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Abstract
•	 Metagenomics – shotgun sequencing of all DNA fragments from a community 
DNA extract –  is routinely used to describe the composition, structure, and 
function of microorganism communities. Advances in DNA sequencing and the 
availability of genome databases increasingly allow the use of shotgun metagen-
omics on eukaryotic communities. Metagenomics offers major advances in 
the recovery of biomass relationships in a sample, in comparison to taxonomic 
marker gene-based approaches (metabarcoding). However, little is known about 
the factors which influence metagenomics data from eukaryotic communities, 
such as differences among organism groups, the properties of reference ge-
nomes, and genome assemblies.

•	 We evaluated how shotgun metagenomics records composition and biomass 
in artificial soil invertebrate communities at different sequencing efforts. We 
generated mock communities of controlled biomass ratios from 28 species from 
all major soil mesofauna groups: mites, springtails, nematodes, tardigrades, and 
potworms. We shotgun sequenced these communities and taxonomically as-
signed them with a database of over 270 soil invertebrate genomes.

•	 We recovered over 95% of the species, and observed relatively high false-
positive detection rates. We found strong differences in reads assigned to dif-
ferent taxa, with some groups (e.g., springtails) consistently attracting more hits 
than others (e.g., enchytraeids). Original biomass could be predicted from read 
counts after considering these taxon-specific differences. Species with larger 
genomes, and with more complete assemblies, consistently attracted more 
reads than species with smaller genomes. The GC content of the genome as-
semblies had no effect on the biomass–read relationships. Results were similar 
among different sequencing efforts.

•	 The results show considerable differences in taxon recovery and taxon speci-
ficity of biomass recovery from metagenomic sequence data. The properties 
of reference genomes and genome assemblies also influence biomass recovery, 
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1  |  INTRODUC TION

Biodiversity research, and particularly the investigation of hard-
to-observe ecological communities, increasingly relies on DNA- 
and RNA-based tools such as metabarcoding (Taberlet et al., 
2018), metagenomics (Arribas et al., 2020), or metatranscriptom-
ics (Cristescu, 2019). There are several preconditions to the use 
of these tools for generating datasets on ecological community 
composition: nucleotide sequence databases must exist (Hebert 
et al., 2003; Margaryan et al., 2021) with curated taxonomic links 
(Schenk et al., 2017) for taxonomic identification of DNA or RNA 
sequences. Laboratory experimental designs must also be robust, 
with excellent guidance already existing (Zinger et al., 2019). 
However, if preconditions are met, molecular tools can provide 
data on the composition and structure of ecological communities, 
even if they are made up of very small, diverse, and difficult to 
identify species.

Molecular tools to monitor communities can be time and cost 
efficient when compared to conventional, observation-based 
studies, where species are morphologically identified and counted 
to document abundances (Serrana et al., 2019). This is especially 
the case when observed communities are species rich, and when 
many community samples need to be processed simultaneously 
(Bálint et al., 2018). This needs expertise on certain taxonomic 
groups, which makes it difficult for one researcher to acquire com-
position data. Molecular tools overcome this issue as whole com-
munities, containing various taxonomic groups, can be identified 
at once, in many samples run in parallel (e.g., Zinger et al., 2019). 
There are two main approaches to the molecular biomonitoring of 
communities: metabarcoding and metagenomics. Metabarcoding 
uses high-throughput sequences of taxonomic marker genes (“bar-
codes”) which are PCR amplified from a community DNA extract. 
Metabarcoding is becoming a standard tool in biodiversity research 
(Bálint et al., 2018; Bohmann et al., 2021; Compson et al., 2020; 
Creer et al., 2016; Jarman et al., 2018; Lindahl et al., 2013; Taberlet 
et al., 2012). Its use is supported by several years of research in 

distinct organism groups (Taberlet et al., 2018), and the availability 
of barcode databases (Hebert et al., 2003; Nilsson et al., 2019). 
However, metabarcoding has an important long-known drawback: 
it relies on the amplification of a marker gene (Taberlet et al., 
2012). This can result in biases in species recovery from the result-
ing sequence data: several species might be completely missed as 
false negatives if metabarcoding PCR primers poorly match bind-
ing sites in their genomes in a phenomenon known as PCR bias 
(Zinger et al., 2019). Sometimes PCR bias is not sufficiently strong 
to completely miss species, but primer mismatch still causes a less 
efficient amplification compared to other species, resulting in dis-
tortions of the original biomass–sequencing read relationships for 
certain taxa (Piñol et al., 2019). However, the amplification step 
solves two important issues: one can effectively target the taxo-
nomic groups of interest (e.g., insects) and avoid others (e.g., mi-
croorganisms), and small or rare organisms with low amounts of 
DNA can still be recorded. Metagenomics randomly sequences all 
DNA fragments from a community DNA extract, generally without 
enrichment of certain parts of the genome. It is more quantitative 
than metabarcoding, since it skips the potentially biased PCR am-
plification step of taxonomic marker genes (Bista et al., 2018), and 
consequently, may provide more detailed insights into the biomass 
ratios of different species (Peel et al., 2019). Biomass ratios are 
important for ecological studies as the importance of species in 
a community is often directly related to its abundance or biomass 
(Naeem et al., 2009). Biomonitoring schemes frequently rely on 
indices of environmental quality which are computed from species 
identities, and abundance or biomass ratios (Bennion & Battarbee, 
2000/60/EC of the European Parliament and of the Council of 
23 October 2000). However, metabarcoding can provide limited 
information on this given biases caused by the PCR step (Aird 
et al., 2011), and currently this limits its use in applied biomoni-
toring (Hering et al., 2018). In metagenomics, a random selection 
of DNA fragments is sequenced from the DNA extracts, resulting 
in a less biased representation of the community in the sequence 
data. The omission of the PCR step makes metagenomics lab work 

and they should be considered in metagenomic studies of eukaryotes. We show 
that low- and high-sequencing efforts yield similar results, suggesting high cost-
efficiency of metagenomics for eukaryotic communities. We provide a brief 
roadmap for investigating factors which influence metagenomics-based eukary-
otic community reconstructions. Understanding these factors is timely as ac-
cessibility of DNA sequencing and momentum for reference genomes projects 
show a future where the taxonomic assignment of DNA from any community 
sample becomes a reality.
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conceptually and technically simpler. From metagenomic studies of 
microbial mock communities we know that several factors, such as 
taxonomic identity (Schiebelhut et al., 2017) or the genome prop-
erties of involved species (Beszteri et al., 2010), have an impact 
on biomass representation through metagenomic reads. However, 
these effects are so far not investigated in metagenomics stud-
ies of eukaryotes, at least to our best knowledge. The taxonomic 
assignment of metagenomic sequences needs genome databases, 
and consequently, metagenomics is more frequently applied on 
microbial communities, where more complete genomic resources 
are available (Parks et al., 2020). There are several approaches to 
circumvent this limitation, from mitogenomes (Arribas et al., 2020) 
to shallow genome sequencing (Bohmann et al., 2020). As genome 
sequencing technologies mature, the generation of reference 
genomes for all eukaryotes receives increasing attention (Lewin 
et al., 2018). However, the technical issues affecting metagenom-
ics, such as species identification success, read–biomass relation-
ships, the effects of different DNA extraction techniques, and the 
effects of reference genome properties used for taxonomic identi-
fication of metagenomic reads are much less investigated than is-
sues affecting metabarcoding, at least for eukaryotes. Approaches 
to metagenomic read classification need also be evaluated for eu-
karyotes, since there are several algorithms available, and these 
algorithms can be adjusted to allow for more or less base dissim-
ilarities among query and database sequences (Altschul et al., 
1990; Wood et al., 2019).

Soil invertebrate communities are diverse, with high numbers 
and often high biomass of taxa (FAO, 2020). Most soil invertebrate 
species are very small, with body lengths below 1 mm (Orgiazzi 
et al., 2016). Despite their small size, invertebrates are import-
ant for soil health (Kibblewhite et al., 2008), and high biomass 
species strongly contribute to soil functioning (van den Hoogen 
et al., 2019). However, ecological work and biomonitoring of 
these communities are difficult: taxonomic identification needs 
very specialized expertise (Lehmitz & Decker, 2017). This makes 
morphology-based identification efforts unfeasible for the large 
sample numbers needed by most community ecology and biomon-
itoring efforts. The increasing availability of reference genomes 
(Lewin et al., 2022) makes metagenomics a promising approach 
to describe and monitor community composition and species 
biomass ratios of soil invertebrates. Here, we evaluate the per-
formance of metagenomics in species identification in artificially 
composed (mock) communities of soil invertebrates. We also eval-
uate how well metagenomics reflects biomass ratios of species. 
We use a large collection of soil invertebrate genomes to taxo-
nomically assign metagenomic reads. We investigate the effects 
of metagenomic classification thresholds on correct and false 
identification. We evaluate the relationship between biomass and 
reads, and how this relationship is influenced by taxonomy and by 
the properties of the genome assemblies used for taxonomic as-
signments. Finally, we evaluate how different sequencing efforts 
influence metagenomics results, as this strongly influences the 
economics of eukaryotic metagenome sequencing.

2  |  MATERIAL AND METHODS

2.1  |  Mock community construction

We constructed mock communities from 28 soil invertebrate spe-
cies from six major taxonomic groups at the Senckenberg Museum 
of Natural History Görlitz. Specimens were either freshly collected 
and stored in 96% undenatured ethanol (Collembola, Gamasida, and 
Oribatida), or they came from breeding cultures (Enchytraeidae, 
Nematoda, and Tardigrada). Mock communities were composed 
from individual animals and animal fragments (and not from DNA 
extracts). These individuals/fragments were placed into single test 
tubes per mock community to create bulk community samples. Four 
different mock types were designed (Figure 1a, Table 1). We varied 
the total body volume (the sum of body volumes of all individuals 
of a species) across the four mock communities, meaning the total 
volume as well as species volumes differ in all four set-ups. The 
mocks contained species with very small body volumes (Nematoda, 
Tardigrada) and larger species (Collembola, Gamasida, and Oribatida). 
Enchytraeidae represent the largest taxon in this study (Table 1). We 
used body volume as a proxy of biomass, and refer to it as biomass 
throughout the text. In the first mock, all species were represented 
with equal biomass. In the second mock, each of the small species 
had two to five times more biomass compared to any large species. 
In the third mock, a part of small species (7 of 11) had larger biomass 
(two to four times than any large species). In the fourth mock, most 
small species had more biomass than large species, but some large 
species also had high biomass. All four mock types were replicated 
three times: we attempted to reproduce the same biomass ratios 
among the species. This altogether gave us 12 mock communities.

We used different formulas for body volume approximation. 
For Collembola, we estimated body volumes as ellipsoid volumes 
(V (µm³) = 1.33 × π × a × b × c × 10−6, where a, b, and c are axis 
lengths in µm). For Oribatida, Gamasida, and Enchytraeidae, we esti-
mated body volumes as cylinder volumes (V (µm³) = π × L × r2 × 10−6, 
where L is height and r is radius); for Tardigrada, V (µm³) = L × d2 × 
0.785 × 10−6 (Hallas & Yeates, 1972); and for Nematoda, V (µm³) = 
L × d2 × 0.577 × 10−6 was used (Andrássy, 1956). We measured the 
sizes of all tardigrade, enchytraeid, springtail, and mite specimens 
and 20 nematode specimens used in the mock community construc-
tion to obtain average body size measures. We then combined suffi-
cient numbers of specimens, considering variation in individual sizes 
to achieve the biomass ratio desired in the experimental design of 
the mock communities (Figure 1a).

We used the tardigrade culture Paramacrobiotus richtersi (Murray, 
1911) strain Hohberg-99 and the following cultures of nematodes: 
Acrobeloides nanus (de Man, 1880) strain Hohberg-99, Panagrolaimus 
detritophagus Fuchs, 1930, strain Hohberg-07, Panagrellus redivivus 
(Linnaeus, 1767) strain König-18, and Poikilolaimus oxycerca (de Man, 
1895) strain Hohberg-01. Thousands of nematode specimens were 
extracted through sieves and milk filters from the culture plates into 
tap water. Nematode numbers and mean body volumes within the 
four stock solutions were then calculated by counting individuals of 
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aliquots and measuring body length and width of 20 specimens per 
aliquot. After counting, we evaporated the water from each stock 
solution and added 96% ethanol. As enchytraeids are large compared 
to the other invertebrates, we used only body fragments, cutting off 
parts after measuring the lengths of the specimens. Tardigrades, col-
lembolans, and mites were individually counted into the mock com-
munities. In order to achieve the needed biomass of the respective 
mock type, differently sized individuals (adults and juveniles) were 
used. All mock community samples were stored in 2-ml Eppendorf 
tubes in 96% undenatured ethanol at −20°C until sequencing.

2.2  |  Laboratory work and sequencing

We used the 12 bulk mock communities containing individuals/frag-
ments of individuals of the 28  species for DNA extractions (four 
biomass ratios, each replicated three times, Table 1, Figure 1a). 
Before performing the DNA extraction, ethanol was evaporated 
in a SpeedVac Concentrator Plus (Eppendorf) to avoid losing indi-
viduals/fragments. This is especially important for potentially float-
ing Nematoda and Tardigrada specimens. DNA was extracted with 
DNeasy Blood and Tissue kit (Qiagen). DNA was extracted from bulk 

samples. Species and specimens were mixed into mock communities 
prior to lysis and extraction. Replicates were extracted separately. 
We included a negative control into the extractions to investigate 
possible cross-sample contamination. This negative control was an 
extraction blank without tissue. We followed the Qiagen protocol 
except a few modifications. We crushed specimens with pistilles in 
1.5-ml Eppendorf tubes. Before homogenizing (crushing) the tissue, 
we immediately added 30 µl ATL lysis buffer to inhibit the DNAse ac-
tivity. Subsequently, 150 µl ATL lysis buffer and 20 µl protein kinase K 
were added. After vortexing and incubating (~3 h, 56°C), 20 µl RNase 
was added. The samples were then incubated overnight (37°C). We 
eluted with 50 µl AE buffer. Each resulting extract represents one 
replicate of the mock communities. DNA concentration was meas-
ured on NanoDrop (Thermo Fisher Scientific) and Qubit™ with the 
dsDNA BR Assay kit (Thermo Fisher Scientific). We used both tools 
to double check concentration measurements. Fragment length was 
checked on TapeStation 2200 (Agilent Technologies). Libraries were 
prepared with the NEB Next® Ultra™ DNA Library Prep kit (New 
England Biolabs, Ipswich MA, USA) and sequenced on an Illumina 
NovoSeq 6000 PE150 platform at Novogene. Sequencing depth was 
20 gigabase per mock community, and 1 gigabase for the negative 
control (2 × 150 bp, paired-end).

F I G U R E  1 (a) Ratios of species biomass and sequencing reads assigned to these species in the four mock communities types. (b) GLM-
predicted effects of biomass, genome completeness, genome size, and repeat content on taxonomically assigned metagenomic reads. 
(c) Relative importance of GLM predictor variables
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2.3  |  Bioinformatics and data processing

Sequences were trimmed and quality checked with Autotrim 
v0.6.1 (Waldvogel et al., 2018). Autotrim relies on Trimmomatic 
(Bolger et al., 2014), FastQC (Andrews, 2017/2021), and MultiQC 

(Ewels et al., 2016). It removes Illumina sequencing adapters, per-
forms a quality control of the reads, and combines all information 
into a single report. Taxonomic classification was performed with 
Kraken2 v2.0.8 (Wood et al., 2019) against a designated soil inver-
tebrate genome database (GenBank Bioproject PRJNA758215). 

TA B L E  1 Composition of mock communities. For species where different developmental stages were available, individuals of different 
sizes were used to achieve the necessary biomass [adults + juveniles, e.g., Paramacrobiotus richtersi in mock 1: 4 + 1]. Mock 1: all species 
have equal biomass; mock 2: small species have higher biomass; mock 3: some, but not all small species have higher biomass than large 
species; mock 4: some small and some large species both have higher biomass than other small and large species

Taxon
Mean body 
length (µm)

Body volume 
(10−6 µm3)

Number of individuals

Mock 1 Mock 2 Mock 3 Mock 4

Tardigrada

Paramacrobiotus richtersi (Murray, 1911) 700 12.1 4+1 9 0+9 2+5

Nematoda

Acrobeloides nanus (de Man, 1880) 340 0.15 355 1775 1420 710

Panagrolaimus detritophagus (Fuchs, 1930) 380 0.10 521 1562 1562 521

Panagrellus redivivus (Linnaeus, 1767) 620 0.28 190 570 380 190

Poikilolaimus oxycerca (de Man, 1895) 930 0.98 54 162 54 162

Collembola

Sphaeridia pumilis (Krausbauer, 1898) 300 5.7 9 9 37 9

Proisotoma minuta (Tullberg, 1871) 880 11.0 5 4 5 5

Podura aquatica (Linnaeus, 1758) 560 13.9 4 12 8 8

Desoria trispinata (MacGillivray, 1896) 1090 17.3 3 6 6 6

Isotomurus plumosus (Bagnall, 1940) 1250 31.0 2 2 2 2

Deuterosminthurus bicinctus (Koch, 1840) 730 36.1 1+1 1+1 1+1 1+1

Sinella curviseta (Brook, 1882) 1090 44.1 1 1 4 4

Folsomia fimetaria (Linnaeus, 1758) 1400 53.2 1 1 2 3

Oribatida

Tectocepheus velatus (Michael, 1880) 240 4.8 11 33 11 22

Minunthozetes semirufus (C. L. Koch, 1841) 280 5.6 9 28 19 10

Pantelozetes paolii (Oudemans, 1913) 340 12.9 4 12 4 8

Zygoribatula exilis (Nicolet, 1855) 360 13.7 4 12 8 12

Chamobates voigtsi (Oudemans, 1902) 300 15.9 3 3 7 3

Atropacarus striculus (C. L. Koch, 1835) 440 27.1 2 2 2 2

Liebstadia similis (Michael, 1888) 470 35.5 2 1 5 3

Eupelops occultus (C. L. Koch, 1835) 410 46.5 1 1 1 3

Oribatella quadricornuta (Michael, 1880) 560 50.8 1 1 2 2

Gamasida

Gaeolaelaps aculeifer (Canestrini, 1883) 700 22.0 2+1 5 2+1 5+6

Enchytraeidae

Enchytraeus bulbosus (Nielsen & 
Christensen, 1963)

4000 Fragments

Enchytraeus albidus (Henle, 1837) 2500

Enchytraeus luxuriosus (Schmelz & Collado, 
1999)

10500

Enchytraeus bigeminus (Nielsen & 
Christensen, 1963)

6500

Enchytraeus crypticus (Westheide & Graefe, 
1992)

7500
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This database contains short-read assemblies of over 270 species 
(FigShare doi: https://doi.org/10.6084/m9.figsh​are.19657​647.v2, 
Table S1), including all species used for the mock communities. 
Before conducting metagenomic classification, the reference ge-
nomes were used to build a Kraken2 database with the default k-
mer size (k = 35). Taxonomic identification of reads was performed 
on 21 classification thresholds (between 0.0 and 1.0, at 0.05 incre-
ments). At each classification threshold, we accounted for possible 
contamination by extracting the hits of each taxon found in the 
negative control from the hits of that taxon in every mock com-
munity. We plotted correctly identified taxa, false negatives, and 
false positives against the Kraken2  classification threshold, and 
selected the best performing assignments for further analysis. 
The extraction negative control was additionally identified with 
the most current NCBI nt database via Kraken2 (download: March 
24th, 2022) to analyze if other taxa than invertebrates are present. 
The result was visualized with KronaTools v2.7.1 (Marbl/Krona, 
2015/2022).

2.4  |  Data analysis

Data analysis was conducted with R v3.6.1 in RStudio (v1.2.1335), 
with data formatted with tidyverse (Wickham et al., 2019). Graphs 
and plots were generated by using the package ggplot2 (Wickham, 
2016). Unclassified reads, and classified reads representing <0.01% 
of the sample were removed from data. We evaluated false nega-
tives and false positives at all 21 Kraken2 classification thresholds 
(FigShare doi: https://doi.org/10.6084/m9.figsh​are.19657​647.v2).

We predicted read abundances with the total number of se-
quences obtained for each mock library with a generalized linear 
model. Initial independent variables were sequencing success, 
taxon group (Collembola, Enchytraeidae, Nematoda, Oribatida, 
Gamasida, and Tardigrada), mock species biomasses, genome com-
pleteness (measured recovered complete Benchmarking Universal 
Single-Copy Orthologs, complete BUSCOs (Simão et al., 2015)), GC 
content, genome sizes, and repeat content. We estimated genome 
sizes with ModEst, a new method, which performs very well in 
comparison with flow cytometry measurements (Pfenninger et al., 
2021). We estimated the repeat content of genomes with species-
specific repeat libraries which were constructed using an automated 
RepeatModeler 2.0.1 pipeline with LTR Structural discovery pipeline 
activated (Flynn et al., 2020). For each genome, the resulting repeat 
libraries were merged with the RepBase 26.05 Arthropoda-specific 
section (Bao et al., 2015) and subsequently used for the annota-
tion of repetitive elements with RepeatMasker 4.1.2-P1 (Smit et al., 
2015). First, we performed a combinatorial model selection with 
MuMIn (Burnham & Anderson, 2003). The best performing model 
based on quasi-AIC scores can be written up as hits ~ biomass + 
taxon_group + missing_buscos + genome_size + repeat_content. 
The final model was fitted with quasi-Poisson distribution to account 
for overdispersion. All predictors were scaled. Genome sizes were 
log-normalized before scaling. We evaluated the relative importance 

of the predictors by calculating model-specific variable importance 
scores in the R package vip (Greenwell & Boehmke, 2020).

We evaluated the correspondence between community com-
position captured by metagenomic reads and original biomass com-
position with redundancy analyses in vegan (Oksanen et al., 2019). 
We tested metagenomic hit model statistical significance with an 
ANOVA-like permutation test for redundancy analysis (Legendre & 
Legendre, 2012).

We re-run read taxonomic identification after subsampling 
raw sequences to 100,000, 500,000, 1,000,000, 5,000,000, and 
10,000,000 reads with seqtk (Li, 2012/2022). We compared results 
of data analysis done with the complete number of reads with results 
obtained after analyzing 100,000 reads. This allows to evaluate how 
strongly sequencing effort influences metagenomic results.

3  |  RESULTS

The sequencing resulted in ~69 million paired-end reads on average 
per mock community replicate, with a standard deviation of ~1.5 mil-
lion reads (Figure 1a). Raw sequencing results are available on the 
European Nucleotide Archive (accession number: PRJEB45431). 
About 10 million reads were recorded in the negative control. Only 
4% of the reads from the negative control could be classified with 
the NCBI nt database: 1% is classified as Eukaryota, 1% as Bacteria, 
and the remaining 2% as viruses, Archaea, and others (Appendix 
S1, https://figsh​are.com/artic​les/figur​e/Schmi​dt_et_al_Suppl_File_
html/19711​684/1). Of the reads passing quality filtering in the mock 
communities, ~95 million were assigned to taxa at a 0.95 classifica-
tion threshold (Table 1). The number of correctly classified species 
remained stable across all classification thresholds (Figure 2a). We 
retained results at 0.95 as a trade-off for correct and false classifica-
tions. Of the 28 species from the mock community, 27 were correctly 
identified at most classification thresholds (Figure 2a). However, the 
number of false-positive classifications strongly decreased at more 
stringent thresholds, from 181 to 11. False positives belonged to the 
taxa Collembola, Oribatida, and Nematode at threshold of 0.95. The 
number of false-negative classifications remained low, stable, and 
consistent – a single species (an oribatid mite: Atropacarus striculus) 
was missed at most classification thresholds. Missing this species 
was due to the stringency of the bioinformatic sequence process-
ing: The species yielded very few sequencing reads which were then 
discarded during data filtering. Subsampling reads had a limited in-
fluence on taxonomic identification (Figure 2b).

Some species consistently yielded more reads, regardless of 
their biomass ratios in the mocks (Figure 1a). Sequencing depth 
differences among mock libraries and the GC content of the ge-
nomes had little predictive effect on assigned sequencing reads, 
so they were discarded during model selection. The final model 
(Figure 1b, Table 2) showed that metagenomic sequencing success 
differed across the taxon groups. Compared to reads assigned 
to Collembola, assignment success to Tardigrada and Nematoda 
showed a slight but statistically insignificantly lower assignment 

https://doi.org/10.6084/m9.figshare.19657647.v2
https://doi.org/10.6084/m9.figshare.19657647.v2
https://figshare.com/articles/figure/Schmidt_et_al_Suppl_File_html/19711684/1
https://figshare.com/articles/figure/Schmidt_et_al_Suppl_File_html/19711684/1
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success. Assignment success to Oribatida and Nematoda was sta-
tistically significantly lower than to Collembola (Table 2). Biomass 
of species was positively related to assigned metagenomic reads 
in all groups. Genome completeness had a statistically significant 
positive effect on metagenomic read assignment: overall, more 
reads were assigned to taxa with more complete genomes. This 
differed across taxon groups, as Collembola were not as much 
influenced by genome completeness as other taxa. Genome size 
had a statistically significant positive effect on metagenomic read 

assignment. More reads were assigned to taxa with larger ge-
nomes, regardless of the taxon group. Repeat content had a low 
but statistically significant effect on metagenomic read assign-
ment (Figure 1b,c). Genome size and repeat content were collinear 
(Pearson R2 = 0.56, p < .001). Taxon groups were the most import-
ant predictors in the model (Figure 1c). Replicates of the four mock 
community types were statistically significantly grouped together 
in the redundancy analysis (df = 3, F = 3.863, p < .001, Figure 3). 
Data analysis performed with 100,000 reads yielded very similar 
results (Figures S1 and S2).

F I G U R E  2 Numbers over bars represent the actual numbers of correctly identified species, and false-negative and false-positive 
identifications. (a) Species identification success along different Kraken2 classification thresholds. (b) Species identification success along 
different subsample sizes

TA B L E  2 Model-predicted biomass, taxon group, genome 
completeness, genome size, and repeat content effects on assigned 
metagenomic read numbers. All predictors were scaled before 
model fitting. Genome size was log-normalized before scaling. 
Collembola served as a model intercept

Estimate
Standard 
error t p

(Intercept) 14.047 0.132 106.498 .000

Biomass 0.192 0.054 3.582 .000

Enchytraeidae −6.910 1.748 −3.953 .000

Nematoda 0.947 0.352 2.688 .008

Oribatida −1.194 0.212 −5.633 .000

Tardigrada −0.002 0.369 −0.005 .996

Genome 
completeness

0.599 0.122 4.891 .000

Genome size 1.238 0.160 7.761 .000

Repeat content −0.244 0.082 −2.966 .003

F I G U R E  3 Redundancy analysis ordination of mock community 
replicates along the taxonomically assigned metagenomic reads
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4  |  DISCUSSION

We performed a shotgun metagenomic experiment on soil inver-
tebrate mock communities of known composition. We assigned 
metagenomic reads to a genome database of soil invertebrates. We 
investigated how metagenomic reads record the presence of taxa in 
the mocks, whether read numbers reflect biomass. We found that 
almost all species from the mocks could be identified with metagen-
omics. We also found that metagenomic reads reflect biomass ra-
tios among the species, but taxonomy and reference genome and 
assembly properties must be considered during metagenomics read 
assignments.

Almost all species (27/28) were consistently detected at most 
classification thresholds. The single false-negative species (A. 
striculus) was also detected with very low read numbers, and it 
was missed only because of stringent quality filtering. The num-
ber of false positives was high at low classification thresholds, 
and rapidly dropped at higher thresholds (Figure 2a). Eleven false-
positive assignments were retained even at the highest classifi-
cation threshold. Based on these results, we recommend rather 
stringent classification thresholds for the Kraken2-based classi-
fication of eukaryotic metagenomic reads, although the effects 
of classification threshold choice should be further evaluated in 
different taxa.

Possible explanations include contamination and bioinformatic 
issues. Cross-contamination is sometimes observed in mock metag-
enomes (Bista et al., 2018), but it cannot cause false positives here as 
all species were present in all mocks. The negative control included 
into the experiment also excludes cross-contamination, as no soil 
invertebrate sequences were detected in the negative (Appendix 
S1, https://figsh​are.com/artic​les/figur​e/Schmi​dt_et_al_Suppl_File_
html/19711​684/1). Gut content may also result in the detection of 
unexpected taxa (Paula et al., 2016). However, most species used in 
these mocks are not predators. The predatory tardigrade P. richtersi 
was exclusively feeding on a nematode species which was also pres-
ent in all the mock communities (A. nanus). The most likely explana-
tion is related to aspects of the metagenomic read assignment. The 
first candidate is the assignment algorithm itself, although compari-
sons show that Kraken is conservative (Harbert, 2018). Assignment 
of reads to closely related taxa is an unlikely cause since 8 of the 
12 false-positive species (at 0.95  classification threshold) had no 
genus-level relatives in the mocks. Assignment to genome regions 
highly conserved and thus similarity among species might also re-
sult in false positives. Unmasked repeats might also erroneously 
attract reads during the assignment. Eukaryotes are rich in low 
complexity regions, and cross-assignment of these regions might 
be a considerable source of false positives in all eukaryotic metag-
enomes (Clarke et al., 2018). The effects of repeat regions in eu-
karyotic metagenomic assignments should be evaluated, although 
repeat identification is not trivial, especially for understudied taxa 
(Clarke et al., 2019).

The relationship between sequencing reads and the initial bio-
mass of organisms is a central topic in the DNA-based analysis of 

community composition. In theory, more shotgun metagenomic 
reads should be assigned to species which are represented with 
higher biomass in a sample. However, this relationship might still 
be influenced by other factors. Here, we investigated taxonomic 
effects, the impact of genome completeness, genome size, and GC 
content. We found that read counts were most strongly influenced 
by taxonomy, followed by genome size, genome completeness, bio-
mass, and repeat content (Figure 1c). We found no statistically sig-
nificant effects of GC content on read assignment, although this was 
expected based on previous results with bacterial metagenomes 
(Browne et al., 2020).

There were consistently more reads assigned to some taxo-
nomic groups than to others (Figure 1b, Table 2). The impact of tax-
onomy on sequencing reads recovery seems to be systemic, with 
some species having many reads in all mocks, some species having 
only few reads (Figure 1a), and one species was even missed due 
to the stringent filtering (Figure 2a). Species represented with low 
biomass in mocks were already found to result in false negatives 
in metagenomics (Bista et al., 2018), and A. striculus was indeed 
represented with a relatively low biomass in the mocks. However, 
low biomass alone does not explain the strong taxon effect on 
read assignment. We suspect that the most important cause for 
the strong taxon effects is likely caused by differences in DNA 
yields among different taxa (Sato et al., 2019; Schiebelhut et al., 
2017; Tourlousse et al., 2021). Some taxa, e.g., oribatid mites, are 
very hardy, and their cuticles might present obstacles to tissue 
homogenization during DNA extractions. Indeed, the single false-
negative species was an oribatid mite. Cells of different taxa might 
react differently to extraction (Costea et al., 2017; Morgan et al., 
2010), with some species consistently yielding lower-quality DNA 
in lower quantities (or no DNA at all) than others (Schiebelhut 
et al., 2017). However, differential DNA extraction efficiency 
does not explain why soft-bodied enchytraeids yield consider-
ably less DNA than all other taxa (Figure 1b). Differences in DNA 
content relative to body size (or biomass) might be responsible 
for this: some taxa may contain higher amounts of DNA per unit 
biomass than others. The association of DNA content with body 
size can be positive or negative depending on the organism group 
(Gregory, 2001).

Strong taxonomic effects on biomass–read relationships are 
interesting not only for metagenomic but also for metabarcod-
ing studies. It is generally assumed that primer mismatch is the 
most important source of taxonomically biased biomass–read 
relationships in metabarcoding (Collins et al., 2019; Lamb et al., 
2019; Piñol et al., 2019). Our results suggest that taxon-specific 
differences in DNA extraction efficiency and/or DNA content 
might also play a role in taxonomic bias. However, recognizing 
this bias is difficult in metabarcoding: both primer bias, and fac-
tors influencing extraction DNA yields are likely phylogenetically 
conserved. Parallel metabarcoding and metagenomic studies on 
the same mock communities are necessary to evaluate the relative 
importance of primer bias versus DNA yield in biomass–read rela-
tionships (e.g., Bista et al., 2018).

https://figshare.com/articles/figure/Schmidt_et_al_Suppl_File_html/19711684/1
https://figshare.com/articles/figure/Schmidt_et_al_Suppl_File_html/19711684/1
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Despite considerable taxonomic effects, biomass was a statisti-
cally significant predictor of reads (Figure 1b, Table 2). This is in line 
with other metagenomic mock community studies on multicellular 
eukaryotes, such as benthic invertebrates (Bista et al., 2018) and 
pollen samples (Peel et al., 2019). The biomass effect on reads, al-
though considerably smaller than taxon effects (Figure 1c), was still 
sufficient to reflect compositional differences among the four mock 
types (Figure 3). This confirms the suitability of shotgun metag-
enomics for a semi-quantitative comparison of soil invertebrate 
communities.

We found that reference genome properties influence taxonomic 
assignments and read–biomass relationships, and that these need to 
be considered in metagenomic studies on eukaryotes. We showed 
that reference genomes size influences metagenomic assignments, 
with larger genomes attracting more reads than smaller genomes 
(Figure 1b). This is known from microbial studies where it was shown 
that average genome size of a microbial community influences metag-
enomic results (Beszteri et al., 2010). Repeat content is considered to 
positively influence genome size of eukaryotes, at least in the range of 
genome sizes of species analyzed here (Novák et al., 2020). We found 
a weak negative, but statistically significant effect of repeat content 
on metagenomic assignments (Figure 1b,c, Table 2). Repeat content 
and genome sizes were collinear. This collinearity also suggests that 
repetitive element abundance and repeat family composition may act 
as "hidden variables" in metagenomic read assignment. The effects of 
repetitive elements should be evaluated with highly contiguous and 
complete genomes which allow for an unbiased identification of the 
repetitive / non-repetitive genome fractions. We found that genome 
completeness recorded as BUSCO scores may also influence metag-
enomic assignments, with more complete genomes attracting more 
reads. This suggests that reference genome assembly properties 
should also be considered in metagenomic assignments, even though 
previous findings show that even low-coverage reference genomes 
can perform well (Sarmashghi et al., 2019). GC content of genomes 
might also influence metagenomic assignments (Browne et al., 2020), 
although in our case this effect was limited.

Considerable difference in sequencing effort (simulated by 
downsampling sequencing results to over 100th of original reads) 
had only minor influences on taxonomic identification, and on re-
sults about factors which influence read abundances and commu-
nity composition (Figures S1, S2). We obtained highly similar results 
with as little as 100,000 reads per sample compared to the full-
sequencing effort (over 13 million reads per sample). This suggests 
that metagenomics of eukaryotic samples can be performed with 
low-sequencing efforts and costs when the aim is the taxonomic 
profiling of samples. This is similar to results from bacterial commu-
nities (Gweon et al., 2019). Cost efficiency of metagenomics might 
even approach the costs of metabarcoding, although this probably 
depends on the complexity of communities. The low-sequencing 
effort needed also suggests that relatively low-yield long-read eu-
karyote metagenomics, i.e., on Oxford Nanopore portable MinION 
sequencers, can be employed for eukaryotic metagenomics in areas 
which currently lack expensive short-read sequencing infrastructure.

Mock community experiments of metagenomics are import-
ant to understand factors which influence species assignments 
and sequencing read abundances. However, experimental condi-
tions are considerably simpler than conditions encountered in real 
community samples. Real samples likely contain more soil inverte-
brate species, including cryptic ones. Many of these species might 
not be present in genome databases, and this means that a large 
fraction of metagenomic reads might not be identifiable. We ex-
pect that this will rapidly change in the next years as biodiversity 
genomics initiatives cover more of eukaryotic diversity with ref-
erence quality genomes (Formenti et al., 2022; Lewin et al., 2022), 
and as phylogeny-based assignment approaches are rapidly devel-
oping (Asnicar et al., 2020). Real samples will also contain higher 
numbers of bacteria and fungi. This is specifically true for eDNA 
samples where most reads likely originate from bacteria and fungi 
(Fierer et al., 2012). This means that sequencing depths will need 
to be higher when dealing with real communities, especially for 
eDNA samples. Other factors also need to be evaluated, such as 
release of eDNA be different taxa, legacy effects due to long-
term preservation of DNA in soils (Pedersen et al., 2015), or enzy-
matic inhibition and strategies for sample comparison (Hedman & 
Rådström, 2013). We are convinced that mock community exper-
iments will remain important tools to understand these sources 
of variation.

4.1  |  Roadmap for future metagenomics 
on metazoans

Our results outline a roadmap for future shotgun metagenomic 
work on metazoan mock communities. In the wet lab, DNA ex-
traction needs to be optimized and likely adapted to taxa of inter-
est. An important component of this is to ensure the best possible 
homogenization of bulk samples, probably under cryogenic con-
ditions. This is particularly important in order to detect species 
which yield low amounts of DNA, since this may frequently hap-
pen in more species-rich natural communities. Differences in DNA 
content per unit biomass among and within major taxon groups 
should be evaluated and corrected for. In bioinformatics, assign-
ment algorithms should be evaluated, adapted, and developed 
with eukaryotes in mind. The performance of distinct genomic 
regions (i.e., conventional marker genes, mitogenomes, coding 
regions, ultraconserved regions, and repeat elements) should be 
evaluated, especially with respect to false-positive detections. 
Genome databases will likely remain incomplete for some time. An 
important direction is to evaluate how incomplete databases (i.e., 
databases not containing the target species, but congenerics or 
even less related species) perform in taxonomic assignments. It is 
also important to consider the completeness of the references ge-
nome assemblies, as more complete genomes will allow to assign 
more metagenomic reads. Genome completeness and genome size 
should be explicitly accounted for in analyses, for example, as pre-
dictors in generalized linear models.
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5  |  CONCLUSION

Metagenomics is a promising alternative to metabarcoding also 
for eukaryotic communities, even at very low-sequencing efforts. 
Although theory suggests that metagenomic reads should well-
represent biomass relationships in communities, differences among 
organisms related to DNA extraction efficiency and genome prop-
erties have strong influences on the biomass–read relationships. 
These effects need to be further investigated and quantified in 
parallel metabarcoding–metagenomic experiments. The effects of 
taxonomy, genome, and assembly properties should be considered 
in analyses. Generalized linear models provide an excellent opportu-
nity for this. With affordable sequencing and increasingly accessible 
eukaryotic reference genomes, metagenomics is becoming a viable 
alternative to metabarcoding for describing community composition 
and structure.
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