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Abstract
•	 Metagenomics	–		shotgun	sequencing	of	all	DNA	fragments	from	a	community	
DNA	 extract	 –		 is	 routinely	 used	 to	 describe	 the	 composition,	 structure,	 and	
function	of	microorganism	communities.	Advances	in	DNA	sequencing	and	the	
availability	of	genome	databases	increasingly	allow	the	use	of	shotgun	metagen-
omics	 on	 eukaryotic	 communities.	 Metagenomics	 offers	 major	 advances	 in	
the	recovery	of	biomass	relationships	in	a	sample,	in	comparison	to	taxonomic	
marker	gene-	based	approaches	(metabarcoding).	However,	little	is	known	about	
the	factors	which	influence	metagenomics	data	from	eukaryotic	communities,	
such	 as	 differences	 among	 organism	 groups,	 the	 properties	 of	 reference	 ge-
nomes,	and	genome	assemblies.

•	 We	 evaluated	 how	 shotgun	metagenomics	 records	 composition	 and	 biomass	
in	 artificial	 soil	 invertebrate	 communities	 at	different	 sequencing	efforts.	We	
generated	mock	communities	of	controlled	biomass	ratios	from	28	species	from	
all	major	soil	mesofauna	groups:	mites,	springtails,	nematodes,	tardigrades,	and	
potworms.	We	 shotgun	 sequenced	 these	 communities	 and	 taxonomically	 as-
signed	them	with	a	database	of	over	270	soil	invertebrate	genomes.

•	 We	 recovered	 over	 95%	 of	 the	 species,	 and	 observed	 relatively	 high	 false-	
positive	detection	rates.	We	found	strong	differences	in	reads	assigned	to	dif-
ferent	taxa,	with	some	groups	(e.g.,	springtails)	consistently	attracting	more	hits	
than	others	(e.g.,	enchytraeids).	Original	biomass	could	be	predicted	from	read	
counts	 after	 considering	 these	 taxon-	specific	differences.	 Species	with	 larger	
genomes,	 and	 with	 more	 complete	 assemblies,	 consistently	 attracted	 more	
reads	 than	species	with	smaller	genomes.	The	GC	content	of	 the	genome	as-
semblies	had	no	effect	on	the	biomass–	read	relationships.	Results	were	similar	
among	different	sequencing	efforts.

•	 The	results	show	considerable	differences	 in	taxon	recovery	and	taxon	speci-
ficity	 of	 biomass	 recovery	 from	metagenomic	 sequence	 data.	 The	 properties	
of	reference	genomes	and	genome	assemblies	also	influence	biomass	recovery,	
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1  |  INTRODUC TION

Biodiversity	 research,	 and	particularly	 the	 investigation	of	hard-	
to-	observe	 ecological	 communities,	 increasingly	 relies	 on	 DNA-		
and	 RNA-	based	 tools	 such	 as	 metabarcoding	 (Taberlet	 et	 al.,	
2018),	metagenomics	(Arribas	et	al.,	2020),	or	metatranscriptom-
ics	 (Cristescu,	2019).	 There	 are	 several	 preconditions	 to	 the	use	
of	 these	 tools	 for	 generating	 datasets	 on	 ecological	 community	
composition:	 nucleotide	 sequence	 databases	must	 exist	 (Hebert	
et	al.,	2003;	Margaryan	et	al.,	2021)	with	curated	taxonomic	links	
(Schenk	et	al.,	2017)	for	taxonomic	identification	of	DNA	or	RNA	
sequences.	Laboratory	experimental	designs	must	also	be	robust,	
with	 excellent	 guidance	 already	 existing	 (Zinger	 et	 al.,	 2019).	
However,	 if	 preconditions	 are	 met,	 molecular	 tools	 can	 provide	
data	on	the	composition	and	structure	of	ecological	communities,	
even	 if	 they	 are	made	 up	 of	 very	 small,	 diverse,	 and	 difficult	 to	
identify	species.

Molecular	tools	to	monitor	communities	can	be	time	and	cost	
efficient	 when	 compared	 to	 conventional,	 observation-	based	
studies,	where	species	are	morphologically	identified	and	counted	
to	document	abundances	(Serrana	et	al.,	2019).	This	 is	especially	
the	case	when	observed	communities	are	species	rich,	and	when	
many	 community	 samples	 need	 to	 be	 processed	 simultaneously	
(Bálint	 et	 al.,	 2018).	 This	 needs	 expertise	 on	 certain	 taxonomic	
groups,	which	makes	it	difficult	for	one	researcher	to	acquire	com-
position	data.	Molecular	tools	overcome	this	issue	as	whole	com-
munities,	containing	various	taxonomic	groups,	can	be	 identified	
at	once,	in	many	samples	run	in	parallel	(e.g.,	Zinger	et	al.,	2019).	
There	are	two	main	approaches	to	the	molecular	biomonitoring	of	
communities:	metabarcoding	 and	metagenomics.	Metabarcoding	
uses	high-	throughput	sequences	of	taxonomic	marker	genes	(“bar-
codes”)	which	are	PCR	amplified	from	a	community	DNA	extract.	
Metabarcoding	is	becoming	a	standard	tool	in	biodiversity	research	
(Bálint	et	al.,	2018;	Bohmann	et	al.,	2021;	Compson	et	al.,	2020; 
Creer	et	al.,	2016;	Jarman	et	al.,	2018;	Lindahl	et	al.,	2013;	Taberlet	
et	al.,	2012).	 Its	use	 is	supported	by	several	years	of	 research	 in	

distinct	organism	groups	(Taberlet	et	al.,	2018),	and	the	availability	
of	 barcode	databases	 (Hebert	 et	 al.,	2003;	Nilsson	 et	 al.,	2019).	
However,	metabarcoding	has	an	important	long-	known	drawback:	
it	 relies	 on	 the	 amplification	 of	 a	 marker	 gene	 (Taberlet	 et	 al.,	
2012).	This	can	result	in	biases	in	species	recovery	from	the	result-
ing	sequence	data:	several	species	might	be	completely	missed	as	
false	negatives	if	metabarcoding	PCR	primers	poorly	match	bind-
ing	 sites	 in	 their	 genomes	 in	 a	 phenomenon	 known	 as	PCR	bias	
(Zinger	et	al.,	2019).	Sometimes	PCR	bias	is	not	sufficiently	strong	
to	completely	miss	species,	but	primer	mismatch	still	causes	a	less	
efficient	amplification	compared	to	other	species,	resulting	in	dis-
tortions	of	the	original	biomass–	sequencing	read	relationships	for	
certain	 taxa	 (Piñol	 et	 al.,	2019).	However,	 the	 amplification	 step	
solves	two	important	issues:	one	can	effectively	target	the	taxo-
nomic	groups	of	 interest	(e.g.,	 insects)	and	avoid	others	(e.g.,	mi-
croorganisms),	 and	 small	 or	 rare	organisms	with	 low	amounts	of	
DNA	can	still	be	recorded.	Metagenomics	randomly	sequences	all	
DNA	fragments	from	a	community	DNA	extract,	generally	without	
enrichment	of	certain	parts	of	the	genome.	It	is	more	quantitative	
than	metabarcoding,	since	it	skips	the	potentially	biased	PCR	am-
plification	step	of	taxonomic	marker	genes	(Bista	et	al.,	2018),	and	
consequently,	may	provide	more	detailed	insights	into	the	biomass	
ratios	 of	 different	 species	 (Peel	 et	 al.,	2019).	 Biomass	 ratios	 are	
important	 for	 ecological	 studies	 as	 the	 importance	of	 species	 in	
a	community	is	often	directly	related	to	its	abundance	or	biomass	
(Naeem	 et	 al.,	2009).	 Biomonitoring	 schemes	 frequently	 rely	 on	
indices	of	environmental	quality	which	are	computed	from	species	
identities,	and	abundance	or	biomass	ratios	(Bennion	&	Battarbee,	
2000/60/EC	 of	 the	 European	 Parliament	 and	 of	 the	 Council	 of	
23	October	2000).	However,	metabarcoding	can	provide	 limited	
information	 on	 this	 given	 biases	 caused	 by	 the	 PCR	 step	 (Aird	
et	al.,	2011),	 and	currently	 this	 limits	 its	use	 in	applied	biomoni-
toring	(Hering	et	al.,	2018).	In	metagenomics,	a	random	selection	
of	DNA	fragments	is	sequenced	from	the	DNA	extracts,	resulting	
in	a	less	biased	representation	of	the	community	in	the	sequence	
data.	The	omission	of	the	PCR	step	makes	metagenomics	lab	work	

and	they	should	be	considered	in	metagenomic	studies	of	eukaryotes.	We	show	
that	low-		and	high-	sequencing	efforts	yield	similar	results,	suggesting	high	cost-	
efficiency	 of	 metagenomics	 for	 eukaryotic	 communities.	We	 provide	 a	 brief	
roadmap	for	investigating	factors	which	influence	metagenomics-	based	eukary-
otic	 community	 reconstructions.	Understanding	 these	 factors	 is	 timely	as	 ac-
cessibility	of	DNA	sequencing	and	momentum	for	reference	genomes	projects	
show	a	future	where	the	taxonomic	assignment	of	DNA	from	any	community	
sample	becomes	a	reality.
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metagenomics,	species	composition,	taxonomic	bias
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conceptually	and	technically	simpler.	From	metagenomic	studies	of	
microbial	mock	communities	we	know	that	several	factors,	such	as	
taxonomic	identity	(Schiebelhut	et	al.,	2017)	or	the	genome	prop-
erties	of	 involved	 species	 (Beszteri	 et	 al.,	2010),	 have	an	 impact	
on	biomass	representation	through	metagenomic	reads.	However,	
these	 effects	 are	 so	 far	 not	 investigated	 in	metagenomics	 stud-
ies	of	eukaryotes,	at	least	to	our	best	knowledge.	The	taxonomic	
assignment	of	metagenomic	sequences	needs	genome	databases,	
and	 consequently,	 metagenomics	 is	 more	 frequently	 applied	 on	
microbial	communities,	where	more	complete	genomic	resources	
are	available	(Parks	et	al.,	2020).	There	are	several	approaches	to	
circumvent	this	limitation,	from	mitogenomes	(Arribas	et	al.,	2020)	
to	shallow	genome	sequencing	(Bohmann	et	al.,	2020).	As	genome	
sequencing	 technologies	 mature,	 the	 generation	 of	 reference	
genomes	 for	 all	 eukaryotes	 receives	 increasing	 attention	 (Lewin	
et	al.,	2018).	However,	the	technical	issues	affecting	metagenom-
ics,	such	as	species	identification	success,	read–	biomass	relation-
ships,	the	effects	of	different	DNA	extraction	techniques,	and	the	
effects	of	reference	genome	properties	used	for	taxonomic	identi-
fication	of	metagenomic	reads	are	much	less	investigated	than	is-
sues	affecting	metabarcoding,	at	least	for	eukaryotes.	Approaches	
to	metagenomic	read	classification	need	also	be	evaluated	for	eu-
karyotes,	 since	 there	 are	 several	 algorithms	 available,	 and	 these	
algorithms	can	be	adjusted	to	allow	for	more	or	less	base	dissim-
ilarities	 among	 query	 and	 database	 sequences	 (Altschul	 et	 al.,	
1990;	Wood	et	al.,	2019).

Soil	invertebrate	communities	are	diverse,	with	high	numbers	
and	often	high	biomass	of	taxa	(FAO,	2020).	Most	soil	invertebrate	
species	 are	 very	 small,	with	body	 lengths	below	1	mm	 (Orgiazzi	
et	 al.,	 2016).	 Despite	 their	 small	 size,	 invertebrates	 are	 import-
ant	 for	 soil	 health	 (Kibblewhite	 et	 al.,	 2008),	 and	 high	 biomass	
species	 strongly	 contribute	 to	 soil	 functioning	 (van	 den	Hoogen	
et	 al.,	 2019).	 However,	 ecological	 work	 and	 biomonitoring	 of	
these	 communities	 are	 difficult:	 taxonomic	 identification	 needs	
very	specialized	expertise	 (Lehmitz	&	Decker,	2017).	This	makes	
morphology-	based	 identification	 efforts	 unfeasible	 for	 the	 large	
sample	numbers	needed	by	most	community	ecology	and	biomon-
itoring	 efforts.	 The	 increasing	 availability	 of	 reference	 genomes	
(Lewin	 et	 al.,	2022)	 makes	metagenomics	 a	 promising	 approach	
to	 describe	 and	 monitor	 community	 composition	 and	 species	
biomass	 ratios	 of	 soil	 invertebrates.	 Here,	 we	 evaluate	 the	 per-
formance	of	metagenomics	 in	species	 identification	 in	artificially	
composed	(mock)	communities	of	soil	invertebrates.	We	also	eval-
uate	 how	well	metagenomics	 reflects	 biomass	 ratios	 of	 species.	
We	 use	 a	 large	 collection	 of	 soil	 invertebrate	 genomes	 to	 taxo-
nomically	 assign	metagenomic	 reads.	We	 investigate	 the	effects	
of	 metagenomic	 classification	 thresholds	 on	 correct	 and	 false	
identification.	We	evaluate	the	relationship	between	biomass	and	
reads,	and	how	this	relationship	is	influenced	by	taxonomy	and	by	
the	properties	of	the	genome	assemblies	used	for	taxonomic	as-
signments.	Finally,	we	evaluate	how	different	sequencing	efforts	
influence	 metagenomics	 results,	 as	 this	 strongly	 influences	 the	
economics	of	eukaryotic	metagenome	sequencing.

2  |  MATERIAL AND METHODS

2.1  |  Mock community construction

We	constructed	mock	communities	 from	28	soil	 invertebrate	spe-
cies	from	six	major	taxonomic	groups	at	the	Senckenberg	Museum	
of	Natural	History	Görlitz.	Specimens	were	either	freshly	collected	
and	stored	in	96%	undenatured	ethanol	(Collembola,	Gamasida,	and	
Oribatida),	 or	 they	 came	 from	 breeding	 cultures	 (Enchytraeidae,	
Nematoda,	 and	 Tardigrada).	 Mock	 communities	 were	 composed	
from	 individual	 animals	 and	 animal	 fragments	 (and	 not	 from	DNA	
extracts).	These	 individuals/fragments	were	placed	 into	single	test	
tubes	per	mock	community	to	create	bulk	community	samples.	Four	
different	mock	types	were	designed	(Figure 1a,	Table 1).	We	varied	
the	 total	body	volume	 (the	sum	of	body	volumes	of	all	 individuals	
of	a	species)	across	the	four	mock	communities,	meaning	the	total	
volume	 as	 well	 as	 species	 volumes	 differ	 in	 all	 four	 set-	ups.	 The	
mocks	contained	species	with	very	small	body	volumes	(Nematoda,	
Tardigrada)	and	larger	species	(Collembola,	Gamasida,	and	Oribatida).	
Enchytraeidae	represent	the	largest	taxon	in	this	study	(Table 1).	We	
used	body	volume	as	a	proxy	of	biomass,	and	refer	to	it	as	biomass	
throughout	the	text.	In	the	first	mock,	all	species	were	represented	
with	equal	biomass.	In	the	second	mock,	each	of	the	small	species	
had	two	to	five	times	more	biomass	compared	to	any	large	species.	
In	the	third	mock,	a	part	of	small	species	(7	of	11)	had	larger	biomass	
(two	to	four	times	than	any	large	species).	In	the	fourth	mock,	most	
small	species	had	more	biomass	than	large	species,	but	some	large	
species	also	had	high	biomass.	All	four	mock	types	were	replicated	
three	 times:	we	 attempted	 to	 reproduce	 the	 same	 biomass	 ratios	
among	the	species.	This	altogether	gave	us	12	mock	communities.

We	 used	 different	 formulas	 for	 body	 volume	 approximation.	
For	 Collembola,	 we	 estimated	 body	 volumes	 as	 ellipsoid	 volumes	
(V	 (µm³)	= 1.33 × π × a × b × c × 10−6,	where	a,	b,	 and	c	 are	axis	
lengths	in	µm).	For	Oribatida,	Gamasida,	and	Enchytraeidae,	we	esti-
mated	body	volumes	as	cylinder	volumes	(V	(µm³)	= π × L × r2 × 10−6,	
where L	is	height	and	r	is	radius);	for	Tardigrada,	V	(µm³)	= L × d2 × 
0.785 × 10−6	(Hallas	&	Yeates,	1972);	and	for	Nematoda,	V	(µm³)	= 
L × d2 × 0.577 × 10−6	was	used	(Andrássy,	1956).	We	measured	the	
sizes	of	 all	 tardigrade,	 enchytraeid,	 springtail,	 and	mite	 specimens	
and	20	nematode	specimens	used	in	the	mock	community	construc-
tion	to	obtain	average	body	size	measures.	We	then	combined	suffi-
cient	numbers	of	specimens,	considering	variation	in	individual	sizes	
to	achieve	the	biomass	ratio	desired	 in	the	experimental	design	of	
the	mock	communities	(Figure 1a).

We	used	the	tardigrade	culture	Paramacrobiotus richtersi	(Murray,	
1911)	strain	Hohberg-	99	and	the	following	cultures	of	nematodes:	
Acrobeloides nanus	(de	Man,	1880)	strain	Hohberg-	99,	Panagrolaimus 
detritophagus	Fuchs,	1930,	strain	Hohberg-	07,	Panagrellus redivivus 
(Linnaeus,	1767)	strain	König-	18,	and	Poikilolaimus oxycerca	(de	Man,	
1895)	strain	Hohberg-	01.	Thousands	of	nematode	specimens	were	
extracted	through	sieves	and	milk	filters	from	the	culture	plates	into	
tap	water.	Nematode	numbers	and	mean	body	volumes	within	the	
four	stock	solutions	were	then	calculated	by	counting	individuals	of	
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aliquots	and	measuring	body	length	and	width	of	20	specimens	per	
aliquot.	After	counting,	we	evaporated	 the	water	 from	each	stock	
solution	and	added	96%	ethanol.	As	enchytraeids	are	large	compared	
to	the	other	invertebrates,	we	used	only	body	fragments,	cutting	off	
parts	after	measuring	the	lengths	of	the	specimens.	Tardigrades,	col-
lembolans,	and	mites	were	individually	counted	into	the	mock	com-
munities.	In	order	to	achieve	the	needed	biomass	of	the	respective	
mock	type,	differently	sized	 individuals	 (adults	and	 juveniles)	were	
used.	All	mock	community	samples	were	stored	in	2-	ml	Eppendorf	
tubes	in	96%	undenatured	ethanol	at	−20°C	until	sequencing.

2.2  |  Laboratory work and sequencing

We	used	the	12	bulk	mock	communities	containing	individuals/frag-
ments	 of	 individuals	 of	 the	 28	 species	 for	 DNA	 extractions	 (four	
biomass	 ratios,	 each	 replicated	 three	 times,	 Table 1,	 Figure 1a).	
Before	 performing	 the	 DNA	 extraction,	 ethanol	 was	 evaporated	
in	a	SpeedVac	Concentrator	Plus	 (Eppendorf)	 to	avoid	 losing	 indi-
viduals/fragments.	This	is	especially	important	for	potentially	float-
ing	Nematoda	and	Tardigrada	specimens.	DNA	was	extracted	with	
DNeasy	Blood	and	Tissue	kit	(Qiagen).	DNA	was	extracted	from	bulk	

samples.	Species	and	specimens	were	mixed	into	mock	communities	
prior	to	 lysis	and	extraction.	Replicates	were	extracted	separately.	
We	 included	a	negative	control	 into	 the	extractions	 to	 investigate	
possible	cross-	sample	contamination.	This	negative	control	was	an	
extraction	blank	without	 tissue.	We	 followed	 the	Qiagen	protocol	
except	a	few	modifications.	We	crushed	specimens	with	pistilles	in	
1.5-	ml	Eppendorf	tubes.	Before	homogenizing	(crushing)	the	tissue,	
we	immediately	added	30	µl	ATL	lysis	buffer	to	inhibit	the	DNAse	ac-
tivity.	Subsequently,	150	µl	ATL	lysis	buffer	and	20	µl	protein	kinase	K	
were	added.	After	vortexing	and	incubating	(~3	h,	56°C),	20	µl	RNase	
was	added.	The	samples	were	then	incubated	overnight	(37°C).	We	
eluted	with	50	µl	AE	buffer.	Each	resulting	extract	represents	one	
replicate	of	the	mock	communities.	DNA	concentration	was	meas-
ured	on	NanoDrop	 (Thermo	Fisher	Scientific)	and	Qubit™ with the 
dsDNA	BR	Assay	kit	(Thermo	Fisher	Scientific).	We	used	both	tools	
to	double	check	concentration	measurements.	Fragment	length	was	
checked	on	TapeStation	2200	(Agilent	Technologies).	Libraries	were	
prepared	with	 the	NEB	Next®	 Ultra™	 DNA	 Library	 Prep	 kit	 (New	
England	Biolabs,	 Ipswich	MA,	USA)	 and	 sequenced	on	an	 Illumina	
NovoSeq	6000	PE150	platform	at	Novogene.	Sequencing	depth	was	
20	gigabase	per	mock	community,	and	1	gigabase	for	the	negative	
control	(2	×	150	bp,	paired-	end).

F I G U R E  1 (a)	Ratios	of	species	biomass	and	sequencing	reads	assigned	to	these	species	in	the	four	mock	communities	types.	(b)	GLM-	
predicted	effects	of	biomass,	genome	completeness,	genome	size,	and	repeat	content	on	taxonomically	assigned	metagenomic	reads.	
(c)	Relative	importance	of	GLM	predictor	variables
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2.3  |  Bioinformatics and data processing

Sequences	 were	 trimmed	 and	 quality	 checked	 with	 Autotrim	
v0.6.1	 (Waldvogel	 et	 al.,	2018).	 Autotrim	 relies	 on	 Trimmomatic	
(Bolger	et	al.,	2014),	FastQC	(Andrews,	2017/2021),	and	MultiQC	

(Ewels	et	al.,	2016).	It	removes	Illumina	sequencing	adapters,	per-
forms	a	quality	control	of	the	reads,	and	combines	all	information	
into	a	single	report.	Taxonomic	classification	was	performed	with	
Kraken2	v2.0.8	(Wood	et	al.,	2019)	against	a	designated	soil	inver-
tebrate	 genome	 database	 (GenBank	 Bioproject	 PRJNA758215).	

TA B L E  1 Composition	of	mock	communities.	For	species	where	different	developmental	stages	were	available,	individuals	of	different	
sizes	were	used	to	achieve	the	necessary	biomass	[adults	+	juveniles,	e.g.,	Paramacrobiotus richtersi	in	mock	1:	4	+	1].	Mock	1:	all	species	
have	equal	biomass;	mock	2:	small	species	have	higher	biomass;	mock	3:	some,	but	not	all	small	species	have	higher	biomass	than	large	
species;	mock	4:	some	small	and	some	large	species	both	have	higher	biomass	than	other	small	and	large	species

Taxon
Mean body 
length (µm)

Body volume 
(10−6 µm3)

Number of individuals

Mock 1 Mock 2 Mock 3 Mock 4

Tardigrada

Paramacrobiotus richtersi	(Murray,	1911) 700 12.1 4+1 9 0+9 2+5

Nematoda

Acrobeloides nanus	(de	Man,	1880) 340 0.15 355 1775 1420 710

Panagrolaimus detritophagus	(Fuchs,	1930) 380 0.10 521 1562 1562 521

Panagrellus redivivus	(Linnaeus,	1767) 620 0.28 190 570 380 190

Poikilolaimus oxycerca	(de	Man,	1895) 930 0.98 54 162 54 162

Collembola

Sphaeridia pumilis	(Krausbauer,	1898) 300 5.7 9 9 37 9

Proisotoma minuta	(Tullberg,	1871) 880 11.0 5 4 5 5

Podura aquatica	(Linnaeus,	1758) 560 13.9 4 12 8 8

Desoria trispinata	(MacGillivray,	1896) 1090 17.3 3 6 6 6

Isotomurus plumosus	(Bagnall,	1940) 1250 31.0 2 2 2 2

Deuterosminthurus bicinctus	(Koch,	1840) 730 36.1 1+1 1+1 1+1 1+1

Sinella curviseta	(Brook,	1882) 1090 44.1 1 1 4 4

Folsomia fimetaria	(Linnaeus,	1758) 1400 53.2 1 1 2 3

Oribatida

Tectocepheus velatus	(Michael,	1880) 240 4.8 11 33 11 22

Minunthozetes semirufus	(C.	L.	Koch,	1841) 280 5.6 9 28 19 10

Pantelozetes paolii	(Oudemans,	1913) 340 12.9 4 12 4 8

Zygoribatula exilis	(Nicolet,	1855) 360 13.7 4 12 8 12

Chamobates voigtsi	(Oudemans,	1902) 300 15.9 3 3 7 3

Atropacarus striculus	(C.	L.	Koch,	1835) 440 27.1 2 2 2 2

Liebstadia similis	(Michael,	1888) 470 35.5 2 1 5 3

Eupelops occultus	(C.	L.	Koch,	1835) 410 46.5 1 1 1 3

Oribatella quadricornuta	(Michael,	1880) 560 50.8 1 1 2 2

Gamasida

Gaeolaelaps aculeifer	(Canestrini,	1883) 700 22.0 2+1 5 2+1 5+6

Enchytraeidae

Enchytraeus bulbosus	(Nielsen	&	
Christensen,	1963)

4000 Fragments

Enchytraeus albidus	(Henle,	1837) 2500

Enchytraeus luxuriosus	(Schmelz	&	Collado,	
1999)

10500

Enchytraeus bigeminus	(Nielsen	&	
Christensen,	1963)

6500

Enchytraeus crypticus	(Westheide	&	Graefe,	
1992)

7500
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This	database	contains	short-	read	assemblies	of	over	270	species	
(FigShare	 doi:	 https://doi.org/10.6084/m9.figsh	are.19657	647.v2,	
Table	 S1),	 including	 all	 species	 used	 for	 the	 mock	 communities.	
Before	conducting	metagenomic	classification,	the	reference	ge-
nomes	were	used	to	build	a	Kraken2	database	with	the	default	k-	
mer	size	(k =	35).	Taxonomic	identification	of	reads	was	performed	
on	21	classification	thresholds	(between	0.0	and	1.0,	at	0.05	incre-
ments).	At	each	classification	threshold,	we	accounted	for	possible	
contamination	by	extracting	 the	hits	of	each	 taxon	 found	 in	 the	
negative	control	 from	the	hits	of	 that	 taxon	 in	every	mock	com-
munity.	We	plotted	correctly	identified	taxa,	false	negatives,	and	
false	 positives	 against	 the	 Kraken2	 classification	 threshold,	 and	
selected	 the	 best	 performing	 assignments	 for	 further	 analysis.	
The	 extraction	 negative	 control	was	 additionally	 identified	with	
the	most	current	NCBI	nt	database	via	Kraken2	(download:	March	
24th,	2022)	to	analyze	if	other	taxa	than	invertebrates	are	present.	
The	 result	 was	 visualized	 with	 KronaTools	 v2.7.1	 (Marbl/Krona,	
2015/2022).

2.4  |  Data analysis

Data	analysis	was	conducted	with	R	v3.6.1	 in	RStudio	 (v1.2.1335),	
with	data	formatted	with	tidyverse	(Wickham	et	al.,	2019).	Graphs	
and	plots	were	generated	by	using	the	package	ggplot2	(Wickham,	
2016).	Unclassified	reads,	and	classified	reads	representing	<0.01%	
of	 the	sample	were	 removed	 from	data.	We	evaluated	 false	nega-
tives	and	false	positives	at	all	21	Kraken2	classification	thresholds	
(FigShare	doi:	https://doi.org/10.6084/m9.figsh	are.19657	647.v2).

We	 predicted	 read	 abundances	 with	 the	 total	 number	 of	 se-
quences	 obtained	 for	 each	mock	 library	with	 a	 generalized	 linear	
model.	 Initial	 independent	 variables	 were	 sequencing	 success,	
taxon	 group	 (Collembola,	 Enchytraeidae,	 Nematoda,	 Oribatida,	
Gamasida,	and	Tardigrada),	mock	species	biomasses,	genome	com-
pleteness	 (measured	 recovered	 complete	 Benchmarking	Universal	
Single-	Copy	Orthologs,	complete	BUSCOs	(Simão	et	al.,	2015)),	GC	
content,	genome	sizes,	and	repeat	content.	We	estimated	genome	
sizes	 with	 ModEst,	 a	 new	 method,	 which	 performs	 very	 well	 in	
comparison	with	flow	cytometry	measurements	 (Pfenninger	et	al.,	
2021).	We	estimated	the	repeat	content	of	genomes	with	species-	
specific	repeat	libraries	which	were	constructed	using	an	automated	
RepeatModeler	2.0.1	pipeline	with	LTR	Structural	discovery	pipeline	
activated	(Flynn	et	al.,	2020).	For	each	genome,	the	resulting	repeat	
libraries	were	merged	with	the	RepBase	26.05	Arthropoda-	specific	
section	 (Bao	 et	 al.,	2015)	 and	 subsequently	 used	 for	 the	 annota-
tion	of	repetitive	elements	with	RepeatMasker	4.1.2-	P1	(Smit	et	al.,	
2015).	 First,	 we	 performed	 a	 combinatorial	 model	 selection	 with	
MuMIn	 (Burnham	&	Anderson,	2003).	The	best	performing	model	
based	 on	 quasi-	AIC	 scores	 can	 be	written	 up	 as	 hits	~	 biomass	+ 
taxon_group	 +	 missing_buscos	 +	 genome_size	 +	 repeat_content.	
The	final	model	was	fitted	with	quasi-	Poisson	distribution	to	account	
for	overdispersion.	All	predictors	were	scaled.	Genome	sizes	were	
log-	normalized	before	scaling.	We	evaluated	the	relative	importance	

of	the	predictors	by	calculating	model-	specific	variable	importance	
scores	in	the	R	package	vip	(Greenwell	&	Boehmke,	2020).

We	 evaluated	 the	 correspondence	 between	 community	 com-
position	captured	by	metagenomic	reads	and	original	biomass	com-
position	with	redundancy	analyses	in	vegan	(Oksanen	et	al.,	2019).	
We	 tested	metagenomic	 hit	model	 statistical	 significance	with	 an	
ANOVA-	like	permutation	test	for	redundancy	analysis	(Legendre	&	
Legendre,	2012).

We	 re-	run	 read	 taxonomic	 identification	 after	 subsampling	
raw	 sequences	 to	 100,000,	 500,000,	 1,000,000,	 5,000,000,	 and	
10,000,000	reads	with	seqtk	(Li,	2012/2022).	We	compared	results	
of	data	analysis	done	with	the	complete	number	of	reads	with	results	
obtained	after	analyzing	100,000	reads.	This	allows	to	evaluate	how	
strongly	sequencing	effort	influences	metagenomic	results.

3  |  RESULTS

The	sequencing	resulted	in	~69	million	paired-	end	reads	on	average	
per	mock	community	replicate,	with	a	standard	deviation	of	~1.5 mil-
lion	reads	 (Figure 1a).	Raw	sequencing	results	are	available	on	the	
European	 Nucleotide	 Archive	 (accession	 number:	 PRJEB45431).	
About	10	million	reads	were	recorded	in	the	negative	control.	Only	
4%	of	the	reads	from	the	negative	control	could	be	classified	with	
the	NCBI	nt	database:	1%	is	classified	as	Eukaryota,	1%	as	Bacteria,	
and	 the	 remaining	 2%	 as	 viruses,	 Archaea,	 and	 others	 (Appendix	
S1,	 https://figsh	are.com/artic	les/figur	e/Schmi	dt_et_al_Suppl_File_
html/19711 684/1).	Of	the	reads	passing	quality	filtering	in	the	mock	
communities,	~95	million	were	assigned	to	taxa	at	a	0.95	classifica-
tion	threshold	(Table 1).	The	number	of	correctly	classified	species	
remained	stable	across	all	classification	thresholds	 (Figure 2a).	We	
retained	results	at	0.95	as	a	trade-	off	for	correct	and	false	classifica-
tions.	Of	the	28	species	from	the	mock	community,	27	were	correctly	
identified	at	most	classification	thresholds	(Figure 2a).	However,	the	
number	of	false-	positive	classifications	strongly	decreased	at	more	
stringent	thresholds,	from	181	to	11.	False	positives	belonged	to	the	
taxa	Collembola,	Oribatida,	and	Nematode	at	threshold	of	0.95.	The	
number	 of	 false-	negative	 classifications	 remained	 low,	 stable,	 and	
consistent	–		a	single	species	(an	oribatid	mite:	Atropacarus striculus)	
was	missed	 at	most	 classification	 thresholds.	Missing	 this	 species	
was	due	 to	 the	stringency	of	 the	bioinformatic	 sequence	process-
ing:	The	species	yielded	very	few	sequencing	reads	which	were	then	
discarded	during	data	filtering.	Subsampling	reads	had	a	limited	in-
fluence	on	taxonomic	identification	(Figure 2b).

Some	 species	 consistently	 yielded	more	 reads,	 regardless	 of	
their	 biomass	 ratios	 in	 the	mocks	 (Figure 1a).	 Sequencing	 depth	
differences	among	mock	 libraries	and	the	GC	content	of	 the	ge-
nomes	had	 little	predictive	effect	on	assigned	sequencing	reads,	
so	 they	were	discarded	during	model	 selection.	 The	 final	model	
(Figure 1b,	Table 2)	showed	that	metagenomic	sequencing	success	
differed	 across	 the	 taxon	 groups.	 Compared	 to	 reads	 assigned	
to	Collembola,	 assignment	 success	 to	 Tardigrada	 and	Nematoda	
showed	a	 slight	but	 statistically	 insignificantly	 lower	 assignment	

https://doi.org/10.6084/m9.figshare.19657647.v2
https://doi.org/10.6084/m9.figshare.19657647.v2
https://figshare.com/articles/figure/Schmidt_et_al_Suppl_File_html/19711684/1
https://figshare.com/articles/figure/Schmidt_et_al_Suppl_File_html/19711684/1
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success.	Assignment	success	to	Oribatida	and	Nematoda	was	sta-
tistically	significantly	lower	than	to	Collembola	(Table 2).	Biomass	
of	species	was	positively	related	to	assigned	metagenomic	reads	
in	all	groups.	Genome	completeness	had	a	statistically	significant	
positive	 effect	 on	 metagenomic	 read	 assignment:	 overall,	 more	
reads	were	 assigned	 to	 taxa	with	more	 complete	 genomes.	 This	
differed	 across	 taxon	 groups,	 as	 Collembola	 were	 not	 as	 much	
influenced	by	genome	completeness	as	other	 taxa.	Genome	size	
had	a	statistically	significant	positive	effect	on	metagenomic	read	

assignment.	 More	 reads	 were	 assigned	 to	 taxa	 with	 larger	 ge-
nomes,	 regardless	of	 the	taxon	group.	Repeat	content	had	a	 low	
but	 statistically	 significant	 effect	 on	 metagenomic	 read	 assign-
ment	(Figure 1b,c).	Genome	size	and	repeat	content	were	collinear	
(Pearson	R2 =	0.56,	p <	.001).	Taxon	groups	were	the	most	import-
ant	predictors	in	the	model	(Figure 1c).	Replicates	of	the	four	mock	
community	types	were	statistically	significantly	grouped	together	
in	the	redundancy	analysis	(df	=	3,	F =	3.863,	p <	.001,	Figure 3).	
Data	analysis	performed	with	100,000	reads	yielded	very	similar	
results	(Figures	S1	and	S2).

F I G U R E  2 Numbers	over	bars	represent	the	actual	numbers	of	correctly	identified	species,	and	false-	negative	and	false-	positive	
identifications.	(a)	Species	identification	success	along	different	Kraken2	classification	thresholds.	(b)	Species	identification	success	along	
different	subsample	sizes

TA B L E  2 Model-	predicted	biomass,	taxon	group,	genome	
completeness,	genome	size,	and	repeat	content	effects	on	assigned	
metagenomic	read	numbers.	All	predictors	were	scaled	before	
model	fitting.	Genome	size	was	log-	normalized	before	scaling.	
Collembola	served	as	a	model	intercept

Estimate
Standard 
error t p

(Intercept) 14.047 0.132 106.498 .000

Biomass 0.192 0.054 3.582 .000

Enchytraeidae −6.910 1.748 −3.953 .000

Nematoda 0.947 0.352 2.688 .008

Oribatida −1.194 0.212 −5.633 .000

Tardigrada −0.002 0.369 −0.005 .996

Genome	
completeness

0.599 0.122 4.891 .000

Genome	size 1.238 0.160 7.761 .000

Repeat	content −0.244 0.082 −2.966 .003

F I G U R E  3 Redundancy	analysis	ordination	of	mock	community	
replicates	along	the	taxonomically	assigned	metagenomic	reads
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4  |  DISCUSSION

We	 performed	 a	 shotgun	metagenomic	 experiment	 on	 soil	 inver-
tebrate	 mock	 communities	 of	 known	 composition.	 We	 assigned	
metagenomic	reads	to	a	genome	database	of	soil	invertebrates.	We	
investigated	how	metagenomic	reads	record	the	presence	of	taxa	in	
the	mocks,	whether	read	numbers	reflect	biomass.	We	found	that	
almost	all	species	from	the	mocks	could	be	identified	with	metagen-
omics.	We	also	 found	 that	metagenomic	 reads	 reflect	biomass	 ra-
tios	 among	 the	 species,	 but	 taxonomy	and	 reference	genome	and	
assembly	properties	must	be	considered	during	metagenomics	read	
assignments.

Almost	all	species	(27/28)	were	consistently	detected	at	most	
classification	 thresholds.	 The	 single	 false-	negative	 species	 (A. 
striculus)	 was	 also	 detected	with	 very	 low	 read	 numbers,	 and	 it	
was	missed	only	because	of	stringent	quality	 filtering.	The	num-
ber	 of	 false	 positives	 was	 high	 at	 low	 classification	 thresholds,	
and	rapidly	dropped	at	higher	thresholds	(Figure 2a).	Eleven	false-	
positive	 assignments	were	 retained	 even	 at	 the	 highest	 classifi-
cation	 threshold.	 Based	 on	 these	 results,	we	 recommend	 rather	
stringent	 classification	 thresholds	 for	 the	 Kraken2-	based	 classi-
fication	 of	 eukaryotic	 metagenomic	 reads,	 although	 the	 effects	
of	 classification	 threshold	 choice	 should	be	 further	 evaluated	 in	
different	taxa.

Possible	explanations	include	contamination	and	bioinformatic	
issues.	Cross-	contamination	is	sometimes	observed	in	mock	metag-
enomes	(Bista	et	al.,	2018),	but	it	cannot	cause	false	positives	here	as	
all	species	were	present	in	all	mocks.	The	negative	control	included	
into	 the	experiment	also	excludes	cross-	contamination,	as	no	soil	
invertebrate	 sequences	were	 detected	 in	 the	 negative	 (Appendix	
S1,	https://figsh	are.com/artic	les/figur	e/Schmi	dt_et_al_Suppl_File_
html/19711 684/1).	Gut	content	may	also	result	in	the	detection	of	
unexpected	taxa	(Paula	et	al.,	2016).	However,	most	species	used	in	
these	mocks	are	not	predators.	The	predatory	tardigrade	P. richtersi 
was	exclusively	feeding	on	a	nematode	species	which	was	also	pres-
ent	in	all	the	mock	communities	(A. nanus).	The	most	likely	explana-
tion	is	related	to	aspects	of	the	metagenomic	read	assignment.	The	
first	candidate	is	the	assignment	algorithm	itself,	although	compari-
sons	show	that	Kraken	is	conservative	(Harbert,	2018).	Assignment	
of	reads	to	closely	related	taxa	 is	an	unlikely	cause	since	8	of	the	
12	 false-	positive	 species	 (at	 0.95	 classification	 threshold)	 had	 no	
genus-	level	relatives	in	the	mocks.	Assignment	to	genome	regions	
highly	conserved	and	thus	similarity	among	species	might	also	re-
sult	 in	 false	 positives.	 Unmasked	 repeats	 might	 also	 erroneously	
attract	 reads	 during	 the	 assignment.	 Eukaryotes	 are	 rich	 in	 low	
complexity	 regions,	 and	 cross-	assignment	 of	 these	 regions	might	
be	a	considerable	source	of	false	positives	in	all	eukaryotic	metag-
enomes	 (Clarke	et	al.,	2018).	The	effects	of	 repeat	 regions	 in	eu-
karyotic	metagenomic	assignments	should	be	evaluated,	although	
repeat	identification	is	not	trivial,	especially	for	understudied	taxa	
(Clarke	et	al.,	2019).

The	relationship	between	sequencing	reads	and	the	 initial	bio-
mass	of	organisms	 is	 a	 central	 topic	 in	 the	DNA-	based	analysis	of	

community	 composition.	 In	 theory,	 more	 shotgun	 metagenomic	
reads	 should	 be	 assigned	 to	 species	 which	 are	 represented	 with	
higher	 biomass	 in	 a	 sample.	 However,	 this	 relationship	might	 still	
be	 influenced	 by	 other	 factors.	 Here,	 we	 investigated	 taxonomic	
effects,	the	impact	of	genome	completeness,	genome	size,	and	GC	
content.	We	found	that	read	counts	were	most	strongly	influenced	
by	taxonomy,	followed	by	genome	size,	genome	completeness,	bio-
mass,	and	repeat	content	(Figure 1c).	We	found	no	statistically	sig-
nificant	effects	of	GC	content	on	read	assignment,	although	this	was	
expected	 based	 on	 previous	 results	 with	 bacterial	 metagenomes	
(Browne	et	al.,	2020).

There	were	 consistently	more	 reads	 assigned	 to	 some	 taxo-
nomic	groups	than	to	others	(Figure 1b,	Table 2).	The	impact	of	tax-
onomy	on	sequencing	reads	recovery	seems	to	be	systemic,	with	
some	species	having	many	reads	in	all	mocks,	some	species	having	
only	few	reads	(Figure 1a),	and	one	species	was	even	missed	due	
to	the	stringent	filtering	(Figure 2a).	Species	represented	with	low	
biomass	in	mocks	were	already	found	to	result	in	false	negatives	
in	metagenomics	 (Bista	et	al.,	2018),	and	A. striculus	was	 indeed	
represented	with	a	relatively	low	biomass	in	the	mocks.	However,	
low	 biomass	 alone	 does	 not	 explain	 the	 strong	 taxon	 effect	 on	
read	assignment.	We	suspect	 that	 the	most	 important	cause	for	
the	 strong	 taxon	 effects	 is	 likely	 caused	 by	 differences	 in	DNA	
yields	among	different	taxa	(Sato	et	al.,	2019;	Schiebelhut	et	al.,	
2017;	Tourlousse	et	al.,	2021).	Some	taxa,	e.g.,	oribatid	mites,	are	
very	 hardy,	 and	 their	 cuticles	might	 present	 obstacles	 to	 tissue	
homogenization	during	DNA	extractions.	Indeed,	the	single	false-	
negative	species	was	an	oribatid	mite.	Cells	of	different	taxa	might	
react	differently	to	extraction	(Costea	et	al.,	2017;	Morgan	et	al.,	
2010),	with	some	species	consistently	yielding	lower-	quality	DNA	
in	 lower	 quantities	 (or	 no	 DNA	 at	 all)	 than	 others	 (Schiebelhut	
et	 al.,	 2017).	 However,	 differential	 DNA	 extraction	 efficiency	
does	 not	 explain	 why	 soft-	bodied	 enchytraeids	 yield	 consider-
ably	less	DNA	than	all	other	taxa	(Figure 1b).	Differences	in	DNA	
content	 relative	 to	 body	 size	 (or	 biomass)	 might	 be	 responsible	
for	this:	some	taxa	may	contain	higher	amounts	of	DNA	per	unit	
biomass	than	others.	The	association	of	DNA	content	with	body	
size	can	be	positive	or	negative	depending	on	the	organism	group	
(Gregory,	2001).

Strong	 taxonomic	 effects	 on	 biomass–	read	 relationships	 are	
interesting	 not	 only	 for	 metagenomic	 but	 also	 for	 metabarcod-
ing	 studies.	 It	 is	 generally	 assumed	 that	 primer	mismatch	 is	 the	
most	 important	 source	 of	 taxonomically	 biased	 biomass–	read	
relationships	 in	metabarcoding	 (Collins	 et	 al.,	2019;	 Lamb	 et	 al.,	
2019;	Piñol	et	al.,	2019).	Our	 results	 suggest	 that	 taxon-	specific	
differences	 in	 DNA	 extraction	 efficiency	 and/or	 DNA	 content	
might	 also	 play	 a	 role	 in	 taxonomic	 bias.	 However,	 recognizing	
this	bias	 is	difficult	 in	metabarcoding:	both	primer	bias,	and	 fac-
tors	influencing	extraction	DNA	yields	are	likely	phylogenetically	
conserved.	 Parallel	 metabarcoding	 and	metagenomic	 studies	 on	
the	same	mock	communities	are	necessary	to	evaluate	the	relative	
importance	of	primer	bias	versus	DNA	yield	in	biomass–	read	rela-
tionships	(e.g.,	Bista	et	al.,	2018).

https://figshare.com/articles/figure/Schmidt_et_al_Suppl_File_html/19711684/1
https://figshare.com/articles/figure/Schmidt_et_al_Suppl_File_html/19711684/1
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Despite	considerable	taxonomic	effects,	biomass	was	a	statisti-
cally	significant	predictor	of	reads	(Figure 1b,	Table 2).	This	is	in	line	
with	other	metagenomic	mock	community	studies	on	multicellular	
eukaryotes,	 such	 as	 benthic	 invertebrates	 (Bista	 et	 al.,	2018)	 and	
pollen	samples	 (Peel	et	al.,	2019).	The	biomass	effect	on	reads,	al-
though	considerably	smaller	than	taxon	effects	(Figure 1c),	was	still	
sufficient	to	reflect	compositional	differences	among	the	four	mock	
types	 (Figure 3).	 This	 confirms	 the	 suitability	 of	 shotgun	 metag-
enomics	 for	 a	 semi-	quantitative	 comparison	 of	 soil	 invertebrate	
communities.

We	found	that	reference	genome	properties	influence	taxonomic	
assignments	and	read–	biomass	relationships,	and	that	these	need	to	
be	 considered	 in	metagenomic	 studies	 on	 eukaryotes.	We	 showed	
that	 reference	 genomes	 size	 influences	metagenomic	 assignments,	
with	 larger	 genomes	 attracting	 more	 reads	 than	 smaller	 genomes	
(Figure 1b).	This	is	known	from	microbial	studies	where	it	was	shown	
that	average	genome	size	of	a	microbial	community	influences	metag-
enomic	results	(Beszteri	et	al.,	2010).	Repeat	content	is	considered	to	
positively	influence	genome	size	of	eukaryotes,	at	least	in	the	range	of	
genome	sizes	of	species	analyzed	here	(Novák	et	al.,	2020).	We	found	
a	weak	negative,	but	statistically	significant	effect	of	repeat	content	
on	metagenomic	assignments	 (Figure 1b,c,	Table 2).	Repeat	content	
and	genome	sizes	were	collinear.	This	collinearity	also	suggests	that	
repetitive	element	abundance	and	repeat	family	composition	may	act	
as	"hidden	variables"	in	metagenomic	read	assignment.	The	effects	of	
repetitive	elements	should	be	evaluated	with	highly	contiguous	and	
complete	genomes	which	allow	for	an	unbiased	identification	of	the	
repetitive	/	non-	repetitive	genome	fractions.	We	found	that	genome	
completeness	recorded	as	BUSCO	scores	may	also	influence	metag-
enomic	assignments,	with	more	complete	genomes	attracting	more	
reads.	 This	 suggests	 that	 reference	 genome	 assembly	 properties	
should	also	be	considered	in	metagenomic	assignments,	even	though	
previous	 findings	 show	 that	even	 low-	coverage	 reference	genomes	
can	perform	well	 (Sarmashghi	et	al.,	2019).	GC	content	of	genomes	
might	also	influence	metagenomic	assignments	(Browne	et	al.,	2020),	
although	in	our	case	this	effect	was	limited.

Considerable	 difference	 in	 sequencing	 effort	 (simulated	 by	
downsampling	 sequencing	 results	 to	 over	 100th	of	 original	 reads)	
had	only	minor	 influences	on	 taxonomic	 identification,	 and	on	 re-
sults	about	 factors	which	 influence	 read	abundances	and	commu-
nity	composition	(Figures	S1,	S2).	We	obtained	highly	similar	results	
with	 as	 little	 as	 100,000	 reads	 per	 sample	 compared	 to	 the	 full-	
sequencing	effort	(over	13	million	reads	per	sample).	This	suggests	
that	metagenomics	 of	 eukaryotic	 samples	 can	 be	 performed	with	
low-	sequencing	 efforts	 and	 costs	when	 the	 aim	 is	 the	 taxonomic	
profiling	of	samples.	This	is	similar	to	results	from	bacterial	commu-
nities	(Gweon	et	al.,	2019).	Cost	efficiency	of	metagenomics	might	
even	approach	the	costs	of	metabarcoding,	although	this	probably	
depends	 on	 the	 complexity	 of	 communities.	 The	 low-	sequencing	
effort	needed	also	suggests	that	relatively	 low-	yield	 long-	read	eu-
karyote	metagenomics,	i.e.,	on	Oxford	Nanopore	portable	MinION	
sequencers,	can	be	employed	for	eukaryotic	metagenomics	in	areas	
which	currently	lack	expensive	short-	read	sequencing	infrastructure.

Mock	 community	 experiments	 of	metagenomics	 are	 import-
ant	 to	 understand	 factors	 which	 influence	 species	 assignments	
and	sequencing	read	abundances.	However,	experimental	condi-
tions	are	considerably	simpler	than	conditions	encountered	in	real	
community	samples.	Real	samples	likely	contain	more	soil	inverte-
brate	species,	including	cryptic	ones.	Many	of	these	species	might	
not	be	present	in	genome	databases,	and	this	means	that	a	large	
fraction	of	metagenomic	reads	might	not	be	identifiable.	We	ex-
pect	that	this	will	rapidly	change	in	the	next	years	as	biodiversity	
genomics	 initiatives	cover	more	of	eukaryotic	diversity	with	ref-
erence	quality	genomes	(Formenti	et	al.,	2022;	Lewin	et	al.,	2022),	
and	as	phylogeny-	based	assignment	approaches	are	rapidly	devel-
oping	(Asnicar	et	al.,	2020).	Real	samples	will	also	contain	higher	
numbers	of	bacteria	and	fungi.	This	is	specifically	true	for	eDNA	
samples	where	most	reads	likely	originate	from	bacteria	and	fungi	
(Fierer	et	al.,	2012).	This	means	that	sequencing	depths	will	need	
to	be	higher	when	dealing	with	 real	 communities,	 especially	 for	
eDNA	samples.	Other	factors	also	need	to	be	evaluated,	such	as	
release	 of	 eDNA	 be	 different	 taxa,	 legacy	 effects	 due	 to	 long-	
term	preservation	of	DNA	in	soils	(Pedersen	et	al.,	2015),	or	enzy-
matic	inhibition	and	strategies	for	sample	comparison	(Hedman	&	
Rådström,	2013).	We	are	convinced	that	mock	community	exper-
iments	will	 remain	 important	 tools	 to	understand	 these	 sources	
of	variation.

4.1  |  Roadmap for future metagenomics 
on metazoans

Our	 results	 outline	 a	 roadmap	 for	 future	 shotgun	metagenomic	
work	 on	metazoan	mock	 communities.	 In	 the	wet	 lab,	 DNA	 ex-
traction	needs	to	be	optimized	and	likely	adapted	to	taxa	of	inter-
est.	An	important	component	of	this	is	to	ensure	the	best	possible	
homogenization	of	bulk	 samples,	 probably	under	 cryogenic	 con-
ditions.	 This	 is	 particularly	 important	 in	 order	 to	 detect	 species	
which	yield	low	amounts	of	DNA,	since	this	may	frequently	hap-
pen	in	more	species-	rich	natural	communities.	Differences	in	DNA	
content	 per	 unit	 biomass	 among	 and	within	major	 taxon	 groups	
should	be	evaluated	and	corrected	for.	 In	bioinformatics,	assign-
ment	 algorithms	 should	 be	 evaluated,	 adapted,	 and	 developed	
with	 eukaryotes	 in	 mind.	 The	 performance	 of	 distinct	 genomic	
regions	 (i.e.,	 conventional	 marker	 genes,	 mitogenomes,	 coding	
regions,	 ultraconserved	 regions,	 and	 repeat	elements)	 should	be	
evaluated,	 especially	 with	 respect	 to	 false-	positive	 detections.	
Genome	databases	will	likely	remain	incomplete	for	some	time.	An	
important	direction	is	to	evaluate	how	incomplete	databases	(i.e.,	
databases	 not	 containing	 the	 target	 species,	 but	 congenerics	 or	
even	less	related	species)	perform	in	taxonomic	assignments.	It	is	
also	important	to	consider	the	completeness	of	the	references	ge-
nome	assemblies,	as	more	complete	genomes	will	allow	to	assign	
more	metagenomic	reads.	Genome	completeness	and	genome	size	
should	be	explicitly	accounted	for	in	analyses,	for	example,	as	pre-
dictors	in	generalized	linear	models.
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5  |  CONCLUSION

Metagenomics	 is	 a	 promising	 alternative	 to	 metabarcoding	 also	
for	 eukaryotic	 communities,	 even	 at	 very	 low-	sequencing	 efforts.	
Although	 theory	 suggests	 that	 metagenomic	 reads	 should	 well-	
represent	biomass	relationships	in	communities,	differences	among	
organisms	related	to	DNA	extraction	efficiency	and	genome	prop-
erties	 have	 strong	 influences	 on	 the	 biomass–	read	 relationships.	
These	 effects	 need	 to	 be	 further	 investigated	 and	 quantified	 in	
parallel	metabarcoding–	metagenomic	 experiments.	 The	 effects	 of	
taxonomy,	genome,	and	assembly	properties	should	be	considered	
in	analyses.	Generalized	linear	models	provide	an	excellent	opportu-
nity	for	this.	With	affordable	sequencing	and	increasingly	accessible	
eukaryotic	reference	genomes,	metagenomics	is	becoming	a	viable	
alternative	to	metabarcoding	for	describing	community	composition	
and	structure.
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