S1 Text).

Fig 5. Variability in 2D polarization from microscopic fluctuations. (A) Measurements of H(r = 0.5 μm) at 10

second intervals across n = 5 particle-based simulation realizations. (B) Measurements of H(r = 0.5 μm) across the

corresponding RDE simulations. (C) The pairwise distance distribution P(r) and our polarity metric H(r) for polarized

(red) and uniform (black) particle distributions. (D) Snapshots of total Cdc42-GTP for each particle-based realization

at t = 100 and t = 200 seconds. In some cases, particle coordinates were re-centered after simulation to keep polarity

patches from visually wrapping around to the other side of the periodic domain. Corresponding RDE snapshots are in

Fig H in S1 Text. Scale bars 0.5 μm.

https://doi.org/10.1371/journal.pcbi.1006016.g005
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To account for variability in polarization dynamics, we considered multiple realizations of

single simulation conditions (Fig 5). In several cases, metastable multi-polar states emerged

from initially unpolarized distributions, consistent with prior theoretical and experimental

[4,34,35] work. Though it is not possible to identify multi-polar states from looking at H(r)

alone, if the system goes through a slow phase of competition wherein metastable patches

exist, then the time course of H(r) temporarily plateaus. For one realization, resolution into a

single polarity site did not occur by 200 seconds (Fig 5, Simulation 3). For other realizations of

the same parameter set, the simulation yielded a unique polarity site in half the time. Overall,

the particle-based simulations polarized more rapidly than the RDEs, which were completely

unpolarized at t = 200s. This indicates that molecular fluctuations increased the rate at which

polarity establishment occurred. The RDEs did not exhibit transient plateaus in H(r), indicat-

ing metastable multi-patch states did not emerge, which is a direct consequence of the initial

conditions (see also Fig H in S1 Text).

It has been demonstrated that sufficiently strong fluctuations can allow polarization outside

of the Turing unstable regime [6,7,32,33]. These investigations relied on simplified models or

phenomenological methods for introducing noise into the system. To test if intrinsic fluctua-

tions are sufficient to produce “noise-induced” polarity, we examined 2D polarity establish-

ment as a function of Cdc42 concentration, Bem1-Cdc24 (GEF) concentration, and total

particle number at fixed concentration, generating bifurcation diagrams for these parameters.

We used linear stability analysis of the RDEs to determine the bifurcation point at which the

spatially homogenous solution goes through a Turing instability as molecular abundances and

system size were varied (see Models and Methods and Fig J in S1 Text). This analysis estab-

lished threshold values at which the RDEs no longer polarize, i.e. the homogeneous stable

regime. The bifurcation plots are shown in Fig 6.

Across all parameters tested, none of the RDE simulations polarized to a measurable degree

after 200 seconds. In contrast, most particle-based simulations exhibited polarity by then.

Within the Turing unstable regime, the RDE simulations show similar levels of polarization

around 600 seconds compared to the particle-based simulations. However, near the bifurca-

tion point within the Turing unstable regime, the RDEs did not polarize even after 600s, con-

sistent with the slowed patterning expected from bifurcation theory. In this parameter regime,

the particle-based simulations still clearly exhibited polarity within 200 seconds. Furthermore,

Fig 6. Stochasticity facilitates polarization. Bifurcation plots showing polarization, measured by H(r = 0.5 μm), versus parameters

influencing the total particle numbers in the simulation. (A) Varying Cdc42 concentration on a fixed domain. (B) Varying GEF concentration

on a fixed domain. (C) Varying the simulation area and particle numbers at constant concentrations. Bifurcations were found via linear

stability analysis of the deterministic RDEs.

https://doi.org/10.1371/journal.pcbi.1006016.g006
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for the Cdc42 and GEF bifurcation diagrams, the particle-based simulations showed polariza-

tion below the critical point, in the Turing stable regime, showing that molecular fluctuations

can increase the range over which polarity establishment occurs. Together, our observations

reveal that stochastic effects facilitate polarization in this 2D instance of the Turing-type model

by decreasing time to polarize and expanding the parameter space in which polarity can occur.

A quasi-3D approach to full cell simulations

We next expanded our approach to approximate a whole cell by introducing a molecular reser-

voir to account for contributions from the bulk cytoplasm, yielding a quasi-3D approach (Fig

7A and 7B). The cytoplasmic reservoir was treated implicitly: we only tracked the number of

molecules in the reservoir, instead of the dynamics of individual particles. To simulate stochas-

tic exchange between the explicitly-modeled and implicitly-modeled regions of the cytoplasm,

we took a similar approach as described in [44], using diffusional probability distributions to

determine the number of molecules injected into (ninj) and ejected from (nejc) the explicitly-

modeled cytoplasm at each time step. Diffusional probability densities were integrated to

Fig 7. Reservoir approach schematics and validation. (A) Molecules can diffuse in and out of the reservoir. Although distinct molecules are shown for illustration,

the reservoir is perfectly mixed. (B) Particles at a depth z must diffuse a distance of either zimpl—z to enter, or z–zimpl to exit, the explicit simulation domain. The

integrals are solved numerically over discrete slices with thickness Δz. (C) Time courses of the number of molecules in the explicit domain, comparing our approach

and a non-reactive Brownian dynamics simulation. The shaded regions represent the mean±1 S.D. over 5 realizations. (D) Time-averaged comparisons, mean±1 S.

D. of fluctuations, over 500s, 1 realization.

https://doi.org/10.1371/journal.pcbi.1006016.g007
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obtain Pinj and Pejc, which correspond to the probability that a single molecule at a depth z dif-

fuses the distance required to enter (zimpl—z) or exit (z–zimpl) the explicit simulation region

(see Appendix D in S1 Text for derivation).

Pinj zð Þ ¼
1

2
erf

zmax � z
ffiffiffiffiffiffiffiffiffiffiffi
4DDt
p

� �

� erf
zimpl � z
ffiffiffiffiffiffiffiffiffiffiffi
4DDt
p

� �� �

Pejc zð Þ ¼
1

2
erf

z
ffiffiffiffiffiffiffiffiffiffiffi
4DDt
p

� �

� erf
� ðzimpl � zÞ

ffiffiffiffiffiffiffiffiffiffiffi
4DDt
p

� �� �

where zmax is the total height of the implicit and explicit domains, and zimpl is the height of the

implicit domain. Pinj(z) and Pejc(z) are approximations, since the probability densities in the

derivation correspond to a freely diffusing particle on an infinite domain. Next, to calculate

the mean number of particles that are injected and ejected, we integrated the injection and

ejection probability densities over the appropriate domain, and multiplied by the 3D concen-

tration and the surface area.

hninjiðtÞ ¼ cimplðtÞ � Ar �

Z zmax � zimpl

0

PinjðzÞdz

hnejciðtÞ ¼ cexpl;cytoðtÞ � Ar �

Z zmax

zmax � zimpl

PejcðzÞdz

Finally, to approximate the stochastic fluctuations introduced by particles diffusing in and

out of the explicit simulation domain, we sampled from Poisson distributions at each time step

with means hninji and hnejci. Coupling this reservoir to the cytoplasmic layer of the 2D parti-

cle-based method yielded our quasi-3D full-cell particle-based approach. Comparisons

between this approximate method and Brownian dynamics simulations of diffusing particles

showed that our molecular reservoir approach was consistent with both the mean and stan-

dard deviation for particle number over time (Fig 7C and 7D).

Polarity establishment in a quasi-3D whole cell model

We performed quasi-3D simulations of a whole yeast cell by combining our 2D particle-based

approach with stochastic exchange to and from a molecular reservoir representing the bulk

cytoplasm. Empirical estimation of rate constants was again performed by fitting rate equa-

tions to the particle-based simulations (Fig M in S1 Text). We conducted simulations using

0.050~0.3 μM Cdc42, and 0.06 μM BemGEF (NCdc42 = 1,970~11,820 and NBemGEF = 2364,

assuming a volume corresponding to a spherical cell with a 5 μm diameter). Quantitative

Western blotting experiments by Watson et al. support 5,000–10,000 Cdc42 copies per cell,

consistent with our choice for concentration range [45], while previous models assumed

[Cdc42] ranging from 19.3 nM [46] to 5 μM [28]. Other models specify [BemGEF] ranging

from 0.017 μM [4,28] to 0.06 μM [41]. Since prior experimental work showed that multi-polar

states can resolve within 2 minutes [34,35], we initially limited our particle-based simulations

to 200 seconds. This simulation time was insufficient for complete polarization, as multiple or

misshapen patches were observed at t = 200s (Fig 8 middle; Fig N in S1 Text).

Before performing longer particle-based simulations, we determined the bifurcation point

as a function of Cdc42 concentration in the analogous quasi-3D RDEs (see Models). Rather

than perform linear stability analysis of these equations, we generated pre-polarized distribu-

tions and examined whether they decayed towards homogeneity to estimate the bifurcation
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point (Fig P in S1 Text). We found that [Cdc42]� 0.055 μM was sufficient for polarization,

but [Cdc42] = 0.050 μM could not sustain polarity. Therefore, we chose to extend simulations

with [Cdc42] = 0.050, 0.055, 0.060, 0.150, and 0.155 μM for another 400 seconds. This simula-

tion time was sufficient to tighten misshapen polarity sites if no competitor patch existed (Fig

9, Simulations 2 and 3; see also Fig N in S1 Text). In one case, two co-existing patches resolved

into one within the 400s extension period (Fig 8). In another case, the patches did not resolve

(Fig 9, Simulation 1). The capacity to resolve competition within the 400s window suggests

that biologically relevant competition time scales can be obtained purely through stochastic

molecular fluctuations. The time scale for competition observed here is consistent with Wu

et al.’s theoretical work on this signaling model, where about 5 minutes was needed to resolve

two-patch competition in the context of an RDE with Gaussian noise added [28].

To compare with the deterministic case, we ran quasi-3D RDE simulations for 1800s total,

initialized with molecular distributions from t = 1 s of the quasi-3D particle-based simulations.

Polarization dynamics were quantified using H(r = 2 μm), which matched the size of a fully-

formed polarity site. Similar to the purely 2D case, we found that fully polarized particle-based

simulations were quantitatively consistent with fully polarized RDE simulations, and that the

RDE simulations took much longer to polarize than the corresponding particle-based simula-

tions (Fig 9). No multi-patch states emerged in the RDEs, but we expect multi-patch states to

compete even more slowly, supporting the importance of molecular fluctuations in using a

Turing-type model to capture appropriate polarization timescales.

Finally, to examine the robustness of this behavior over realistic concentration regimes, we

compared polarization in the quasi-3D particle-based and quasi-3D RDE systems as a function

of Cdc42 concentration. Our observations here were consistent with the purely 2D results.

Fig 8. Quasi-3D particle-based simulations of the polarity establishment model. Shown are snapshots of total Cdc42-GTP. Scale bar, 1.0 μm. Corresponding

2D histograms of the local number of molecules are shown.

https://doi.org/10.1371/journal.pcbi.1006016.g008
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Particle-based simulations at t = 600s exhibited clear polarization, even at [Cdc42] = 0.050 μM,

outside the deterministically non-polarizing region (Fig 10, S2 Movie). At the highest concen-

tration, quasi-3D RDE simulations exhibited partial polarization at t = 600s, but by t = 1800s,

most of the RDEs beyond the bifurcation exhibited measurable polarization. The macroscopic

system we studied here represents a 3-compartment model (membrane, near-membrane, and

bulk cytoplasm). Though Wu et al. reported a similar competition time scale, they utilized a

volume-adjusted, two-compartment model of the RDEs [28]. To facilitate comparison, we also

performed particle-based simulations to examine the volume-adjusted, two-compartment sys-

tem’s bifurcation diagram with respect to Cdc42 concentration. There is qualitatively no

change in our results, and linear stability analysis of the volume-adjusted, two-compartment

Fig 9. Quantitative comparisons of polarization in quasi-3D particle-based simulations and corresponding RDEs.

Top: time courses of H(r = 2 μm). Results across multiple realizations of [Cdc42] = 0.150 μM are shown. Bottom: Plots

of H(r) at final time points. By 1800s, the q3D-RDEs did not fully polarize, so the H(r) starting from a pre-polarized

distribution is shown instead.

https://doi.org/10.1371/journal.pcbi.1006016.g009
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system is consistent with the numerically determined bifurcation point for the q3D-RDEs (Fig

P in S1 Text).

Discussion

Strong positive feedback to amplify heterogeneities in molecular distributions is an important

component of many models of cellular polarity establishment. Given the stochastic nature of bio-

chemical reactions involved in the polarity circuit, local heterogeneities are expected to emerge

everywhere along the cell. Work in both non-Turing type [21,23,24], and Turing-type systems

[6,7,32,33] has shown that stochasticity can aid pattern formation. Here, we provide the first simu-

lations of particle-based Turing-type yeast polarity establishment. Both our 2D and quasi-3D par-

ticle-based simulations capture microscopic stochastic effects, which indeed facilitate polarization.

As anticipated, differences between the particle-based and reaction-diffusion approaches were

most obvious around the bifurcation point (Fig 6, Fig 10). Stochastic fluctuations allowed for

polarization outside of the Turing unstable regime and more rapid polarity establishment across

all parameters tested. Turing-type patterning mechanisms have been described as slow relative to

other hypothesized patterning mechanisms, such as wave-pinning [5], making it a less likely bio-

logical mechanism in some contexts. Our simulations highlight that molecular fluctuations can

alleviate such issues. Given our simulations do not include other sources of fluctuations, such as

endocytic and exocytic events [47,48], our results represent the minimal level of variability

expected to be observed in polarity establishment. This minimal variability is sufficient to generate

significant variations in competition times across multiple realizations of a single parameter set

Fig 10. The effect of Cdc42 concentration on polarization for quasi-3D particle-based simulations. A bifurcation

diagram comparing polarity, measured via H(r = 2 μm), in the particle-based and reaction-diffusion simulations as a

function of Cdc42 concentration. Simulations with pre-polarized RDEs were used to identify an estimated range for

the bifurcation point. All other points are given by the mean±1s.d. (n = 5 realizations, except for t = 600s particle-based

simulations at [Cdc42] = 0.150 μM, n = 3, and 0.155 μM, n = 4).

https://doi.org/10.1371/journal.pcbi.1006016.g010
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(Fig 5, Fig 9), even at molecular abundances representative of whole yeast cells. Therefore, parti-

cle-based simulations are an important computational tool for understanding the dynamics and

control of biological pattern formation.

Polarity establishment is often modeled using reaction-diffusion equations that ignore the dis-

crete nature of biomolecules, and treat concentrations of molecular species as continuous variables.

The chemical rate constants that appear in these equations represent macroscopic quantities that

depend on microscopic properties, such as diffusion coefficients and molecular size. In three-

dimensional domains where particles diffuse with a single diffusion coefficient, theories for com-

puting macroscopic rate constants from the underlying microscopic dynamics are well established

[15,40]. However, for two-dimensional systems, second-order rate constants in the diffusion limit

are not well-defined [30]. Additionally, in the polarity system, molecular species transition between

the cytoplasm, where diffusion is relatively fast, to the plasma membrane, where diffusion is rela-

tively slow. Developing theories for computing appropriate rate constants under these conditions

is an active area of research, and we did not attempt to provide a theoretical framework here.

Instead, we took an empirical approach, estimating effective second-order rate constants by fitting

rate equations to the results of particle-based simulations of isolated reactions (Fig 3; Figs I and M

in S1 Text). This approach allowed us to make fair comparisons between our particle-based and

RDE simulation simulations, as evidenced by quantitative similarities in polarization (Fig 9; Fig E

in S1 Text) and equivalent kinetics under non-polarizing conditions (Figs B, K, and P in S1 Text).

Still, our empirical approach to estimating rate constants cannot capture the correct kinetics under

all conditions: in general, a single rate constant is inappropriate for describing 2D diffusion-limited

reactions [30]. While this discrepancy presents challenges for comparing particle-based simulations

to RDEs, it also highlights an advantage of particle-based simulations: the real behavior of a system

might not be well-described with macroscopic approximations. We note that many polarity mod-

els based on RDEs employ effective kinetics, such as Michaelis-Menten or Hill kinetics. To perform

particle-based simulations of these models requires “unpacking” these effective kinetic schemes

into their elementary chemical steps. Doing so not only allows an investigation into the effects of

molecular-level noise, but also provides a rigorous test for the validity of the approximate reaction

schemes, whose derivations typically rely on a separation of time scales.

We also note that, in the context of our parameterization, the slow diffusivity on the mem-

brane is important. Simulations using Dm = 0.03 μm2s-1 [46], an order of magnitude faster

than the Dm used throughout our work, lose polarization within the pure 2D system if all other

parameters are fixed (Fig L in S1 Text). This occurs even though Dm = 0.03 μm2s-1 maintains

more than two orders of magnitude difference from the cytoplasmic diffusivity Dc.

It is important to acknowledge some limitations of our approach. First, while treating the

membrane and adjacent cytoplasm as a single 2D plane seems reasonable, it ignores effects

from 3D curvature, which can play a role in the polarization process [49,50]. Additionally, the

implied geometry of our system, a rectangular prism, means we likely overestimate cyto-

plasmic protein abundances near the cell membrane. To illustrate, a typical yeast cell has a

diameter of 5 μm. This corresponds to a surface area of 78.5 μm2, treating the cell as a sphere.

Then, mapping this surface area to a square, we obtain a square side length of 8.86 μm. The

volume for a spherical d = 5 μm yeast cell is 26.2 μm3. To achieve an equal-volume rectangular

prism, with a top face surface area of 78.5 μm2, the depth of the prism must be 0.833 μm. This

is much smaller than the cell radius of 2.5 μm. Aside from the geometry of the system, our

method also neglects gradients that might develop between the cell membrane and interior of

the cell, either via chemical means or sufficiently slow cytoplasmic diffusion. The polarity net-

work studied here does not involve reactions between two cytoplasmic species, so the reservoir

component of the simulation is chemically inert. If reactions did occur within the cytoplasm,

our particle-based approach could be extended to include chemical rate equations for the
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concentrations of the reservoir species, and our method for injection and ejection of particles

would still be sufficient as long as cytoplasmic gradients were not of interest. However, if gradients

of cytoplasmic components were required, then the reservoir would need to be modeled with

PDEs, and the methods defining particle injection and ejection would need to be suitably adapted,

along the lines of work done in [51]. Full treatment of the reservoir with a PDE approach would

make the approach presented here more similar to hybrid methods such as [21].

In summary, we have found that molecular stochasticity can facilitate cellular polarity

establishment by promoting the speed of polarization and expanding the effectively Turing

unstable regime. We examined this phenomenon in the context of a Turing-type model of

yeast signaling involving Cdc42 and Bem1-Cdc24 in a positive feedback loop. In particular,

polarization within the quasi-3D system appears to occur roughly on biologically relevant

timescales, which does not seem possible with deterministic RDEs. We also have highlighted

general considerations for comparing the spatiotemporal dynamics of membrane-bound pro-

teins at molecular, particle-based scales and at coarser, concentration-based scales. Symmetry

breaking in many contexts involves guiding cues not considered here, such as a pheromone

gradients or bud scars in yeast [1]. However, these cues can be surprisingly weak: a computa-

tional study of yeast pheromone receptors in a pheromone gradient predicted differences in

receptor occupancy as small as 45±50 molecules between the front (towards with the gradient)

and the back [44]. Future work may focus on examining how weak cues may allow robust

polarization along shallow gradients. We have also developed a computational approach that is

tailored to modeling biochemical signaling at and near the cell membrane with molecular res-

olution, while more coarsely handling the remaining cell cytoplasm. This approach is not

intended to compete with highly optimized simulation platforms, but the concepts and mathe-

matics derived may be useful in extending their functionalities.

Models and methods

The molecular circuit for polarity establishment

The molecular signaling network used in this work, illustrated in Fig 1C, was taken from Wu

et al. [28] and originally derives from work by Goryachev and Pokhilko [4]. The network con-

tains a positive feedback loop because Cdc42-GTP can bind a Bem1-Cdc42 complex to

increase the GEF’s catalytic activity. Cdc24 is a GEF, while Bem1 is a scaffold protein. We

assume, as done previously, that Cdc24 and Bem1 function as essentially a single unit [41].

Tables 2 and 3 provide parameters used for simulations. The corresponding reaction-diffusion

equations (RDEs) that govern the system are as follows:

@Cdc42T
@t

¼ k2aBemGEFm þ k3BemGEF42ð Þ � Cdc42Dm � k2b þ k4aBemGEFm þ k7BemGEFcð Þ

� Cdc42T þ k4bBemGEF42þ DmDCdc42T

@Cdc42Dm

@t
¼ k2bCdc42T � k2aBemGEFm þ k3BemGEF42þ k5bð Þ � Cdc42Dm þ k5aCdc42Dc

þ DmDCdc42Dm

@BemGEF42

@t
¼ ðk4aBemGEFm þ k7BemGEFCÞ � Cdc42T � k4bBemGEF42þ DmDBemGEF42

@BemGEFm

@t
¼ k1aBemGEFc þ k4bBemGEF42 � k1b þ k4aCdc42Tð ÞBemGEFm þ DmDBemGEFm

Stochastic promotion of polarity establishment

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006016 March 12, 2018 17 / 25

https://doi.org/10.1371/journal.pcbi.1006016


@BemGEFc

@t
¼ k1bBemGEFm � k1a þ k7Cdc42Tð Þ � BemGEFc þ kinjBemGEFc;res � kejcBemGEFc

þ DcDBemGEFc

dBemGEFc;res

dt
¼

Z

Ω2Reservoir

½� kinjBemGEFc;res þ kejcBemGEFc�dΩ

@Cdc42Dc

@t
¼ k5bCdc42Dm � k5aCdc42Dc þ kinjCdc42Dc;res � kejcCdc42Dc þ DCDCdc42Dc

dCdc42Dc;res

dt
¼

Z

Ω2Reservoir

½� kinjCdc42Dc;res þ kejcCdc42Dc�dΩ

kinj ¼

Zzmax � zimpl

0

PinjðzÞdz

Table 3. Parameters used to perform simulations described in the main text.

Description Parameter For purely 2D simulations For quasi-3D simulations Ref.

BemGEFc! BemGEFm k1a 10 s-1 10 s-1 [52]

BemGEFm! BemGEFc k1b 40 s-1 10 s-1 [52]

Cdc42Dm + BemGEFm! Cdc42T k2a Target 0.032 μm2s-1

Fitted 0.040 μm2s-1
Target 0.16 μM-1s-1

Fitted 0.16 μM-1s-1
[52]

λ2a 5.3 s-1 5.3 s-1 ---

Cdc42T! Cdc42Dm k2b 0.35 s-1 0.32 s-1 [35]

Cdc42Dm + BemGEF42! Cdc42T k3 Target 0.280 μm2s-1

Fitted 0.184 μm2s-1
Target 0.35 μM-1s-1

Fitted 0.16 μM-1s-1
[52]

λ3 180 s-1 15.7 s-1 ---

BemGEFm + Cdc42T! BemGEF42 k4a Target 0.050 μm2s-1

Fitted 0.054 μm2s-1
Target 10 μM-1s-1

Fitted 0.79 μM-1s-1
[52]

λ4a 9.6 s-1 8250 s-1 ---

BemGEF42! BemGEFm + Cdc42T k4b Target 40 s-1

Fitted 31.4 s-1
Target 10 s-1

Fitted 0.37 s-1
[52]

Cdc42Dc! Cdc42Dm k5a 36 s-1 36 s-1 [52]

Cdc42Dm! Cdc42Dc k5b 13 s-1 0.65 s-1 [52]

BemGEFc + Cdc42T! BemGEF42 k7 2.0014 μm2s-1 10 μM-1s-1 [52]

λ7 256 s-1 256 s-1 ---

Diffusion coefficient in cytoplasm Dcyto 15 μm2s-1 15 μm2s-1 ---

Diffusion coefficient on membrane Dmemb 0.0025 μm2s-1 0.0025 μm2s-1 [52]

Membrane to cytoplasm volume ratio η 1 0.01006 [52]

Membrane surface area A 0.21–10.5π 25π [52]

Molecular interaction radii �s; �% 0.050 μm 0.050 μm ---

Total Cdc42 14.5–145.5 particles/μm2 0.05–0.30 μM ---

Total BemGEF 0.87–8.8 particles/μm2 0.06 μM [41]

References are for the quasi-3D parameters. “Target” and “fitted” values for k2a, k3, k4a, and k4b exist because of the empirical fitting described in the main text. The

target was used as the input to 2D l � �% theory as the starting point, producing the corresponding microscopic rates λ2a, λ3, λ4a, and λ7. Fitted macroscopic rates were

obtained after fitting as described earlier (see Fig 3). For particle simulations, we used Δt = 0.1 ms, and for RDE simulations, we used Δt = 1 ms. For quasi-3D

simulations, we assumed a cell volume corresponding to a 5 μm diameter sphere.

https://doi.org/10.1371/journal.pcbi.1006016.t003
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kejc ¼

Zzmax

zmax � zimpl

PejcðzÞdz

where Δ here denotes the two-dimensional Laplacian, and the terms containing the rates kinj and

kejc are for the cytoplasmic reservoir. In the purely 2D form of the RDEs, these reservoir terms are

absent. The quasi-3D form directly follows schematics shown in Fig 1B and Fig 7, using a 2D

membrane compartment, a 2D cytoplasmic compartment, and a reservoir to and from which

mass is deterministically exchanged. The reservoir is assumed perfectly mixed, but the explicitly

modeled cytoplasmic compartment is not. With this formulation, spatial gradients are possible in

the xy plane (i.e. along the cell membrane), but they are ignored along z (i.e. moving into the cell).

Previous work has considered cytoplasmic diffusion coefficients from 1 μm2/s up to infinity (i.e.,

perfectly well-mixed). We chose a finite diffusion coefficient here. We also considered an RDE

system that treats the membrane and cytoplasm as a two-compartment system, as in [28]. Results

from this system were qualitatively similar to our 3-compartment model (see Fig Q in S1 Text).

Particle-based simulation implementation

All simulation code was developed and run in MATLAB R2016a/b, and was also run in

R2013a. Some analysis code is known to not function on R2013a. Main components of the

code are publicly available in the S1 Dataset and at https://github.com/mikepab. Simulations

were performed both on desktop machines and on the University of North Carolina KillDevil

computing cluster. See Appendix B in S1 Text for more detail.

Unimolecular and bimolecular reactions were handled as described in the Results section.

To perform stochastic simulation of diffusion, we used the Euler-Maruyama method [36]:

xðt þ DtÞ ¼ xðtÞ þ xi

ffiffiffiffiffiffiffiffiffiffiffi
2DDt
p

yðt þ DtÞ ¼ yðtÞ þ xj

ffiffiffiffiffiffiffiffiffiffiffi
2DDt
p

where x and y are particle coordinates, and ξi and ξj are normally distributed random numbers ξ
* N(0,1). We vectorize this calculation across the set of particles that need diffusional updates.

However, molecules that undergo association or dissociation events are not updated by the Euler-

Maruyama method. When two molecules bind, their positions are updated by moving one of the

particles to the exactly same position as its binding partner. When a complex dissociates, one of

the constituent chemical species is placed a distance �s away, at a random angle drawn from a uni-

form distribution. Periodic boundary conditions are assumed in both spatial directions, so that

intermolecular distances for various calculations were solved as the minimum Euclidean distance

along the 2D surface of a torus. For visualization, all particle coordinates were translated on the

periodic domain to keep polarity sites off of the boundaries. Movies were generated using the

QTWriter package for MATLAB available at https://github.com/horchler/QTWriter.

Empirically mapping macroscopic rate constants to microscopic

parameters

A starting macroscopic rate constant was used to estimate an initial microscopic rate parame-

ter λ via 2D λ – �% theory (see Table 3). Then, particle-based simulations of the individual (ir)

reversible bimolecular reactions were performed, allowing the reactants to undergo mem-

brane-cytoplasm exchange as appropriate for each target reaction. Whether the parameter set
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was intended for 2D or quasi-3D simulations, we performed these simulations on a 2D

domain. For bimolecular reactions of the form Am+Bm$ C, with membrane-cytoplasm

exchange reactions Ac$ Am and Bc$ Bm, time courses for particle numbers of Am, Ac, Bm,

Bc, and C were extracted from each simulation. The membrane-cytoplasm exchange rates

(specified during the particle-based simulation) were fixed during the fitting procedure, so

that only kf and kr were fit. Fitting was done using MATLAB’s built-in function fminsearch,

where the sum of squared errors along normalized time courses (each scaled so that each spe-

cies’ maximum value in the time course was 1) was minimized. The rate constant k7 did not

need to be fit, as it involves a cytoplasmic reactant and is not diffusion-limited. We assume a

height h = 0.0083 μm for the cytoplasmic volume adjacent to the cell membrane, which is con-

sistent with parameterizations of the membrane-to-cytoplasm volume ratio η used previously

for this system [28]. To convert between 3D bimolecular rate constants, k3D (μm3s-1), and 2D

rate constants k2D (μm2s-1), we scale by h. We believe our empirical mapping is a fair compari-

son between the particle-based and RDE systems based on the quantitative similarities

between polarity sites in the two methods (Fig E in S1 Text; Fig 9, bottom), as well as the con-

sistency of species time courses in a Turing-stable regime (Fig K in S1 Text).

Performing RD-PDE simulations

Initial conditions were generated by binning molecular distributions at t = 1 sec from each

realization of the particle-based simulation at each simulation condition. These pixellations

were obtained on 100 x 100 grids using MATLAB’s histcounts2 function, to be consistent with

the grid size used for RD-PDE simulation. Simulations were conducted using an operator

splitting method, where reaction terms were solved using an adaptive Euler step, and diffusion

terms were solved using a Fourier transform-based approach. As in the particle-based simula-

tions, periodic boundary conditions were taken.

Quantifying polarization

Polarization was measured using the H-function H(r), a rescaled version of Ripley’s K-func-

tion. Ripley’s K-function is a commonly used metric in experimental biology, and has been

applied to study both experimental and simulated protein clustering [42,53]. The H(r) is

related to the cumulative distribution of pairwise inter-particle distances P(r):

H rð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2

p

Z r

0

Pðr0Þdr0
s

� r

P rð Þ ¼
1

NðN � 1Þ

XN

i¼1

miðrÞ

where N is the total number of particles subjected to cluster analysis, mi(r)Δr is the number of

particles at a distance d from particle i such that r–Δr/2� d� r + Δr/2, and L is the length

along either the x or y axis of the square simulation domain. Since the simulation domain

boundaries are periodic, d is the minimum Euclidean distance along the two-dimensional sur-

face of a torus. P(r) can also be related to the well-known pair correlation function g(r) by nor-

malizing mi(r)Δr by the expected density of particles within the area defined by r ± Δr/2. See

Fig 5C and Fig E in S1 Text for examples.

H(r) = 0 if particles are distributed according to a uniform distribution. H(r)> 0 indicate

the presence of more particles at inter-particle distances r as compared to a uniform distribu-

tion, while negative values of H(r) indicate fewer particles. Positive values of H(r) therefore
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indicate spatial clustering, or polarization, and the value of r for which H(r) is maximized

reflects the characteristic cluster size. When "total Cdc42-GTP" levels were quantified or visu-

alized, this meant both Cdc42-GTP and Bem1-GEF-Cdc42-GTP complexes, to reflect the total

population of Cdc42-GTP molecules.

We also quantified H(r) in the RDE simulations by producing discrete particle distributions

from continuous concentration data. We computed a cumulative distribution function corre-

sponding to the concentrations in each spatially discretized bin, then drew pairs of random

numbers p1, p2 � Unif(0,1) to randomly select values from the cumulative distribution func-

tion, thus choosing two of the bins. Because the PDE assumes that molecules are uniformly

distributed within each bin, four more uniform random numbers were drawn to pick locations

within the two bins. This generated two sets of coordinates (x1,y1) and (x2,y2) such that (x1,y1)

fits within the first bin, and (x2,y2) fits within the second. The pairwise distance between the

points was recorded, and the process repeated many times to ensure sufficient sampling, typi-

cally n = 500,000. The resultant pairwise distance distribution is analogous to P(r), permitting

similar steps as above to compute a reaction-diffusion analogue of H(r).

Molecular injection and ejection from a cytoplasmic reservoir

To compute hninji(t) and hnejci(t) in practice, we numerically integrate over 100,000 discrete

slices using the trapezoidal rule over the appropriate domains. Instead of re-calculating the

integrals each simulation step, we pre-calculate the integrals and store the results in a table to

save computation time. This yields the mean behavior, which is sufficient for the q3D-RDEs.

However, to stochastically perform injection and ejection in the particle-based simulations, we

draw uniform random numbers x � [0,1] and use the inverse Poisson cumulative distribution

function to obtain a Poisson-distributed particle number. To ensure physical validity, the tails

of these probability distributions are cut off at the number of available particles in each com-

partment each time step.

Linear stability analysis

We used linear stability analysis to determine conditions where the homogeneous steady state

of the 2D reaction-diffusion system was Turing unstable [54]. In this analysis, the full reaction

diffusion equations are linearized around the homogenous steady-state, and the effect of an

arbitrary small spatial perturbation is evaluated. The small perturbation is represented as a lin-

ear combination of a particular set of spatial functions, which are eigenfunctions (modes) of

the Laplacian operator and are subject to appropriate boundary conditions. Because of the lin-

earity, the initial growth of each mode is proportional to elnt where the eigenvalue λn depends

on the corresponding wave number kn
2. A small spatial perturbation will grow if Re[λ] is

greater than zero for at least one mode. For a square domain of side L with periodic boundary

conditions, the eigenfunctions are [55]:

Wnm x; yð Þ ¼ ancos
2npx

L
þ bnsin

2npx
L

� �

amcos
2mpy

L
þ bmsin

2mpy
L

� �

where

k2

nm ¼
2np

L

� �2

þ
2mp

L

� �2

and n and m are integers. The coefficients an, bn, am, and bm are constants determined by the

initial perturbation and are not relevant in this analysis.
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We calculate the dispersion relation Re[λ(k2
nm)] for the set of PDEs that define the signaling

network, noting that the system is unstable if Re[λ(k2
nm)] > 0 for any mode n,m. If the system

is in a Turing-unstable state, then decreasing the concentration of a particular species will

induce a bifurcation where the system becomes stable to spatial perturbations. For the cases

examined here (decreasing domain size or species concentration) the bifurcation occurs when

Re[λ(k2
nm)] becomes zero for the wave numbers k2

01 and k2
10 because these are the smallest

relevant wave numbers (the mode n = 0, m = 0 corresponds to a uniform function and is not

relevant in this analysis). See Fig H in S1 Text for an example.

Numerical determination of the bifurcation point by pre-polarization

For the quasi-3D RDE system, where linear stability analysis was more difficult, we used this

simpler, numerical approach to determine the [Cdc42] threshold below which the system can-

not polarize. The initial conditions were as follows: we started with a system where all the

Cdc42 and BemGEF was inactive, in the “explicit” cytoplasmic compartment. We then speci-

fied a square L/5 x L/5 centered on the origin, where L is the domain length, and converted

90% of the Cdc42 into the active membrane-bound state. All remaining cytoplasmic mass was

partitioned according to diffusional equilibrium.

Simulations to determine the bifurcation point by pre-polarization were carried out for

600s, which under our conditions was sufficient to distinguish loss or maintenance of polarity

on the basis of H(r = 2μm) (Fig P in S1 Text).

Supporting information

S1 Text. Supplemental information. This text describes our derivations for 2D bimolecular

reactions (Appendix A), our particle-based simulation implementation (Appendix B), our

additional results for 2D polarization (Appendix C), our derivation for the quasi-3D reservoir

equations (Appendix D), and our additional results for quasi-3D polarization (Appendix E).
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S1 Movie. Particle-based simulation of polarity establishment within the Turing unstable

regime. Red dots represent individual molecules of total Cdc42-GTP (both Cdc42-GTP and

Bem1-GEF-Cdc42-GTP). The movie shows 200 simulated seconds.
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S2 Movie. Quasi-3D particle-based simulation of polarity establishment outside of the

Turing unstable regime. Red dots represent individual molecules of total Cdc42-GTP

(both Cdc42-GTP and Bem1-GEF-Cdc42-GTP). The movie shows 600 simulated seconds.

[Cdc42] = 0.050 μM.

(MOV)

S1 Dataset. Key pieces of code and data. This .zip file contains a General folder with code for

procedures described in the main text, and folders with data and code to render data-based

parts of Figs 2–10.

(ZIP)
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