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Abstract

Background: Flatfish metamorphosis is a hormone regulated post-embryonic developmental event that transforms a
symmetric larva into an asymmetric juvenile. In altricial-gastric teleost fish, differentiation of the stomach takes place after
the onset of first feeding, and during metamorphosis dramatic molecular and morphological modifications of the
gastrointestinal (Gl-) tract occur. Here we present the functional ontogeny of the developing Gl-tract from an integrative
perspective in the pleuronectiforme Atlantic halibut, and test the hypothesis that the multiple functions of the teleost
stomach develop synchronously during metamorphosis.

Results: Onset of gastric function was determined with several approaches (anatomical, biochemical, molecular and

in vivo observations). In vivo pH analysis in the Gl-tract lumen combined with quantitative PCR (gPCR) of a and {3 subunits
of the gastric proton pump (H*/K™-ATPase) and pepsinogen A2 indicated that gastric proteolytic capacity is established
during the climax of metamorphosis. Transcript abundance of ghrelin, a putative orexigenic signalling molecule produced
in the developing stomach, correlated (p < 0.05) with the emergence of gastric proteolytic activity, suggesting that the
stomach'’s role in appetite regulation occurs simultaneously with the establishment of proteolytic function. A 3D models
series of the Gl-tract development indicated a functional pyloric sphincter prior to first feeding. Observations of fed larvae
in vivo confirmed that stomach reservoir function was established before metamorphosis, and was thus independent of
this event. Mechanical breakdown of food and transportation of chyme through the Gl-tract was observed in vivo and
resulted from phasic and propagating contractions established well before metamorphosis. The number of contractions
in the midgut decreased at metamorphic climax synchronously with establishment of the stomach'’s proteolytic capacity
and its increased peristaltic activity. Putative osmoregulatory competence of the Gl-tract, inferred by abundance of Na™/K
*-ATPase a transcripts, was already established at the onset of exogenous feeding and was unmodified by metamorphosis.

Conclusions: The functional specialization of the Gl-tract was not exclusive to metamorphosis, and its osmoregulatory
capacity and reservoir function were established before first feeding. Nonetheless, acid production and the proteolytic
capacity of the stomach coincided with metamorphic climax, and also marked the onset of the stomach'’s involvement
in appetite regulation via ghrelin.
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Background

The divergent gastrointestinal (GI-) tract morphology and
feeding strategies between larval and adult phases are
adaptations to fundamentally different habitats and food
resources [1]. The post-embryonic maturation of the di-
gestive system is a key event in the life history of verte-
brates and essential for survival. Thyroid hormone (TH)
driven metamorphosis plays a crucial role in the functional
maturation of the GI-tract and in shaping its morphology
to the adult form [2,3]. Remodelling of the GI-tract from
larva to adult has been extensively studied in Xenopus
[2,4]. In this organism, the intestine is transformed under
the influence of THs from a long coiled tube into a com-
plex organ with a differentiated stomach and small intes-
tine [5,6]. This involves epithelial and mesenchymal
proliferation, smooth muscle thickening and the formation
of intestinal folds. Several studies have described the cellu-
lar mechanisms responsible for this remodelling in am-
phibians [7,8], yet little is known about their impact on
tissue function in vertebrates, particularly the multiple
functions integrated in the stomach.

A striking feature of vertebrate metamorphosis is the
organogenesis of the stomach. In early developmental
stages of fishes and anurans the stomach is often absent
and part of its function may be carried out by the intes-
tine. The main roles of the vertebrate stomach are stor-
age of ingested food, secretion of hydrochloric acid
(HCl) and pepsinogen, and mechanical breakdown and
mixing of food with gastric secretions [1,9]. Thus, in lar-
vae of altricial-gastric species, such as the Atlantic hali-
but, the absence of a stomach limits the ability to digest
dietary protein when exogenous feeding is initiated
[10-14]. This is one of the reasons why most studies of
GI-tract development during metamorphosis have fo-
cused on stomach development and consider the appear-
ance of gastric glands as an adequate indicator of a fully
developed stomach [15,16]. However, it has become
clear that the histological identification of gastric glands
does not indicate that the stomach is fully functional.
Hence, the stomach’s proteolytic function is best indi-
cated by pepsin activity [11,17] and pepsinogen content
[18]. To better understand the efficiency of digestive
processing during fish ontogeny, several studies com-
pared expression profiles of pepsinogen and the gastric
proton pump (H'/K'-ATPase), localized in the HCI se-
creting oxynticopeptic cells [19-22]. Murray et al. [23]
have used histology and pepsinogen transcript analysis to
study the ontogeny of the stomach in Atlantic halibut
and showed that the appearance at 66 days post-
hatching (dph) of gastric glands preceded expression of
pepsinogens Al and A2 transcripts at 80 dph. However,
the impact of metamorphosis on other important func-
tions of the stomach or GI-tract development in general
has largely been overlooked in flatfish.
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In addition to acid production and proteolysis the ver-
tebrate stomach also has reservoir functions. After in-
gestion, the stomach stores and predigests food, then
delivers the chyme to the midgut for further digestion
and subsequent nutrient absorption [9]. The storage
function of the stomach relieves juvenile and adult fish
from the need to constantly feed like the stomachless
larval stages. Establishment of the stomach as a reservoir
requires functional sphincters (esophagus and pylorus)
and well developed neural and smooth muscle layers.
The mechanical mixing and transport of food through
the Gl-tract is achieved by specific motility patterns and
by matching peristalsis with the release of digestive en-
zymes. This process plays a central role in effective food
processing (see review, [24]), though very few studies
have targeted GI-tract movements in fish larvae. The ad-
vantage of using fish larvae, such as Atlantic halibut, is
their optic transparency that is maintained until meta-
morphosis. This permits direct visual observations of the
GI-tract and its motility patterns in live animals. Pittman
et al. [25] reported peristaltic contractions in Atlantic
halibut larvae, in the anterior intestine at 35 dph. In juven-
ile Atlantic halibut GI-tract both anterograde (propagating
in the anal direction) and retrograde (propagating in the
oral direction) contraction waves were described [26], and
identical patterns were also observed in embryos and lar-
vae of the stomachless zebrafish (Danio rerio) [27].

The stomach produces hormones involved both in the
regulation of appetite and digestion. Ghrelin is an example
of a hormone that is mainly produced in the stomach and
acts as a stimulator of food intake [28,29]. In mammals,
ghrelin has also been suggested to stimulate gastric acid se-
cretion and motility [30,31]. The function of ghrelin in fish
larvae is still poorly described, but it has been proposed as
an indicator of the stomach’s involvement in appetite regu-
lation in developing fish [32]. In Atlantic halibut, ghrelin
gene expression increases during the climax of metamor-
phosis, coinciding with stomach development [33]. Ghrelin
is abundant in the developing gastric glands and several
osmoregulatory tissues. Additionally, its co-expression with
Na'/K'-ATPase suggests a putative role in hydromineral
balance [34]. Yet, the role of ghrelin in appetite regulation,
motility and osmoregulation is unknown, as well as its link
to the proteolytic and reservoir function of the stomach in
Atlantic halibut during metamorphosis.

This study aims to establish the impact of the agas
tric-gastric transition on the functional role of the post-
embryonic GI-tract remodelling that occurs during meta-
morphosis in Atlantic halibut, a flatfish species of high
commercial interest for the Northern European and North
American aquaculture industry. To map the changes in
Gl-tract development and establish events linked to TH-
driven metamorphosis we constructed a series of 3D
models of the morphological and spatial organization of
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the digestive organs in representative developmental
stages. We tested the hypothesis that the development of
the multiple stomach functions is synchronous and linked
to its physical appearance at metamorphosis. The proteo-
lytic function of the stomach was studied using in vivo pH
analyses combined with expression profiles of the specific
gene markers H'/K"-ATPase « and f8 subunit and pepsin-
ogen A2 using quantitative PCR (qPCR). Stomach filling
and reservoir function were assessed by in vivo visual
studies of the transparent larvae at prometamorphosis and
climax of metamorphosis. The putative role of a fully
functional stomach in appetite regulation was assessed by
measuring ghrelin transcript abundance. The establish-
ment of GI-tract motility patterns during development
was determined by in vivo observations and the involve-
ment of the Gl-tract in osmoregulation was assessed by
measuring the abundance of Na'/K'-ATPase a subunit
transcripts.
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Results

3D reconstruction of digestive organs

3D models of the morphology of the digestive system
during development were reconstructed from a series of
histological sections. Location and size of the GI-tract
and its associated organs, such as liver, endocrine and
exocrine pancreas, and gallbladder, were observed from
stage 3 (prior to first feeding) until the post-
metamorphic stage 10 (Figure 1).

The Gl-tract includes a narrow foregut (esophagus and
presumptive stomach/stomach), midgut, and a short hind-
gut (rectum) (Figure 2). The anterior region of the midgut,
just after the pyloric sphincter (PS), was larger in diameter,
i.e. more voluminous, compared to the rest of the midgut.
This feature was maintained during GI-tract ontogeny (Fig-
ures 1 and 2). Both PS (which separates the presumptive
stomach from the anterior midgut) and ileorectal sphincter
(which separates midgut and hindgut) were identified from
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Figure 1 Ontogeny of the digestive organs in Atlantic halibut larvae. 3D models were reconstructed from serial histological sections using
Imaris software. The digestive organs are shown from three angles; left, right and dorsal side. Arrows indicate the anterior direction (mouth).
Orange outer layer of Gl-tract, red liver, green gallbladder, purple pancreas, pink islet of Langerhans, yellow yolk-sac. Transparent colour is used for
exocrine pancreas (purple) in order to show islets of Langerhans (pink) and gallbladder (green).
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Figure 2 Ontogeny of presumptive stomach (transparent light blue) and Gl-tract lumen (blue) in Atlantic halibut larvae. 3D models were
reconstructed from serial histological sections using Imaris software. Gl-tract lumen is represented by the inner layer (facing the lumen) of the Gl-tract. The
Gl-tract is seen from three angles; left, right, and dorsal side. Arrows indicate the anterior direction (mouth). Arrow heads point to position of sphincters (red:
pyloric sphincter; black: ileorectal sphincter). st presumptive stomach/stomach, mg midgut, hg hindgut.

stage 3 onwards (Figures 1 and 2). Pyloric caeca became
evident as projections from the most anterior part of the
midgut at stage 6 (Figures 1 and 2). The stomach was well-
differentiated at stage 10 and the gastric glands were visible
on histological sections (Additional file 1). The luminal vol-
ume of the Gl-tract increased during development, par-
ticularly in the two last stages analysed (stages 9A and 10)
(Figure 3, Table 1 and Additional file 2). The stomach vol-
ume from 9A to 10 increased from 415 to 4933 nl, respect-
ively and corresponded to an 11 fold increment (Table 1).
The liver was positioned under the foregut and an-
terior to the ascending loop of the midgut (Figure 1)
and its volume steadily increased during development
(Figure 3 and Table 1). The exocrine pancreas was ob-
served between the presumptive stomach and the an-
terior part of the midgut at stage 3 and it surrounded
this midgut area throughout ontogeny (Figure 1). In

the endocrine pancreas, a clearly distinguishable islet
of Langerhans was observed close to the gallbladder at
stage 3 (Figure 1). In contrast to the other digestive or-
gans, the increment in the normalized volume of endo-
crine and exocrine pancreas was low and negative,
respectively, between stages 9A and 10 (Figure 3 and
Table 1). The yolk-sac, positioned under the GI-tract
at stage 3, decreased in size after the initiation of ex-
ogenous feeding and a small vestige remained besides
the liver at stage 4 (6 days post first feeding, dpff).
The gallbladder was observed on the right-hand side
between the exocrine pancreas and the liver, and main-
tained this position in all the developmental stages
analysed (Figure 1). The pancreatic duct and the bile
duct opened next to each other into the lumen at the
median plane of the anterior midgut, just after the PS
(data not shown).
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Figure 3 Standardized volume increase of digestive organs
between stage (S) 3 to 10 of Atlantic halibut. The volume increase
was normalized to the overall mean of volume increase between stages
for each tissue (for detailed explanation, see Additional file 2).

Cloning and phylogenetic characterization of pepsinogen A2,
ghrelin, gastric proton pump subunits and Na*/K*-ATPase
subunit a

The complete coding sequence (CDS) of Atlantic halibut
pepsinogen A2 was 1128 bp and was submitted to Gen-
Bank under accession no. KF184647 (Additional file 3:
C). The amino acid (AA) sequence of pepsinogen is rela-
tively well-conserved among teleost fish and, as ex-
pected, more variable when compared to other
vertebrate pepsinogens. For instance, halibut pepsinogen
A2 shared respectively 88% and 64% AA sequence iden-
tity with winter flounder (Pseudopleuronectes ameri-
canus) pepsinogen A form IIb and Ila, but only 52% and
48% identity with homologues from Xenopus laevis and
human, respectively (data not shown).

The ¢cDNA fragments cloned for Atlantic halibut H'/
K"-ATPase a subunit (911 bp) and Na'/K*-ATPase a sub-
unit (714 bp) were deposited in GenBank with the acces-
sion numbers KF184648 and KF184650, respectively
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(Additional file 3: B, D). The CDS for H'/K*-ATPase 3
subunit of 874 bp was cloned and submitted to GenBank
with the accession no. KF184649 (Additional file 3: A).
Phylogenetic analysis of the o subunit of the gastric
proton pump and Na*/K"-ATPase, and vertebrate homo-
logues (Additional file 4) generated two major clades,
one corresponding to H"/K*-ATPase and the other to
Na'/K*-ATPase. Phylogenetic analysis of the B subunit
(Additional file 5) generated a tree with two major
clades that shared the same general topology as the
phylotree for the a subunit with the H"/K"-ATPase and
Na*/K"-ATPase clustered independently.

Atlantic halibut H"/K"-ATPase « subunit clustered most
closely with teleost homologues, with which it shared 94%
AA sequence identity, and increased to 98% identity with
winter flounder and Atlantic cod (Gadus morhua). Lower
AA sequence identity (72%) was found when Atlantic
halibut H*/K*-ATPase o subunit was compared to
Atlantic halibut Na*/K*-ATPase o subunit (70%) and
to other vertebrate counterparts (72%). The Atlantic
halibut Na'/K"-ATPase « subunit clustered with an
Antarctic eelpout (Pachycara brachycephalum) homo-
logue (98%) and shared approximately 88% AA identity
with other teleost gene homologues. H'/K'-ATPase f
subunit clustered as expected within the teleost clade
(overall identity about 80%) and shared rather low iden-
tity with its human homologue (50%). Atlantic halibut
H*/K*-ATPase B subunit did not share more than 39%
AA sequence identity with the Atlantic halibut Na*/
K"-ATPase f subunit.

Ontogenetic expression pattern and correlation analysis

The developmental expression profiles of pepsinogen
A2, H'/K*-ATPase a and f8 subunits, Na*/K"-ATPase a
subunit and ghrelin were analysed by qPCR in the GI-
tract of individual Atlantic halibut larvae (Figure 4).
The gene expression of both gastric proton pump sub-
units were significantly (p <0.05; adjusted R* 0.773)
correlated (Figure 5) and had parallel expression

Table 1 Gl-tract organ volume (nl) and surface area (10° pm?)

Stage 3 Stage 4 Stage 5 Stage 6 Stage 9A Stage 10
Gl-tract outer layer (nl) 15742 261.03 490.65 103848 2670.15 12855.10
Gl-tract outer layer (10° um?) 3.59 512 6.74 10.07 2053 6338
Gl-tract inner layer (nl) 7840 136.84 266.55 525.89 1034.10 6451.16
Gl-tract inner layer (10° um?) 283 4.73 9.60 16.34 5045 54.76
Gl-tract tissue volume® (nl) 79.02 124.19 22410 512.59 1636.05 6403.94
Liver (nl) 3524 48.82 98.18 22523 928.25 4232.77
Pancreas (nl) 1379 2142 3791 109.08 471.25 463.79
Islets of langerhans (nl) 0.50 046 0.57 1.05 533 11.73
Presumptive stomach (nl) 15.51 27.29 32.06 84.09 41454 493267

The values were calculated from the 3D models using Imaris MeasurementsPro.
?Gl-tract tissue volume = Gl-tract outer layer - Gl-tract inner layer.
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patterns, with a sharp and significant (p <0.05)
increase at climax and in post-metamorphic stages
(Figure 4). Pepsinogen A2 was significantly (p < 0.05)
correlated with the expression profile of the gastric
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proton pump o (adjusted R*: 0.9738) and B (adjusted
R% 0.7963) subunits (Figure 5). A significant (p < 0.05)
increase during stage 8 was observed for pepsinogen A2
and its expression peaked in the post-metamorphic
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Figure 4 Mean normalized expression patterns of the indicated mRNA transcripts of individual larvae (stage 5-10). Results for pepsinogen A2
precursor, gastric H'/K"™-ATPase subunit a and 8, Na*/K*"-ATPase subunit a and ghrelin mRNA transcripts are shown as mean + SEM of the normalized
expression (using the reference gene eEF1A1). Mean values with different letters are significantly different (One Way ANOVA, p < 0.05).
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stage. Ghrelin mRNA transcript abundance increased
gradually and significantly (p<0.05) during the procli-
max/climax of metamorphosis, and attained a maximum
in the post-metamorphic stage (Figure 4). Moreover,
ghrelin transcript abundance and proteolytic activity dur-
ing Gl-tract ontogeny were significantly correlated (p <
0.05; adjusted R* 0.9342, 0.8852, 0.9252 for pepsinogen
A2, gastric proton pump o and B subunits, respectively;
see Figure 5). Expression of Na'/K'-ATPase a subunit
mRNA was detected in all developmental stages, with sig-
nificantly (p < 0.05) more transcripts at stage 5.

Estimation of pH in the lumen of stomach and detection
of acid production

The pH assessment in the lumen of the stomach and mid-
gut/hindgut during post-embryonic development was
based on the colour observed after the injection of pH in-
dicator solutions (Figure 6 and Table 2). The pH in the
midgut/hindgut remained alkaline (above pH 8) in all the
developmental stages analysed (stage 5 to 9B). The pre-
sumptive stomach also had an alkaline pH with values
above 7.5 until stage 8. Gradual acidification was observed
in the stages corresponding to the climax of metamor-
phosis. Transition from an alkaline to an acidic pH in the
stomach lumen was evident at stage 9A, when the injected
sol CPR remained purple but the so/ mCP gave a yellow
coloration (pH6.5 — 7.5). The lumen of the stomach was
clearly in the acidic range (pH <3.5) at stage 9B, as re-
vealed by the yellow colour in the stomach following ad-
ministration of both CPR and BPB solutions.
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Analysis of Gl-tract motility

Spontaneous propagating contractions were observed in
the GI-tract at prometamorphosis (stage 6; 25 dpff) and
climax of metamorphosis (stage 9A/B; 49 dpff) (Figure 7).
Due to considerable individual variation, number and fre-
quency of contractions could not be grouped and are pre-
sented for each individual analysed (Table 3 and Additional
file 6). Two types of contractions were observed in the
midgut region 1 (mgl; after the PS, descending part of the
loop) and 2 (mg2): phasic and propagating waves (Add-
itional file 7). The propagating contractions observed in
mg2 were retrograde waves that originated in area “A” and
moved towards the mouth. However, in mgl most of the
propagating contractions originated just under the PS and
were anterograde waves that moved in an anal direction.
Motility activity in both midgut regions was detected at
stage 6 with a frequency ranging from 0.31 to 3.77 min™,
depending on the individual and type of contraction. At
stage 9, relatively few spontaneous contractions of short
duration were observed in the midgut. During the climax
of metamorphosis, contractions in the stomach were reg-
istered in all individuals, in contrast to stage 6 when motil-
ity in the presumptive stomach was only observed in one
larva. The rectal contraction (or defecation reflex) was a
mixture of retro- and anterograde contractions and were
observed in both stages 6 and 9 with similar frequencies
in most of the individuals analysed.

Discussion
In all altricial-gastric species, the GI-tract undergoes
dramatic remodelling during TH-driven metamorphosis.
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Figure 5 Linear regressions estimated from correlation analyses between stomach specific gene markers during Atlantic halibut ontogeny.
Linear regression models were fitted to log-transformed mean expression values (MNE) of A) gastric H'/K"-ATPase a subunit and B subunit; B) pepsinogen
A2 and H'/K"-ATPase 3 subunit (black squares and solid line) as well as H'/K*-ATPase a subunit (grey dots and dashed line); C) ghrelin and H'/K*-ATPase 3
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Stage 7

Stage 9A

Stage 9B

Figure 6 pH changes in the Gl-tract of Atlantic halibut larvae during development. Panel A: results of tube feeding pH indicator solutions into
larva from premetamorphosis (stage 5) to climax metamorphosis (stage 9A and 9B). pH so/ mCP contained 0.1% M-Cresol purple, sol CPR consisted of
0.1% Chlorphenol Red and pH sol BPB had 1% of Bromophenol blue. st: stomach/presumptive stomach; mg: midgut; hg: hindgut. Scale bar = 0.5 mm.
Panel B: standards immersed in water and photographed with similar light condition as larvae under the dissecting microscope.

sol mCP sol CPR sol BPB

The GI-tract changes from a simple tubular form into a
more complex folded structure. At the same time the
stomach becomes a distinct compartment and continues
to acquire its multiple functions through metamor-
phosis. There are surprisingly few studies examining
and integrating the anatomical and functional changes
in the GI-tract associated with this TH-driven event. In
amphibians such as Xenopus, it is well established that
THs induce GI-tract remodelling leading to intestinal
shortening and the development of crypts and villi

[35-37]. The remodelling of the Xenopus digestive tract
is a consequence of changes in TH regulated genes, in-
cluding somic hedgehog/bone morphogenetic protein-4
(Shh/BMP-4) and Tolloid/BMP-1 [38-40]. However, in
contrast to amphibians, few studies have linked GI-tract
remodelling with TH-driven metamorphosis in teleost
fish, in particular the pleuronectiformes. The present
study used a series of 3D models to reconstruct the
ontogeny of Atlantic halibut GI-tract morphology and
its volume changes during larval development. Using
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Table 2 pH changes in the Gl-tract of Atlantic halibut
larvae at different developmental stages

Stage Stomach Midgut/Hindgut
5 >75 >80
6 >7.5 >80
7 >7.5 >80
8 >75 >80
9A 65-75 >80
9B <35 >6.5

The presented pH values are based on visual observations of colour changes
after the administration of three pH indicator solutions.

molecular and functional analysis, the modification of
Gl-tract function from the premetamorphic stage 5 until
the end of metamorphosis (stage 10) was established.
Insight was obtained into the way in which post-embryonic
differentiation of the Gl-tract and the growth of a new
organ, the stomach, affects the function of the whole digest-
ive system. Moreover, the results can be extrapolated to
other altricial-gastric teleosts to further understand how
functional remodelling of the digestive system affects feed-
ing behaviour.

Our 3D models of the digestive organs showed a general
trend of volume increase during Atlantic halibut larvae
development. During metamorphic climax (stage 9), when
THs (T3 and T4) levels were high [41], the Atlantic hali-
but GI-tract tissue volume increased almost four fold, and
the stomach volume increased more than 11-fold. The
peak in THs in stage 9 Atlantic halibut coincided with max-
imal Gl-tract remodelling and the changes were reminis-
cent of what occurs in Xenopus (for review, see [2,8,42]). In
contrast to the Gl-tract and liver, the exocrine and endo-
crine pancreas appeared to have no growth or only a two
fold increase in size, respectively, between the two oldest
stages analysed (stage 9A to stage 10). A similar tendency
was observed for the pancreas in Atlantic cod during stom-
ach differentiation [43]. The authors hypothesized that this
trend may be related to the importance of the pancreatic
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digestive enzymes in early agastric stages, particularly tryp-
sin [44]. The similarity of the changes in the pancreas and
stomach of Atlantic halibut and cod gives credence to the
hypothesis, but experimental proof is still required.

The correlation between TH level increments and stom-
ach development during metamorphosis has previously
been documented for the pleuronectiformes, Japanese
flounder (Paralichthys olivaceus) and summer flounder
(Paralichthys dentatus) [18,45]. In these flatfish, the de-
velopment of the gastric glands started during pre-
metamorphosis, but pepsinogen was only detected after
metamorphosis. In Atlantic halibut, the gastric glands ap-
peared prior to the TH peak and pepsinogen transcripts
were detected before metamorphic climax [23]. However,
the results were dependent on the method used: with RT-
PCR pepsinogen A2 expression was observed at 80 dph
(stage 8) and with in situ hybridization (ISH) at 87 dph
(stage 9A). Murray et al. [23] suggested that pepsinogen
expression in Atlantic halibut can only occur when the
gastric glands are completely developed. In the present
study, pepsinogen transcripts were detected in Atlantic
halibut GI-tract before the metamorphic climax, suggest-
ing that the proteolytic capacity of the presumptive stom-
ach was triggered by the rise in THs at the start of
metamorphosis. Nonetheless, it remains to be demon-
strated that pepsinogen transcript abundance correlates
with proteolytic activity. Future studies discriminating be-
tween pepsinogen and pepsin activity will be needed to
clarify this issue.

Acid secretion in the stomach requires the gastric
H*/K*-ATPase, an a,p-heterodimeric enzyme, which ex-
changes a proton with potassium using energy from ATP
to generate HCl [46-48]. The a subunit of the enzyme
contains the catalytic site and the B subunit is required for
proper maturation and targeting of the enzyme to the ap-
ical membrane [48]. In the present study the expression of
a and P subunit transcripts of gastric H'/K"-ATPase were
synchronous and correlated, as previously reported in
mammalian stomach development (e.g. mouse: [49]). In

STAGE 6

1, mg2: midgut region 2; hg: hindgut; r: rectal area. Scale bar=1 mm.

|sTAGE "

Figure 7 Gl-tract motility in Atlantic halibut larvae at stage 6 and 9. Retrograde and anterograde wave movements (propagating
contractions) are indicated by a dashed line. These waves occur from area A to B; and from pyloric sphincter (represented by two red arrows*) to
area B and vice-versa. A and B represent the main areas where phasic contractions occur. st: stomach/presumptive stomach; mg1: midgut region
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Table 3 Gl-tract motility patterns - quantification
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Stomach Midgut 1 Midgut 2 Hindgut Rectal area
Propagating Phasic Propagating Phasic
Larva n Frequency n Frequency n Frequency n Frequency n Frequency n Frequency n Frequency
(min™) (min™) (min™) (min™) (min™) (min™) (min™)
1 - - 14 231 50 1.69 57 184 79 354 13 146 161 524
- 26 181 - 95 377 12 044 15 054 3 0.22
Stage 6
17 056 5 031 4 024 28 166 77 301 - - % 322
4% - - - - - - - - - - 43 225 25 169
1 11 237 - - - - - - - - 1 - 11 144
2 10 090 - - - - - - - - - - 041
Stage 9
3 4 044 - - - 9 383 - - - - 13 046
4 4 056 - - 3113 - - - - 12 1.2 24 081

Propagating and phasic contractions are stated for midgut 1 and midgut 2 regions. Frequency is the number of contractions registered (n) per min.
*Not possible to quantify phasic and propagating wave contractions. The affected Gl-tract segments were constantly (tonic) contracted during the whole

observation period (see Additional file 7).

Atlantic halibut the expression of pepsinogen A2 and both
gastric proton pump subunits were also correlated, and
similar observations have been made during larval devel-
opment of the winter flounder, red porgy (Pagrus pagrus)
and yellow catfish (Pelteobagrus fulvidraco), [19-21,50,51].
The synchronous expression of these genes was proposed
to be a physiological strategy to promote quick conversion
of pepsinogen into pepsin [52]. However, it remains to be
established if the mechanism for the release of both en-
zymes from the oxynticopeptic cells is the same or occurs
independently [22].

The identification of pepsinogen and gastric H'/K"-ATPase
transcripts or protein indicate the stomachs proteolytic
potential but not its actual activity. For this reason in
the present study, in vivo pH analysis was carried out
and revealed the increase in H'/K'-ATPase a and
subunit transcripts occurred simultaneously with in-
creasing acidic capacity in Atlantic halibut larvae during
the climax of metamorphosis (stage 9A and 9B), when
TH levels rise. From the first slight acidification ob-
served in the lumen of the stomach during stage 9A, the
lumen pH decreased below 3.5 in stage 9B. An increase
of HCI production capacity during larval development
has previously been reported in several other teleost
species [22,53-56]. However, the present study revealed
that there was co-ordination between morphological
changes and the key elements essential for the stomachs
proteolytic activity such as H'/K'-ATPase and HCl
production and the THs most likely orchestrate this
change. During the climax of metamorphosis, a rapid
colour change from acidic to alkaline was observed in the
midgut when the pH indicator solution passed through
the pyloric sphincter. Similar findings were reported for
seabass (Lates calcarifer: [54]) and Japanese flounder [53].
This observation in Atlantic halibut at metamorphic cli-
max suggests active secretion of HCO; into the midgut,

most likely via CI'/HCO; exchange in the apical mem-
brane of enterocytes [53,57-59], and also alkaline bile and
liver secretions. Future studies will be required to de-
termine whether THs trigger the events that lead to the
development of a functional stomach in other altricial-
gastric species as well.

Previous studies have shown that Atlantic halibut
ghrelin was predominantly expressed in the stomach
area but was also detected in pyloric caeca, immature
gonads and intestine [33,34]. In newly hatched yolk-sac
larvae, ghrelin protein was widely distributed in the
Gl-tract and was present in the anterior GI-tract before
the gastric glands and pepsinogen production appeared
[34]. In the present study ghrelin mRNA expression
levels greatly increased during stomach differentiation
in metamorphosis proclimax and climax. The significant
correlation between ghrelin mRNA expression and pep-
sinogen A2 and gastric proton pump subunit transcript
expression appears to confirm the link between ghrelin
and the acquisition of stomach proteolytic function. In-
triguingly, in weanling pigs the physiological role of
ghrelin in appetite stimulation has been correlated with
the initiation of the stomachs proteolytic activity [60]
and a similar association may also occur in halibut.

The presence of the pyloric sphincter from stage 3 on-
wards and its functional activity - to hold ingested food
in the stomach - were observed in the 3D models and
in the in vivo studies. This indicated a small storage
function that was already established in the Atlantic
halibut presumptive stomach during early developmen-
tal stages. Although before metamorphosis, this func-
tion was mainly assumed by the anterior midgut (mgl),
which has a bulb-like shape with a much larger volume.
The presence of a “physiological” sphincter (specific re-
gion with a strong muscular contracting activity in the
lower part of the midgut loop - area “A”) in the mgl of
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the GI-tract allowed it to assume a reservoir function or
at least to delay the chyme transit so that sufficient mix-
ing with bile and digestive enzymes from the pancreas
can occur. The lack of a fully developed stomach at stage 6
to mix the ingested food may be functionally compensated
by the strong peristaltic activity (anterograde/retrograde
contractions) observed in the mgl, which contributes to the
mechanical degradation of the ingested food. This supports
earlier notions in zebrafish (a stomachless species), propos-
ing that the retrograde contractions observed in the anterior
part of the midgut generate a similar mechanical mixing as
the stomach [27]. Considered in the context of a chemical
reactor [61] the Atlantic halibut GI-tract changed from a
plug-flow reactor (PFR) operating system, in which ingested
food flowed continuously through the intestine to a
continuous-flow stirred-tank reactor (CTSR), with food en-
tering and exiting continuously through the reaction vessel
(acid stomach). It will be insightful in the future to model
halibut GI-tract function during development in order to
identify when critical changes occur and the regulatory
processes that control them.

Conclusions

In conclusion, this study contributes to our understanding
of how TH-driven metamorphosis affects the morphology
and the function of the GI-tract. The remodelling of At-
lantic halibut GI-tract, specifically the stomach develop-
ment and volume growth, is linked to the surge of TH
levels during the climax of metamorphosis, and the mor-
phological modifications are connected with a set of func-
tional changes. We show that the proteolytic activity in
the stomach starts during the climax of metamorphosis
with the synchronized expression of pepsinogen A2 and
both gastric proton pump subunit transcripts. This en-
sures pepsinogen activation and creates the optimum pH
range for pepsin activity. Furthermore, we demonstrate
that stomach ghrelin, a key element for the gastric in-
volvement in appetite regulation, is correlated with the
emergence of proteolytic activity. The presumptive stom-
ach has a storage capacity in early development, however
the main storage function is assumed by the anterior part
of the midgut before metamorphic climax. During the
metamorphic climax the main short term storage capacity
shifts to the stomach, when its volume increases, and the
GI-tract motility patterns change with a decrease in con-
tractions of the midgut due to the functional development
of the stomach. Considering the generally conserved na-
ture of the post-embryonic modifications of the GI-tract
in altricial-gastric species, our results are likely a gen-
eral characteristic of teleost fish and potentially other
vertebrates. However, further research is required to
substantiate this general hypothesis and elucidate the
molecular mechanisms regulating the functional devel-
opment of the GI-tract.
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Methods

Larvae and sampling

The material for the present study came from different
batches of commercially produced Atlantic halibut larvae.
Larvae used for 3D modeling were the same as previously
described by Kamisaka et al. [62] except for the last devel-
opmental stage (stage 10), where complementary material
was sampled at Nordic Halibut (Askey, Norway). For all
other analysis, larvae were sampled at Sterling White Hali-
but AS (Marine harvest, Rorvik, Norway) during March
2012. Larvae were reared according to standard industrial
protocols, with light/dark cycles of 18:6 hours and water
temperature 11°C. Feeding with Artemia enriched with
commercial products took place twice a day (10:00 and
22:00) following standard rearing procedures [63].

Classification of developmental stage was based on
mytome height (MH) and standard length (SL), according
to a modified version of Seele et al. [64]. The following stages
were used in the functional studies: 5 - premetamorphic; 6
and 7 - prometamorphic; 8 - proclimax metamorphosis; 9A
and 9B - climax metamorphosis; and 10 - post-metamor-
phosis. For the morphological studies (3D models) two extra
stages were included, stage 3 and 4, based on morphological
classification criteria of Pittman et al. [25]. Larvae intended
for gene expression analysis were sampled 2 h after feeding
(12:00) and euthanized with a lethal dose of MS222 (Tri-
caine methanesulfonate, Sigma-Aldrich, St. Louis, USA).
Photos of each larva were taken in order to categorise
them into different developmental stages. The GI-tract
from each larva was dissected, rapidly transferred to
RNAlater (Life Technologies, Carlsbad, USA) and
stored at — 80°C. Atlantic halibut larvae used for in vivo
studies (pH and motility analysis) were staged based on
the photographs of living individuals.

To clone and study the expression profiles of pepsinogen,
H'/K*-ATPase a and B subunit, Na'/K"-ATPase subunit a
and ghrelin, Atlantic halibut juveniles (147.7 +15.1 g wet
weight; 234+ 1.1 cm total length; n =6) were sampled at
the Institute of Marine Research, Austevoll, Norway.
The fish were euthanized with a lethal dose of MS222.
The GI-tract was dissected into stomach, pyloric caeca,
midgut and hindgut and stored in RNAlater at — 80°C
until further analysis.

The experimental procedures and sampling protocols in
the study were approved by an ethical committee (No. 2679;
IMR Austevoll, Norway). All procedures were performed by
scientists licensed by the Norwegian Animal Research Au-
thority (NARA) to work on animals and under due consid-
eration of the NARA guidelines.

3D reconstruction of digestive organs

For reconstruction of the digestive organs, six high quality
preserved larvae were used for each stage studied (stages
3, 4, 5, 6, 9A and 10) and then the most representative
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larvae from each stage was used to construct the 3D
model. Detailed material information about the approach
taken is given in [62]. In summary, sampled larvae were
fixed in Bouin’s solution overnight, stored in 70% EtOH at
4°C, dehydrated and embedded in paraffin. Serial sections
were cut at 5 um thickness and counterstained with hema-
toxylin. For the oldest stage, halibut larvae were fixed in
4% paraformaldehyde, dehydrated through an ethanol
series and embedded in Technovit 7100 (Heraeus Kulzer
GmbH, Hanau, Germany). Semi-thin (2 pm) serial sec-
tions were stained with Toluidin blue.

Photographs were taken every fifth section (10 pm be-
tween used sections) using a Nikon Digital Sight DS-U1
camera mounted on a Zeiss Axioscope 2 Plus microscope.
The 3D reconstruction of the digestive system was per-
formed as described by Kamisaka and Rennestad [43]. In
brief, manually defined contour lines of the digestive organs
were made based on aligned images of serial sections, and
contour surfaces were calculated using the software Imaris
6.2.0. (Bitplane AG Zurich, Switzerland). After generating a
surface object, the same software (Imaris MeasurementPro)
automatically calculated a range of statistical parameters in-
cluding surface area and volume of the different organs.
The volume increase of the digestive organs between stages
was calculated and normalized to the overall mean of vol-
ume increase for each tissue (see Additional file 2).

Cloning of pepsinogen, ghrelin, Na*/K*-ATPase subunit

a and gastric proton pump subunits sequences

Total RNA was isolated from the GI-tract of juvenile
Atlantic halibut using TRI reagent (Sigma-Aldrich, St.
Louis, USA) according to the manufacturer’s instructions.
Samples were treated with TURBO DNA-free (Life-
Technologies, Austin, USA) to eliminate genomic DNA
contamination. Quality of DNase treated total RNA
was assessed using an Agilent 2100 Bioanalyzer (Agilent
Technologies). cDNA was synthesized from 2.0 pg of
DNase treated total RNA using oligo (dT) primer from
SuperScript III First-Strand Synthesis system for RT-
PCR kit (Invitrogen, Carlsbad, USA).

Transcript fragments of pepsinogen A2, ghrelin [Gen-
Bank: EF493849], gastric proton pump subunits and
Na*/K*-ATPase subunit a were amplified using gene
specific primers as listed in Table 4 designed with
Primer Premier 5 software (Premier Biosoft Int., Palo
Alto, USA). For pepsinogen A2 and H'/K'-ATPase B
subunit, a PCR homology-cloning approach was used
with primers designed in putative conserved N and C
terminus regions of the winter flounder [GenBank:
AF156788] and stickleback (Gasterosteus aculeatus,
[Ensembl: ENSGACT00000020259]) homologue genes,
respectively. The H'/K*-ATPase a subunit was cloned
taking a comparative homology approach using the winter
flounder homologue gene [GenBank: AF156789.1]. The
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Na*/K"-ATPase a subunit was cloned based on two
ESTs from Atlantic halibut [GenBank: EB031798 and
EB031117]. Amplifications were performed in a ther-
mocycler Gene Amp PCR system 2700 (Applied Biosys-
tems) using GoTaq DNA polymerase (Promega,
Madison, USA) according to the manufacturer’s in-
structions and using the following conditions: 95°C for
2 min; 30 cycles of 95°C for 30 s, 58°C for 30 s, 72°C
for 30 s; and a final step at 72°C for 5 min. Amplified
PCR products were resolved on a 1% agarose gel and
purified using E.Z.N.A. Gel Extraction Kit (Omega
bio-tek, Norcross, USA). Purified fragments were
cloned into the pGem-T easy vector system I (Pro-
mega, Madison, USA) and sequenced at the Univer-
sity of Bergen Sequencing Facility (Bergen, Norway).
Sequence identity was confirmed by BLASTx (http://
blast.ncbi.nlm.nih.gov/Blast.cgi) analysis against the
GenBank database.

Sequence comparisons and phylogenetic analysis
Multiple sequence alignments of H*/K*-ATPase subunit
a and B and Na*/K"-ATPase subunit « protein sequence
were performed with ClustalX (Gonnet 250 series
matrix, Gap opening penalty 10, Gap extension 0.2) [65].
Alignments were displayed in GeneDoc (http://www.
nrbsc.org/gfx/genedoc/) and percentage of sequence
identity and similarity calculated. Phylogenetic analyses
were performed using the Maximum Likelihood method
[66] with 1000 bootstrap replicates [67], using MEGA
5.2 software [68].

Quantitative real-time PCR assays
Total RNA was isolated from the GI-tract of the larvae
at each developmental stage and cDNA synthesized
as described above. For expression pattern analysis,
specific primers were designed for the target genes
(Table 4) and the target amplified using a Bio-Rad
CEX96™ Real-Time System. The gene eEF1AI (Elong-
ation factor 1 alpha, [GenBank: EU561357]) was used
as the internal reference gene [69]. Relative gene quan-
tification was performed using the mean normalized
expression (MNE) method of the Q-Gene application
[70,71]. Assay efficiency was determined using a 10-
fold ¢cDNA pool dilution curve ranging from 200 to
0.02 ng. Reactions for each sample were performed in
duplicated using the following PCR conditions: 95°C
for 3 min; 45 cycles of 95°C for 30 sec, 58°C for 30 sec
and 72°C for 30 sec. Melting curve analysis over a range of
45-95°C (increment of 0.5°C for 4 sec) allowed the detection
of nonspecific products and/or primer dimers.

The mRNA expression levels are presented as the mean
+ SEM (n = 6). Data was log-transformed to achieve nor-
mal distribution. Statistical significance of relative gene
expression between groups was analysed by one-way
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Table 4 Sequence of the specific primers used for cloning and qPCR gene expression analysis

Cloning For quantitative PCR
Gene Primer Sequence (5'— 3) Primer Sequence (5'— 3')
Pepsinogen A2

PepA2-F ATGAAGTGGCTCGTTGTTCTCT PepA2-qF TACGATGCCAACCACTTCA

PepA2-R TTACACGGACTTGGCCAGACCAATG PepA2-gR GATGGGCCAGCGATCAGGGAG
H'/K*-ATPase a subunit

HKA-F GTCTGGACTGTGCTTTGCT HKA-gF AGCCAATGTTGGCATCATCTCA

HKA-R CGCACAACAGCGGGAACCAG HKA-gR CGTCATCCAACTCCTCACT
H*/K*-ATPase B subunit

HKB-F ATGGCCGCCTTGAAGGAGAA HKB-qF GGAGAAGAGGACCTGTGG

HKB-R TTATTTCACTGCTTTCAGGGAA HKB-gR AGAACGCCAAGTAATACAA
Ghrelin

Ghr-F TTAACACTCTATGTCCCTTCATCA Ghr-gF GGCTGCTGGTTGTTCTACTCTG

Ghr-R GTCAGTTGATGCTTTATTTTTACCACC Ghr-gR TCCTCGGTGGGTTGATTCTG
Na*/K*-ATPase a subunit

NaKA-F CTGAAGGCAACGAGACTGT NaKA-gF CTGAAGGCAACGAGACTGT

NaKA-R GGATGACGAAATATGTGAAGAA NaKA-gR CGAGGTTCTGGCGAAGACGAT
Elongation factor 1 alpha

EF-gF CGAGAAGTTCGAGAAGGAAGCT
EF-oR ACCCAGGCGTACTTGAAGGA

ANOVA when the data-set had a normal distribution.
One-way ANOVA followed by a Student-Newman-Keuls
(SNK) multiple range test was applied when data failed
the normality test. SigmaStat v.3.1 (Systat software, Inc.,
USA) was used for the statistical analysis.

Correlation analysis were performed between: A) H'/
K"-ATPase a subunit versus B subunit; B) pepsinogen A2
versus gastric H'/K*-ATPase a and f subunits; C) ghrelin
versus pepsinogen A2 and gastric H'/K"™-ATPase a and S
subunits. Assuming that the relationship is linear, a linear
model (Im) [72,73] was applied to the mean of the log-
transformed MNE of the transcripts through development
(stage 5 to 10). Plot graphs were constructed based on the
linear model results. The correlation analysis were con-
ducted in R [74].

Assessment of pH in the stomach lumen and detection of
acid production

The pH in the lumen of the GI-tract was determined with
an in vivo method where pH indicator solutions (from al-
kaline to acidic ranges) were administered by tube feeding
[53]. The in vivo set-up comprised a stereo dissecting
microscope with a Leica DFC295 camera and a microma-
nipulator. A nanoliter injector (World Precision Instru-
ments) with a plastic capillary tube (O.D. 0.19 mm,
Sigma-Aldrich, St. Louis, USA) was fastened to the micro-
manipulator. The larvae were anaesthetized (MS-222; ran-
ging from 3 to 100 pg/ml final concentration) and placed

on a microscope slide in a droplet of clean seawater. The
correct position of the larvae for injection was assured by
the water surface tension. The capillary tube was gently
passed through the mouth and esophagus into the pre-
sumptive stomach/stomach area and one of three pH indi-
cator solutions was injected into a total of 3 larvae at each
developmental stage (Figure 6). The first solution (so/ mCP)
consisted of 0.1% m-Cresol purple (Sigma-Aldrich, St. Louis,
USA) in sea water (pH range 7.5-9.5). The second solution
(sol CPR) contained 0.1% of Chlorophenol Red (Sigma-Al-
drich, St. Louis, USA) in sea water (pH range 6-9.5) and the
third (so/ BPB) was 1% Bromophenol Blue (Sigma-Aldrich,
St. Louis, USA) in sea water (pH range 3.0-4.6). The colour
of the intestinal fluid was then compared to a set of solu-
tions mCP, CPR and BPB standards prepared in pH buffers
from pH 2.0 to pH 9.0 in steps of 0.5. The standards were
inside sealed glass capillaries and immersed in sea water
with the same light and temperature conditions as the larvae
under the dissecting microscope. All experimental fish were
euthanized with an overdose of MS222 after treatment. The
work with Atlantic halibut larvae was conducted in a cold
room to ensure a constant temperature.

Motion analysis of Gl-tract motility

Analysis of the GI-tract motility pattern in halibut larvae
was based on in vivo video recordings, using a Leica
DFC295 camera connected to a stereo dissecting micro-
scope. Video sequences were recorded from four larvae
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with a full or partially full GI-tract at two different devel-
opmental stages: stage 6 - prometamorphic and stage 9 -
climax metamorphosis. The animals were anaesthetized
and maintained immersed in seawater on a microscopic
slide and captured on video for 30 min. From the video re-
cordings, still images were captured for analysis and iden-
tification of the different motility patterns. The GI-tract
movements were quantified using Etholog 2.2 software
[75]. The number and frequency (number of contractions
min ") of phasic and propagating wave contractions in two
different regions of the midgut were determined. The fre-
quency and number of contractions in the presumptive
stomach/stomach area, hindgut and in the rectal area
were also quantified.

Availability of supporting data

All supporting data are included in the Additional files. In
addition, nucleotide sequences have been deposited in Gen-
Bank under the accession numbers: KF184647 (pepsinogen
A2); KF184648 (H'/K*'-ATPase a subunit); KF184650
(Na*/K*"-ATPase a subunit); KF184649 (H*/K*-ATPase
[ subunit) and the alignments for the phylogenetic tree
construction are available in TreeBase: http://purl.org/
phylo/treebase/phylows/study/TB2:515435.

Additional files

Additional file 1: Stomach histology of Atlantic halibut juvenile at
stage 10 (65 dpff). es: esophagus, gg: gastric gland, hg: hindgut, Ii: liver,
mg: midgut, pc: pyloric caeca, ps: pyloric sphincter, st: stomach.

Additional file 2: Digestive organ volume increase between stages
and normalization to the overall mean of volume increase.

Additional file 3: Nucleotide and deduced amino acid sequences of
Atlantic halibut H*/K*-ATPase B subunit (A); H*/K'-ATPase a subunit
(B); Pepsinogen A2 (C) and Na*/K*-ATPase a subunit (D). Numbers
on the right refer to the positions of nucleotides (upper row) and amino
acids (lower row). White and grey boxes indicate primer regions for gPCR
analysis and cloning, respectively. Predicted intron/exon borders are
represented with black triangles. In (C) the pro-segment is underlined with the
signal peptide preceding it. Cysteine residues involved in disulfide bonds (C),
the putative active site Asp (D) in (C) and regions containing N-glycosylation
sites (N) in (A) are indicated. The amino acids involved in metal (magnesium)
binding are marked with a white circle.

Additional file 4: Evolutionary analysis of H*/K*-ATPase and
Na*/K*-ATPase a subunit among vertebrates using the Maximum
Likelihood method based on the JTT matrix-based model (1000
bootstrap replicates) with MEGA5.2 software. The tree with the highest
log likelihood (—1943.1218) is shown. The scale bar indicates the substitution
rate per residue. NCBI or Ensembl sequence accession numbers are shown
after the common species name.

Additional file 5: Evolutionary analysis of H*/K*-ATPase and
Na*/K*-ATPase B subunit precursor among vertebrates using the
Maximum Likelihood method (1000 bootstraps replicates, JTT
matrix-based model) with MEGAS5.2 software. The tree with the highest
log likelihood (=5184.5314) is shown. The scale bar indicates the substitution
rate per residue. NCBI or Ensembl sequence accession numbers are shown
after the common specie name.

Additional file 6: Still images extracted every 10 sec for a total
period of 30 seconds from video records, illustrating the constant
contraction state of Atlantic halibut larva 4, stage 6 (see Table 3).
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The red arrow indicates the point of muscle contraction in midgut region
1 (mg1) and the white arrow in midgut region 2 (mg2).

Additional file 7: Still images extracted from video records
illustrating the different motility patterns in the stomach (A);
midgut region 1 (B); midgut region 2 and hindgut (C) of Atlantic
halibut larvae. The arrows indicate the point of muscle contraction. For
propagating waves, the first point of contraction is marked in all pictures
by a dashed line to follow the wave movement.
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