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Abstract 

Background Recently, magnetic and inertial measurement units (MIMU) based systems have been applied 
in the spine mobility assessment; this evaluation is essential in the clinical practice for diagnosis and treatment evalu‑
ation. The available systems are limited in the number of sensors, and neither develops a methodology for the correct 
placement of the sensors, seeking the relevant mobility information of the spine.

Methods This work presents a methodology for analyzing a system consisting of sixteen MIMUs to reduce 
the amount of information and obtain an optimal configuration that allows distinguishing between different body 
postures in a movement. Four machine learning algorithms were trained and assessed using data from the range 
of motion in three movements (Mov.1—Anterior hip flexion; Mov.2—Lateral trunk flexion; Mov.3—Axial trunk rota‑
tion) obtained from 12 patients with Ankylosing Spondylitis.

Results The methodology identified the optimal minimal configuration for different movements. The configu‑
ration showed good accuracy in discriminating between different body postures. Specifically, it had an accu‑
racy of 0.963 ± 0.021 for detecting when the subject is upright or bending in Mov.1, 0.944 ± 0.038 for identifying 
when the subject is flexed to the left or right in Mov.2, and 0.852 ± 0.097 for recognizing when the subject is rotated 
to the right or left in Mov.3.

Conclusions Our results indicate that the methodology developed results in a feasible configuration for practical 
clinical studies and paves the way for designing specific IMU‑based assessment instruments.

Trial registration: Study approved by the Local Ethics Committee of the General Hospital of Mexico “Dr. Eduardo 
Liceaga” (protocol code DI/03/17/471).
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Introduction
Spine mobility assessment is part of clinical practice in 
some areas like rheumatology, orthopedics, and reha-
bilitation; this evaluation is essential for the diagnosis, 
Lemeunier et  al. [1] present the clinical assessment of 
the cervical spine’s posture, mobility, and its associated 
disorders. Besides, this mobility assessment helps clini-
cians to evaluate the patient’s progress, Sieper et  al. [2] 
developed a handbook to assess Ankylosing Spondylitis 
(AS) patients; this rheumatic condition affects the lum-
bar spine and the sacroiliacs articulations primordially. In 
other areas like orthopedics and neurology, spine mobil-
ity evaluation attends to verify the pre and post-surgery 
results [3]. Despite the importance of this procedure, 
metrics are obtained with measuring tape and goniom-
eters, as in the case of AS patient’s evaluation where the 
index BASMI (Bath Ankylosing Spondylitis Metrology 
Index) is applied with the instruments mentioned above 
[4]. Moreover, in many cases, in areas like orthopedics 
and rehabilitation, the evaluation is through palpation 
and medical observation [5]; thus, some studies have 
demonstrated that measurements obtained with man-
ual methods lack accuracy, sensibility, and repeatability 
[6–8].

In addition, mobility assessment is focused mainly on 
the lumbar and cervical spine, leaving behind the tho-
racic spine [9–11] despite thoracic vertebrae contributing 
to upper limb movements and, in some cases, thoracic 
affection can limit lung capacity [12, 13]. For all these, 
it is crucial to use technological tools to improve the 
assessment of the entire spine at lumbar, thoracic, and 
cervical levels, with accuracy, sensibility, and in more 
range of motion (RoM), unable to evaluate with the exist-
ing manual tools.

Systems based on magnetic and inertial measurement 
units (MIMUs) have proven their reliability and precision 
in the analysis of human movement, applied in several 
clinical areas. Kortier et  al. [14] proposed a system that 
allows a 3D reconstruction of the hand to analyze the 
functionality of these complex joints. A system for the 
elderly population was proposed by Nguyen et al. [15] to 
detect daily physical activities. Revi et al. [16] presented a 
method for gait analysis to detect locomotion function-
ality in neurological patients. Furthermore, MIMUs have 
been applied in areas like rehabilitation [17], rheumatism 
[18], and ergonomics [19].

Recently, MIMU-based systems have been applied in 
the evaluation of spine mobility, showing great feasibil-
ity [20, 21]; since these systems allow their use without 
limiting patients’ mobility, they can measure the con-
tinuous variation of angles [22], and the use of controlled 
environments like those used with optical systems are 
not necessary [23, 24]. However, the systems mentioned 

above are limited in the number of sensors to evaluate 
the entire spine; they generally use two sensors to evalu-
ate the lumbar spine and two for the cervical spine, leav-
ing behind the thoracic area [10, 11, 25]. Franco et al. [26] 
use six sensors along the entire spine, but neither of these 
works develops a methodology for the correct placement 
of the sensors, seeking the most relevant mobility infor-
mation of the spine.

In a previous work [27, 28], the authors reported the 
development of a wearable system based on MIMUs 
designed explicitly for the mobility assessment of the 
spine, particularly for patients suffering from Ankylosing 
Spondylitis [29, 30]. The system consists of 16 MIMUs 
that, through Kalman filters, estimate the kinematic ori-
entation of 16 individual segments located at the patient’s 
spine. The system’s reliability has been validated in 15 
healthy subjects who performed a group of six exer-
cises involving the mobility of the entire spine, with the 
MIMUs located serially along the subject’s back, as illus-
trated in Fig.  1a. The exercises evaluated were anterior 
hip flexion, trunk lateral flexion, trunk axial rotation, 
cervical axial rotation, cervical flexion/extension, and 
cervical lateral flexion. To the best of our knowledge, this 
system is the only one capable of monitoring different 
movements of the lumbar, thoracic, and cervical areas 
simultaneously, with several degrees of freedom.

The tests revealed the high reliability of the system, 
observed in the intraclass correlation coefficients (ICC) 
[31] of every MIMU individually and globally for five 
of the six movements [27]. For the axial trunk rotation 
movement, mid to low ICCs were observed at some loca-
tions, mainly due to the sensors’ erratic motions owing 
to the participants’ skin displacement. Thus, despite the 
possibilities offered by the system to evaluate the move-
ments of the entire spine, the information provided by 
the sensors can become redundant, increasing the pro-
cessing and placement time of all sensors on the subject’s 
back and reducing the patient’s comfort by using so many 
units. Additionally, the reliability of the motion estima-
tion could be compromised depending on the placement 
site of the sensors. For clinical practice with patients, 
further research is required to develop new methods to 
assess the number of sensors needed and their optimal 
locations for an efficient system that provides accurate 
and relevant information.

Artificial intelligence (AI) algorithms in the medi-
cal field have helped support medical professionals in 
decision-making based on patient information. Among 
these algorithms are Machine Learning (ML) models, 
which, based on a series of features, can perform pattern 
recognition to make inferences and predictions on new 
data. Torres-Castillo et  al. [32] presented an  ML  strat-
egy to classify EMG signals to efficiently detect the 
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presence of neuropathy, myopathy, or absence of disease. 
In [33], Islam et  al. quantified physiological biomarkers 
of a microwave brain stimulation device to predict acute 
stroke. Regarding inertial sensors and ML algorithms, 
Kamran et al. [34] use one sensor to detect human pos-
ture behaviors and balance, while Moon et  al. [35] 
developed a method to classify Parkinson’s disease and 
essential tremor with six inertial sensors. Other typical 
applications are gesture recognition and prosthetics con-
trol [36] and Ergonomics [37].

Even though these works present the fusion of machine 
learning algorithms and inertial sensors for the recog-
nition of human movement patterns, to the best of our 
knowledge, the use of these techniques for the design and 
optimization of mobility evaluation systems has been lit-
tle addressed in the literature. Today, there is a need to 
design specific tools for evaluating spinal mobility with 
greater capacities than current systems have in terms of 
the amount of information and specificity.

This work aims to find the optimal configuration of the 
presented system, enabling an efficient and comprehen-
sive evaluation of the entire spine. The challenge of opti-
mizing sensor placement and data extraction represents a 
high-dimensional, combinatorial optimization problem. 
To tackle this, we employed an optimization methodol-
ogy that relies on ML models to identify the best pos-
sible configuration, minimizing the number of sensors 
while maximizing relevant information. While manual 
approaches could theoretically process roll, pitch, and 
yaw data from selected sensors, such methods are limited 
when handling the complexity and scale of our data. ML 
models can discern subtle patterns across multiple sen-
sor locations that may not have been obvious through 
analytical techniques. We eliminate irrelevant and redun-
dant features by automating feature selection through 

a wrapper approach, improving efficiency and perfor-
mance. This step is essential because the task’s high-
dimensional nature complicates manual interpretation 
and impacts the generalization and computational com-
plexity of traditional methods. Additionally, reducing the 
dimensionality mitigates the risk of overfitting and low-
ers data acquisition costs, resulting in a more robust and 
cost-effective system for spine mobility assessment.

Consequently, reducing the number of sensors on 
the patient’s back and finding its optimal localization is 
expected to evaluate the entire spine efficiently. Further-
more, the discarded sensors can be used to do a compre-
hensive assessment of the spine with other articulations 
of the body like the knees, ankles, shoulders, and arms, 
which are necessary to evaluate since they can affect the 
spine movements or be affected by the abnormal move-
ments of the spine.

The main contributions of this work are as follows:

• The optimization of a novel MIMU-based wearable 
system for mobility assessment that, compared to 
similar ones, is capable of evaluating the full motion 
of the spine. This optimization facilitates the clinical 
practice by reducing the number of sensors, decreas-
ing the time of placement and readback of the sys-
tem, but preserving the most relevant information of 
the movements.

• A methodology for optimizing the configuration 
of sensors of wearable systems for the evaluation of 
specific movements in different conditions, which 
represents a complex combinatorial problem of high 
dimensionality.

This article is organized as follows. Sect.  "Materials 
and Methods" describes the system and methodology 

Fig. 1 The system embodiment: a MIMUs over the participant’s spine; b frame reference of the sensors, with the z‑axis out of the image. The 
movements considered in the experimental study: c anterior hip flexion; d trunk lateral flexions; e trunk axial rotation
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used to perform feature selection, and the Results are 
presented in Sect.  "Results". Then, the advantages and 
drawbacks of our proposed methodology are discussed in 
Sect.  "Discussion". Finally, the conclusions are drawn in 
Sect. "Conclusion".

Materials and methods
The strategy to find an optimal configuration of the pre-
sented system by selecting the minimum number of sen-
sors and their locations can be summarized in Fig.  2: 
(a) Acquisition and pre-processing (SubSect.  "System 
description"-"Motion Estimation"), (b) Feature selection 
strategy (SubSect.  "Machine Learning Optimization"), 
and (c) Configuration selection (SubSect. "Configuration 
Selection").

System description
As shown in Fig.  1, our wearable system, described in 
detail in [27], consists of an array of 16 small motion units 
or MIMUs (Invensense MPU-9250 units, each integrated 
on a printed circuit board of 11.7 × 9.3 mm). Each MIMU 
incorporates 9 degrees of freedom (a tri-axial accelerom-
eter, a tri-axial gyroscope, and a tri-axial magnetometer) 
at a frame rate of 20 Hz. This frame rate is sufficient to 
capture patient movements with SA because the clinical 
protocol evaluation involves tasks that require slow exe-
cution to ensure safety, minimize the risk of falls or loss 
of balance, and avoid pain. The first sensor is mounted 
approximately over the first sacral vertebra (S1), and the 
fifteenth sensor is located around the seventh cervical 
vertebra (C7), with an equidistant separation between the 
fifteen sensors. The sixteenth sensor is mounted with a 
strap on the head.

Motion estimation
MIMUS has been used for different human mobil-
ity assessment applications by estimating the ori-
entation of segments of the human body. However, 
a well-known issue is the drift problem during the 

numerical integration of gyroscope signals to obtain rota-
tion angles. To solve this problem, it has been shown that 
using Kalman filters (KF) allows drift correction by fusing 
accelerometry and magnetic field signals. A crucial phase 
of the KF is the statistical calibration of the noise of the 
gyroscope, accelerometer, and magnetometer signals and 
the distortion of the latter’s signals produced by the sur-
rounding magnetic field [38, 39].

A series of instances of a KF based algorithm estimates 
the orientation of each MIMU concurrently, with each 
KF instance explicitly calibrated for each sensor, accord-
ing to the methodology described in detail in [27]. After 
the calibration process, we observed an accuracy of 0.8°, 
which is adequate for human joint mobility estimation. 
The Euler Angles, roll, pitch, and yaw describe the orien-
tation in the y-, z-, and x-axis, respectively (Fig. 1b).

Machine learning optimization
Movement selection
As outlined earlier, the objective of this study is to iden-
tify the optimal ergonomic configuration for the pro-
posed system. To achieve this, the following movements 
were analyzed (Fig.  1c–e): anterior hip flexion (Mov. 
1), trunk lateral flexion (Mov. 2), and trunk axial rota-
tion (Mov. 3). These movements are primarily captured 
by MIMUs 1 through 15, which are positioned along 
the spine. Given the number of sensors involved, some 
redundant information may arise, presenting an oppor-
tunity to optimize sensor placement for a more efficient 
evaluation of the lumbothoracic spine.

Labeling and database implementation
Motion sequences from 12 patients with Ankylosing 
spondylitis (AS) (10 males, 45.76 ± 11.44  years old, and 
two females, 52.44 ± 3.53 years old) were obtained using 
the methodology described in our previous work [27]. 
The study was approved by the Local Ethics Committee 
of the General Hospital of Mexico “Dr. Eduardo Liceaga” 

Fig. 2 Block diagram of optimization process: a Acquisition and pre‑processing; b Classification and classifier selection; c Selection of optimal 
MIMU configuration
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(protocol code DI/03/17/471). All participants signed the 
informed consent form.

Two sequences of the three movements were obtained 
from each patient (Fig. 1c–e): anterior hip flexion, trunk 
lateral flexions, and trunk axial rotation. Each record has 
the information of the 15 sensors along the back, which 
assess the lumbothoracic movements.

Aiming to create a feature array for each movement, 
data management and labeling of the Range of Motion 
(RoM) obtained from the 12 patients were necessary. 
First, an Euler angle (roll, pitch, and yaw) was consid-
ered for each movement. According to the reference 
frame in Fig. 1b, for the Anterior hip flexion (Movement 
1), the angle roll describes a greater amplitude than the 
other two angles. In the case of the Lateral trunk flexion 
(Movement 2), the pitch angle has a greater amplitude. 
For the axial trunk rotation (Movement 3), the amplitude 
is the yaw angle.

As explained above, every participant performed two 
sequences of each movement. In Fig.  3, the amplitude 
described by MIMU1 to MIMU15 in a sequence per-
formed by one patient can be observed: (a) Movement 
1; (b) Movement 2; (c) Movement 3. Differences in the 
amplitude of the signals are due to the MIMU’s place-
ment; the farther the MIMU is placed from the lumbosa-
cral joint (S1), the greater the amplitude of the RoM.

As shown in Fig.  3, the minimums and maximums of 
the signals can be clearly distinguished; for anterior hip 
flexion (Fig.  3a), every maximum represents when the 
subject is fully flexed, and every minimum represents 
when the subject is upright. In the case of lateral trunk 
flexion (Fig.  3b), the minimums represent flexions to 
the right, and maximums represent flexions to the left. 
Finally, for axial trunk rotation (Fig. 3c), minimums rep-
resent rotations to the right and maximums rotations to 
the left.

A sample containing the MIMU’s signals was consid-
ered as a feature instance. In this way, the feature array 

is formed by the total number of samples (rows) and the 
signals from the 15 sensors (columns):

where Xs
m denotes the feature array for subject 

s = 1, . . . , 15 , and movement m = 1,2, 3 , while the col-
umn vectors xi represent the roll, pitch  or  yaw angle of 
the i-th MIMU, of Movements 1 through 3, respectively.

A binary classification was performed for each move-
ment, with two classes defined per movement as fol-
lows: (1) maximum extension and flexion for anterior hip 
movement, (2) maximum right and left flexions for lateral 
trunk movement, and (3) maximum right and left rota-
tions for axial trunk movement. The average mid-point 
between adjacent minima and maxima was calculated 
for all three movements to identify posture transitions 
and segment the signals into two classes. A label of “1” 
was assigned to samples representing flexion for Move-
ment 1, and left for Movements 2 and 3. Conversely, a 
label of “0” was assigned to samples indicating extension 
for Movement 1, and right for Movements 2 and 3. This 
procedure was applied to all 72 records: 12 subjects × 3 
movements × 2 series.

Dataset description
After labeling, the two sequences for each patient and 
movement were merged to construct a feature matrix for 
each subject and movement. Erroneous data, caused by 
erratic sensor slippage, were manually removed to elimi-
nate outliers. The number of instances obtained for each 
patient and movement is shown in Table  1. The sam-
ple size depends on the duration of the recording and 
whether one or both motion sequences were retained 
after exploratory analysis, with the assumption of a 
roughly equal number of instances per class (0 or 1) for 
each subject.

(1)Xs
m = [x1; x2; x3; . . . ; x14; x15]

Fig. 3 RoM described by the 15 MIMUs in a sequence of the 3 movements performed by a patient. A different Euler angle describes the amplitude 
of each movement: a roll, b pitch, and c yaw. A binary classification (0 and 1) was made for every movement. Every sample is determined 
by the acquisition frequency of the system (i. e., sampling time = 50 ms)



Page 6 of 13Domínguez‑Jiménez et al. Journal of NeuroEngineering and Rehabilitation          (2024) 21:198 

Feature selection
A wrapper feature selection method was carried out, 
and different subsets of MIMU’s configurations were 
created as input features to select those configurations 
with the best performance. Two optimizations were 
applied to generate different subsets of sensors from 
the 15 available. (i) Constrained optimization (CO): 
fixing MIMU1 and MIMU15 since MIMU1 is the ref-
erence needed to evaluate Movements 1 to 3, and 
MIMU15 corresponds to the reference used to evalu-
ate movements of the cervical region. Moreover, each 
subset has at least one sensor placed in the lumbar and 
thoracic regions to ensure the assessment of all spine 
regions. ii) Unconstrained optimization (UO): Consid-
ering all 15 MIMUs to create the subsets.

Machine learning classifiers
Since the aim of this study is the optimization of the 
system regardless of the ML method, four of these 
algorithms were trained and assessed to accomplish a 
feature selection: (1) Logistic Regression (LR) without 
added penalty; (2) Naïve Bayes (NB), assuming the like-
lihood of the features is Gaussian; (3) Support Vector 
Machine (SVM) with a linear kernel, and (4) K Nearest 
Neighbor (KNN) with k = 3 . Hyperparameter tuning 
was performed by comparing the metric (Sect.  "Clas-
sification Evaluation") results on the validation set, 
ensuring the selected configurations provided optimal 
performance across the models.

Classification training
Leave-One-Subject-Out (LOSO) cross-validation was 
performed to assess each configuration; this validation 
consists of training each model with the input data-
set of all subjects, leaving one subject out as a test set; 
then, the method is retrained with all the input data-
sets leaving out a different subject for testing. This pro-
cess is applied iteratively for all the available subjects in 
the data set. The four classifiers mentioned above were 
used for training and testing: LR, NB, SVM, and KNN.

Classification evaluation
A binary classification (positive or negative) has four pos-
sible outcomes. If the instance is positive and is classified 
as positive, it is counted as a true positive (TP); other-
wise, if it is classified as negative, it is counted as a false 
negative (FN). On the other hand, if the instance is nega-
tive and is classified as negative, it is counted as a true 
negative (TN); otherwise, if it is classified as positive, it is 
counted as a false positive (FP). Sensitivity (SEN), speci-
ficity (SPE), precision (PRE) and accuracy (ACC) were 
computed to assess the ability of the different MIMUS 
configurations to discriminate between flexion/exten-
sion (Movement 1) and right/left (Movements 2 and 3). A 
MIMU configuration was considered relevant if it had a 
high SEN, SPE, PRE, and ACC. The averages of SEN, SPE, 
PRE, and ACC were calculated from the resulting met-
rics of each training and testing iteration of the LOSO 
cross-validation.

Classifier selection
A Multivariate Analysis of Variance (MANOVA) was 
applied to ACC and PRE metrics following an experi-
mental design of 3 movements (Movement 1, Movement 
2, and Movement 3) X 4 classifiers (LR, NB, SVM, and 
KNN). Then, the Bonferroni honestly Post-hoc test was 
applied to determine which classifier had the best perfor-
mance and which movement had the best classification 
metric. Identifying the movements with the highest clas-
sification accuracy allows us to refine sensor positioning, 
ensuring more stable and reliable measurements while 
enhancing the system’s overall performance.

Configuration selection
After choosing the best classifier, selecting the best con-
figuration was conducted, i.e., the one with the smallest 
number of sensor units but preserving as much informa-
tion as possible that allows the discrimination of move-
ments. In other words, the one that, after unit reduction, 
still efficiently allows the classification of the movements. 
The process was carried out over Movements 1, 2, and 3.

In each movement, to assess the configurations’ per-
formance to discriminate between flexion/extension and 
right/left, the SEN, SPE, PRE, and ACC metrics of all 

Table 1 Size of the dataset for each patient and movement

The classes of each dataset are balanced, and the datasets of dismissed subjects are marked with a dash

Subjects

1 2 3 4 5 6 7 8 9 10 11 12

Movement 1 640 686 550 495 566 619 350 560 460 – 180 530

Movement 2 325 662 572 603 560 610 540 545 260 530 560 –

Movement 3 260 890 590 754 632 530 330 450 525 255 540 –
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obtained configurations were calculated. For both opti-
mizations (UO and CO), the mean of the ACC metric of 
the configurations in Movement 1 ( µACC1

 ), Movement 
2 ( µACC2

 ), and Movement 3 (µACC3
 ) was calculated. In 

addition, the standard deviation of the configurations’ 
ACC in each movement was calculated ( σACC1

 , σACC2
 , 

σACC3
 ). Finally, from the computed mean and standard 

deviation, different thresholds were defined as

where i corresponds to the three different movements 
(Movement 1 ( i = 1 ), Movement 2 ( i = 2 ), and Move-
ment 3 ( i = 3 )) and κ takes the values of 0.5, 1, and1.5.

In each movement, three subsets ( Si,κ ) of MIMUS 
configurations were considered, one for each value of κ . 
The first one includes the configurations whose ACC is 
greater than TACCi,0.5 = µACCi+0.5σACCi ; the second sub-
set contains the configurations whose ACC is greater 
than TACCi,1 = µACCi+σACCi ; and the last subset con-
siders the configurations whose ACC is greater than 
TACCi,1.5 = µACCi+1.5σACCi.

The frequency fj=1,...,15 of the 15 MIMUs in each sub-
set of configurations Si,κ was calculated. In other words, 
we calculated how many times each MIMU appeared 
in the configurations of a given subset Si,κ . For exam-
ple, for CO and Movement 1, we considered the sub-
set of configurations S1,0.5 whose ACC was greater than 
TACC1,0.5

= µACC1
+0.5σACC1

 ; then, it was computed how 
many times MIMU1 ( f1 ) was contained in the resulting 
configurations, then how many times MIMU2 ( f2 ) was 
contained in those same configurations, and so forth up 
to MIMU15 ( f15 ). This procedure was performed for the 
two optimizations, the three movements ( i = 1, 2, 3 ) and 
the three thresholds ( κ = 0.5, 1, and1.5).

For each subsetSi,κ , the median Mi,κ of all sensor fre-
quencies (fj=1,...,15) was calculated for each movement 
and threshold. The sensors with frequencies greater than 
the median ( fj > Mi,k) were considered to form a MIMU 
configuration ( Ci,k).

At each threshold ( TACCi,k
 ), the sensor configurations 

for the three movements Ci,k were compared to derive a 
final configuration ( Cthκ ) capable of effectively classifying 

(2)TACCi,k
= µACCi

+ κσACCi

all three movements. For instance, at the threshold 
TACCi,0.5 , the configurations of the three movements 
( C1,0.5,C2,0.5,C3,0.5 ) were merged to create a unified con-
figuration that could accurately classify Movements 1 
through 3. Sensors that appeared in at least two move-
ments were retained, while those that appeared in only 
one movement, or not at all, were discarded. The per-
formance of these final configurations was then evalu-
ated using ROC and AUC metrics through LOSO cross 
validation.

Results
In the feature selection, 326 and 32,767 MIMU configu-
rations were generated by applying CO and UO opti-
mizations, respectively. Four models (NB, LR, SVM, 
and KNN) were trained and tested on these two fea-
ture sets. The models’ performance was compared 
to choose the one that classifies with the best perfor-
mance. The MANOVA revealed the main factor effects 
of movements for both ACC (F(2943) = 2788.138, 
p < 0.00001) and PRE (F(2943) = 2317.058, p < 0.00001). 
The main factor effect was also revealed for classifiers 
for both ACC (F(3707) = 5635.967, p < 0.00001) and PRE 
(F(3707) = 4226.027, p < 0.00001). Additional interac-
tion was also revealed between both factors for both 
metrics, F(6,2820) = 903.931, p < 0.00001 for ACC, while 
F(6,2820) = 511.296, p < 0.00001 for PRE. Then the Bon-
ferroni honestly Post-hoc test confirmed better clas-
sification metrics for Movement 1, Movement 2, and 
Movement 3, in this order, while indicating the KNN as 
the best classifier having the highest ACC for the three 
movements evaluated. Table 2 presents the ACC and PRE 
value metrics in the training set for the four classifiers 
and the three evaluated movements.

The performance of the KNN classifier on the test 
set, using the CO and UO features, is plotted in Fig.  4. 
As hundreds and thousands of models were trained for 
the CO and UO optimizations, respectively, their accu-
racy distribution is shown. However, it is not possible to 
explicitly show the configurations and their performance. 
For both optimizations, it is observed that there is a bet-
ter classification performance in Movement 1 than for 

Table 2 Performance metrics of the classifiers for the three movements, considering Accuracy and Precision of classification

A better classification can be observed for Movement 1 (anterior hip flexion), Movement 2 (trunk lateral flexion), and then Movement 3 (trunk axial rotation) with the 
KNN classifier

MOV Accuracy Precision

NB LR SMV KNN NB LR SMV KNN

1 0.9439 ± 0.0025 0.9494 ± 0.0026 0.9512 ± 0.0027 0.9852 ± 0.0015 0.9553 ± 0.0017 0.9528 ± 0.0023 0.9533 ± 0.0025 1.0 ± 0

2 0.8519 ± 0.0125 0.9053 ± 0.0161 0.9071 ± 0.0148 0.9912 ± 0.0007 0.8539 ± 0.0097 0.9000 ± 0.0162 0.9013 ± 0.0144 1.0 ± 0

3 0.7756 ± 0.0450 0.8991 ± 0.0315 0.9059 ± 0.0268 0.9914 ± 0.0011 0.8040 ± 0.0565 0.8932 ± 0.0354 0.9029 ± 0.0278 1.0 ± 0
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the other two movements. The dotted lines show the 
mean of ACC ( µACCi ) of each distribution.

In each movement, three TACCi,k
 thresholds per distri-

bution were defined (Equation6) . Three configuration 
sets per movement were considered using the follow-
ing selection rule: configuration whose performance is 
higher than the threshold ( ACC > TACCi,k

 ) was counted. 
The frequency of each MIMU in each configuration set 
is displayed in Fig.  5. Results using CO and UO con-
figurations are shown in Fig. 5a and b, respectively. The 
sensor frequencies whose ACC > TACCi,0.5 (red bars), 
ACC > TACCi,1 (green bars), and ACC > TACCi,1.5 (blue 
bars) are plotted. The dotted lines are the medians of the 
frequencies of each group. For both CO and UO, there 
were no configurations with performance greater than 
TACC1,1.5

 in Movement 1.
Sensors with a frequency higher than the median 

(dashed lines in Fig.  5) were considered to form a new 
configuration and its classification performance was 
tested using LOSO cross-validation. Table  3 shows the 
performance in the test set of the resulting configura-
tions, derived from 2 optimizations (CO and UO) X 3 
threshold ( TACCi,0.5 , TACCi,1 ,TACCi,1.5 ) X 3 movements 
( i = 1,2, 3).

To obtain a final Ci,k configuration involving the 3 
movements, the three configurations of a single thresh-
old were compared. Only those sensors that appeared 
in at least two of the three movements were considered. 
For the UA, only one configuration in Movement 2 and 
Movement 3 was considered since there were the same 
MIMU configuration in the three thresholds; in Move-
ment 1, there were no configurations with performance 
greater than TACC1,1.5

 and for the other two thresholds 
were the same MIMU configuration. The performance 

of Ci,k configurations in each movement were evaluated 
through the Receiver Operating Characteristic (ROC) 
curve and the Area Under the Curve (AUC) by LOSO 
cross-validation (Table 4).

Table  4 shows that the AUC metrics of the MIMU 
configuration obtained by UO were higher for the three 
movements than those obtained by the CO. Thus, the 
most accurate sensor configurations obtained are:

1) S1: MIMU1, MIMU5, MIMU6, MIMU8, MIMU9, 
MIMU10, MIMU13, MIMU15.
2) S2: MIMU1, MIMU6, MIMU8, MIMU9, 
MIMU10, MIMU12, MIMU13, MIMU15.
3) S3: MIMU1, MIMU2, MIMU8, MIMU10, 
MIMU15.
4) S4: MIMU1, MIMU5, MIMU6, MIMU8, MIMU9, 
MIMU10, MIMU13, MIMU14, MIMU15

Then, to evaluate possible redundancies among pairs of 
sensors for each system configuration, a series of analyses 
of variance (ANOVA) followed by Bonferroni post-hoc 
tests were applied to compare the RoM measured by the 
MIMUs for each movement. In this way, redundancy was 
assumed as any combination of pairs of sensors showing 
no significant differences in the post-hoc comparison.

The redundancies of S1, S2, S3, and S4 in Movement 
1, Movement 2, Movement 3, and the redundancies of 
using the fifteen sensors are shown in Table 5. It can be 
observed that the redundancies of the four configura-
tions obtained are approximately a third or less of the 
redundancies found when all fifteen sensors are used. 
Based on Tables  4 and 5, although the S4 configuration 
has a higher number of sensors and more redundancies 
than the other three configurations, its discrimination 

Fig. 4 Accuracy distribution of MIMU configurations for Movement 1 (Anterior Hip Flexion), Movement 2 (Trunk Lateral Flexion), and Movement 3 
(Trunk Axial Rotation) using the KNN classifier. The dashed lines indicate the ACC mean of the configurations in each movement. The configurations 
of MIMUs were generated using two optimizations: a The Constrained optimization, where the MIMU1 and MIMU 15 were considered in every 
configuration; b The Unconstrained optimization, where all possible sensor combinations were generated from the 15 available sensors
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probability (AUC) for the three movements evaluated is 
higher and has the smallest standard deviation.

Figure  6 shows the ROC response at each movement 
of the S4 configuration obtained with LOSO cross-vali-
dation. Each thin colored line represents the ROC curve 
of the testing subject used in one of the validation itera-
tions. The thick blue line in the graphs represents the 
average performance of all the iterations; in each itera-
tion, one different subject’s data was considered as a test-
ing set.

Discussion
This study aimed to determine the optimal ergonomic 
configuration for the system described in [27, 28], which 
comprises sixteen magnetic and inertial measurement 
units (MIMUs) designed for the clinical evaluation of 
spinal mobility in fields such as rheumatology, ortho-
pedics, and rehabilitation. Motion sequences from the 
three movements involving the thoracic and lumbar 
spine (Movements 1–3) were analyzed from 12 patients 
with AS to identify a sensor configuration that captures 
the most relevant spine mobility information with the 

fewest necessary sensors. Since MIMUs 1 through 15 are 
used to evaluate these movements, thousands of possible 
sensor combinations exist. A wrapper feature selection 
optimization was implemented to determine the most 
informative sensor combinations, using different sets 
of MIMU signals as feature vectors to address this. Two 
optimizations were employed to generate the sensor con-
figurations: (i) the Constrained optimization (CO), which 
evaluated 326 configurations with MIMU1 and MIMU15 
fixed as reference points, and (ii) the Unconstrained opti-
mization (UO), which explored 32,276 possible configu-
rations utilizing all fifteen available sensors.

Four classifiers were used to evaluate the obtained 
configurations: two parametric algorithms, (1) Logistic 
Regression and (2) Naive Bayes; and two non-parametric 
algorithms, (3) Support Vector Machine and (4) K-Near-
est Neighbors (KNN). A Leave-One-Subject-Out (LOSO) 
cross-validation methodology was used to train and test 
the classifiers. The LOSO cross-validation methodology 
is a more robust and accurate estimation of model perfor-
mance than the usually applied training-test split proce-
dure since all subject data are considered once for testing 

Fig. 5 Sensor frequencies in the configurations with accuracy greater than the threshold: (i)TACCi,0.5 = µACCi
+0.5σ ACCi

 (red bars); (ii) TACCi,1 = µACCi

+σACCi (green bars); (iii) TACCi,1.5 = µACCi
+1.5σ ACCi

 (blue bars) for the a Constrained approach and b Unconstrained approach. The frequencies were 
calculated for Movement 1 ( i = 1 ), Movement 2 ( i = 2 ), and Movement 3 ( i = 3 ). The dashed lines indicate the median of the frequencies of each 
group
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[38, 40]. In addition, LOSO cross-validation is especially 
useful for assessing generalization across subjects and 
performing a subject-independent evaluation. Moreo-
ver, this methodology makes evaluating the algorithm’s 

behavior on a new subject easier than the training-test 
splitting procedure. However, the major drawback of the 
LOSO procedure is the high computational cost since the 

Table 3 The most frequent sensors of the most accurate movement configurations

Three accuracy thresholds TACCi,k were considered. The metrics ACC, SEN, and SPE for each configuration were calculated

Movement 
(i)

Threshold (k) 
µACCi

+ kσACC

MIMU configuration (Ci,k) Accuracy (ACC) Sensitivity (SEN) Specificity (SPE)

Constrained optimization 1 0.5 1, 5, 6, 8, 9, 10, 13, 15 0.9308 ± 0.0306 0.9420 ± 0.0535 0.9170 ± 0.0513

1 1, 3, 6, 9, 10, 12, 13, 15 0.9338 ± 0.0282 0.9414 ± 0.0517 0.9243 ± 0.0419

1.5 – – – –

2 0.5 1, 2, 8, 9, 10, 12, 14, 15 0.9046 ± 0.0463 0.9173 ± 0.0504 0.8947 ± 0.0783

1

1.5 1, 2, 8, 9, 10, 11, 14, 15 0.9054 ± 0.0432 0.9167 ± 0.0490 0.8978 ± 0.0728

3 0.5 1, 4, 5, 6, 8, 10, 13, 15 0.8125 ± 0.0905 0.8045 ± 0.1113 0.8262 ± 0.1438

1 1, 4, 5, 6, 8, 12, 13, 15 0.8162 ± 0.1227 0.8051 ± 0.1705 0.8322 ± 0.1311

1.5 1, 2, 4, 5, 6, 8, 10, 15 0.8073 ± 0.0882 0.8092 ± 0.1034 0.8117 ± 0.1819

Unconstrained optimization 1 0.5 3, 5, 6, 9, 10, 13, 14, 15 0.9362 ± 0.0230 0.9486 ± 0.0446 0.9216 ± 0.0383

1

1.5 – – – –

2 0.5 1, 7, 8, 9, 10, 12, 14, 15 0.9009 ± 0.0536 0.9180 ± 0.0647 0.8872 ± 0.0900

1

1.5

3 0.5 1, 2, 4, 5, 6, 8, 10, 13 0.8184 ± 0.0717 0.8039 ± 0.0996 0.8383 ± 0.1250

1

1.5

Table 4 Final configurations Ci,k . The respective AUC calculated from the movement response of the ROC curve is shown

* AUC scores highlighted in bold indicate better performance

Movement Threshold MIMU configuration AUC for movement 1 AUC for movement 2 AUC for movement 3

Constrained optimization µACC + 0.5σACC 1, 5, 6, 8, 9, 10, 13, 15 0.960 ± 0.023 0.861 ± 0.199 0.841 ± 0.129

µACC + σACC 1, 6, 8, 9, 10, 12, 13, 15 0.962 ± 0.027 0.860 ± 0.189 0.834 ± 0.143

µACC + 1.5σACC 1, 2, 8, 10, 15 0.949 ± 0.036 0.869 ± 0.190 0.843 ± 0.102

Unconstrained optimization µACC + 0.5σACC 1,5,6,8,9,10,13,14,15 0.963 ± 0.021 0.944 ± 0.038 0.852 ± 0.097
µACC + σACC

µACC + 1.5σACC

Table 5 Redundancies of the four optimal configurations obtained (S1, S2, S3, and S4) for the three movements evaluated and 
globally

MIMU Configuration Redundancies for 
movement 1

Redundancies for 
movement 2

Redundancies for 
movement 3

Global 
redundancies

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 
14, 15

72 100 105 95

1, 5, 6, 8, 9, 10, 13, 15 22 31 34 30

1, 6, 8, 9, 10, 12, 13, 15 23 31 34 29

1, 2, 8, 10, 15 6 8 10 5

1, 5, 6, 8, 9, 10, 13, 14, 15 27 40 43 38
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number of iterations to be performed is increased by the 
number of subjects to train and test [41].

Table 2 shows the classification metrics of the four pro-
posed ML algorithms, demonstrating better performance 
with the non-parametric algorithms in each movement. 
This may be due to parametric methods focus on tuning 
a few parameters to model the density probability distri-
bution where the data comes from; the chosen density 
might be a poor distribution model, resulting in low pre-
dictive performance. The non-parametric methods freely 
learn any functional form from the training data, as they 
do not make strong assumptions about the form of the 
mapping function; hence, the KNN classifier shows the 
best performance with the highest accuracy in the three 
movements. The disadvantages of the non-parametric 
methods are slow learning and expensive computation.

Since this methodology intends to find a single configu-
ration that allows the best discrimination between flex-
ion/extension (Movement 1) and right/left (Movements 
2 and 3), Table 4 shows the most reliable configurations 
considering the AUC values: S1, S2, S3, and S4 configu-
rations have the best performance over the thousands of 
configurations acquired. Also noted in Table 4, S4 has the 
best performance of the four configurations, which con-
sists of nine sensors; this allows a comprehensive assess-
ment of the participant’s spine with only the necessary 
sensors on the back, using the discarded sensors (six) 
to evaluate other articulations like knees and shoulders, 
unable to evaluate with the available systems used in pre-
vious studies [10, 25, 26].

It is noticed that S4 configuration was obtained with 
UO, although one limitation of the unconstrained opti-
mization is that it considers all possible combinations 
that can be formed with the 15 available sensors, causing 

some evaluated configurations not to consider sensors on 
the three spine regions, resulting in unnecessary comput-
ing calculus; unlike CO, which guarantees to generate 
configurations with sensors in specific references along 
the spine.

Even though S4 performs better than S1, S2, and S3, the 
four obtained configurations have the best performances 
among all the configurations generated with CO and 
UO; hence, they can be applied to reliable spine mobility 
assessment. The choice will depend on the purpose of the 
study developed; for example, S3 has five sensors, leaving 
ten (four more than with S4) MIMUs to evaluate other 
articulations like the knees, feet, or arms.

One limitation of this study is that the signals obtained 
from the axial trunk rotation present noise due to erratic 
sliding motions of the sensors caused by the skin defor-
mation during the exercises, which can affect the clas-
sification performance for this movement, as seen in 
Table 4. Even though these sensors with high variability 
can be considered random, this information is expected 
to be of little use for discrimination purposes using 
machine learning techniques; this implies that the opti-
mization tends to discard them from the best-performing 
configurations. In any case, it is necessary to continue the 
study with a better positioning configuration of the sen-
sors, like the one presented by Molnar et al. [24], where 
the sensors were placed on both sides of the spine with 
less skin displacement.

Another limitation is the number of women who par-
ticipated in this study because, due to female anatomy, 
they can develop different RoM compared to males; ten 
males and two females formed the group. Nevertheless, 
it is expected since some studies reported a rate of 5:1 of 
AS affection in males against females [42].

Fig. 6 ROC curves of the configuration S4 (MIMU1, MIMU5, MIMU6, MIMU8, MIMU9, MIMU10, MIMU13, MIMU14, MIMU15) by LOSO cross‑validation 
in the movements: a anterior hip flexion; b trunk lateral flexion; c trunk axial rotation. ROC curves (thin colored lines) represent the performance 
of the testing set for each iteration. The ROC curve in the thick blue line shows the average performance of the testing set
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Furthermore, as future work, complementary studies 
are necessary with more patients with ankylosing spon-
dylitis and the new optimized configuration to validate 
the system’s reliability in the clinical spine evaluation and 
study the compensatory movements that these patients 
can develop due to the disease in comparison with a 
healthy control group; and which can now be assessed 
with the discarded sensors.

As a final remarkable finding of this methodology, 
the present study allows finding the minimum number 
of sensors required to obtain an objective evaluation of 
the spine, providing more comprehensive information 
on the biomechanics of the patient’s mobility, paving the 
way for the design of specific instruments for clinical 
applications.

Conclusion
This work presents a methodology for an informa-
tion reduction analysis of a system comprised of six-
teen MIMUs previously presented by the authors, to 
obtain an optimal configuration seeking the most rel-
evant information on spine mobility with only the nec-
essary sensors. Four machine learning algorithms were 
trained and assessed with the data of the RoM in three 
movements (Mov.1—Anterior hip flexion; Mov.2—Lat-
eral trunk flexion; Mov.3—Axial trunk rotation) obtained 
from 12 patients with ankylosing spondylitis. This study 
allowed obtaining a configuration with nine MIMUs on 
the patient’s back, leaving six sensors to evaluate other 
articulations that can be affected by the disease or due 
to the compensatory movements, preserving an objec-
tive and reliable evaluation of the spine and providing 
more comprehensive information of the biomechanics 
of the patients. This can result in a more objective and 
more timely diagnosis. The information reduction analy-
sis carried out paves the way to design specific systems 
for particular musculoskeletal disorders or even neuro-
logical conditions and for specific anatomical regions or 
movements.
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