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Abstract: Localisation of mast cells (MCs) at the abluminal side of blood vessels in the brain favours
their interaction with glial cells, neurons, and endothelial cells, resulting in the activation of these
cells and the release of pro-inflammatory mediators. In turn, stimulation of glial cells, such as
microglia, astrocytes, and oligodendrocytes may result in the modulation of MC activities. MCs,
microglia, astrocytes, and oligodendrocytes all express P2X receptors (P2XRs) family members that
are selectively engaged by ATP. As increased concentrations of extracellular adenosine 5′-triphosphate
(ATP) are present in the brain in neuropathological conditions, P2XR activation in MCs and glial cells
contributes to the control of their communication and amplification of the inflammatory response. In
this review we discuss P2XR-mediated MC activation, its bi-directional effect on microglia, astrocytes
and oligodendrocytes and role in neuroinflammation.
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1. Introduction

Mast cells (MCs) are immune cells that form part of the innate branch of the immune
system. Since MCs express a broad spectrum of high affinity receptors (e.g., high-affinity
IgE receptor (FcεRI), Fc-gamma receptor (FcγR), complement receptors and purinergic re-
ceptors), they rapidly respond to a variety of environmental and immune stimuli, resulting
in the release of pre-formed mediators such as histamine and then later the production
of newly synthesized cytokines, chemokines, growth factors, proteases, and lipid media-
tors [1–3].

MCs are of dual hematopoietic origin. In mice, a first wave of MCs originates during
embryonic development from yolk-sac progenitors followed by a second wave of bone
marrow-derived MCs in adulthood. This duality in the origin of MCs may influence the
cell phenotype and function in various tissues [4,5]. After leaving the bone marrow, MC
committed progenitors circulate in the bloodstream and mature in peripheral tissues under
the influence of a cocktail of growth factors that include the stem cell factor [6,7].

Human MCs are found in low numbers in the hypothalamus, leptomeninges, area
postrema, and the dura matter of the spinal cord [8]. Nearly 97% of all MCs found in
the brain are positioned in the abluminal side of the brain blood vessels, which allows
them to communicate with neurons, glial cells (such as astrocytes and microglia) and
endothelial cells [8,9]. In the human brain, MC density was found to be less than <5 MCs
in 5 µm thick tissue sections in meninges and perivascular area. However, during viral,
bacterial and parasitic infections, MC numbers were observed to be higher, at around
11–20 cells per 5 µm thick tissue section in meninges and around 5–20 in perivascular
area [10]. In the healthy brain the predominant MC phenotype is tryptase+chymase+ and
their overall numbers can be affected by trauma and/or stress, whilst their activation
could potentially influence social behaviour [9–12]. The number of MCs in the brain can
be sex-dependent, especially in young mice pups, where the total number of MCs in the
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preoptic area is nearly two times higher for males than females, potentially contributing to
the gender bias in human neuropathology for diseases such as autism spectrum disorder
(ASD) or schizophrenia [13,14]. MC numbers are also age-dependent, with MCs being
most abundant in brains of individuals under 19 years old, a pattern probably related to
the age involution [8,15,16].

P2X receptors (P2XRs) are membrane ligand-gated ion channels and are members
of the purinergic receptor family [17,18]. Of the seven P2XR family members, only four
of them (P2X1, P2X4, P2X6 and P2X7) have been shown to be expressed in MCs, with
each of them playing an important role in regulating MC activities, such as Ca+ influx
and degranulation [19–21]. P2XRs are also present in neurons and glial cells, where their
engagement may affect the development of neuroinflammatory pathologies such as the
Alzheimer’s disease (AD), Parkinson’s disease (PD) and Multiple sclerosis (MS) [22–25].

Here, we explore the effects of the P2XR-mediated MC activation on microglia, astro-
cytes and oligodendrocytes and its role in neuroinflammation.

2. MCs and Glial Cells in Neuroinflammation

While diseases like MS are well-known to be inflammatory in nature, it is now being
increasingly recognised that many other neurological conditions, such as the degenerative
diseases AD or PD, have an inflammatory component contributing to their debilitating
pathology. There are many cell types that have now been implicated in neuroinflammation,
including glial cells (such as astrocytes, microglia, and oligodendrocytes) and MCs [9,26].

Activation of these cells occurs in response to mediators released from surrounding im-
mune cells and neurons undergoing necrosis or activation, such as complement, histamine,
neurotransmitters (e.g., glutamate; gamma-aminobutyric acid), adenosine 5′-triphosphate
(ATP), growth factors and cytokines (e.g., TNF-α, IFN-γ, IL-17). The subsequent release of
inflammatory cytokines (e.g., TNF-α, IL-1β, IL-6, IL-10), reactive oxygen species and nitric
oxide by activated glial cells greatly amplifies the inflammatory response and promotes
neurotoxicity [27–29].

In terms of the glial sub-types, astrocytes play an important role in BBB maintenance
and homeostasis of the CNS and have a critical role in maintaining neurological functions
by regulating synapse formation and its preservation during disease [30]. They account for
around 25% of the brain volume, making them the most abundant glial cell population [31].

Microglia are innate immune phagocytes that account for about 10% of all glial
cells [32]. They regulate brain development and maintenance of neuronal networks. During
injury, microglia contribute to eliminate dead cells, protein plague aggregates and microbes
by phagocytosis [33,34].

Oligodendrocytes, which are key players in myelin production and remyelination pro-
cesses, comprise 5–8% of the glial cell population. Furthermore, these cells are producers of
neurotrophic factors and stabilisers of neuronal connectivity. Myelinating oligodendrocytes
are under the pressure of a high metabolic demand, iron, and lipids. Thus, this renders
them highly sensitive to oxidative stress, to excessive ATP and/or activation of glutamate
receptors, and hypoxic or ischemic damage. Their loss in numbers or dysfunction are
evident in CNS trauma, ischaemia, autoimmune and AD pathogenesis [35,36].

MCs in the central nervous system (CNS) act as a source of a wide variety of proin-
flammatory mediators [9,37]. Furthermore, they are first responders in brain injury through
their rapid degranulation and close proximity to neurons and glial cells thus contributing
to blood brain barrier (BBB) breakdown and to both the initiation and exacerbation of
the inflammatory response [38,39]. MC mediators may also function at a distance, with
granular remnants being observed up to 500 µm away from the cell of origin, via the
paracrine release of granular components [40].

Even though the number of brain resident MCs is very low, many cell products,
such as histamine, tryptase, chymase and TNF-α, have a significant impact on the per-
meability of the BBB and the functionality of adjacent neurons and glial cells, such as
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astrocytes, microglia, and oligodendrocytes, thus possibly contributing to the development
and exacerbation of neuroinflammatory diseases [41–43].

The role of MCs in CNS homeostasis and neuroprotection is yet not fully understood.
The MC-mediated release of serotonin in mice has been found to promote spatial learn-
ing and memory [44], histamine was shown to regulate sleep/wake and food-seeking
behaviour [45], and MC protease-4 protected CNS from post-traumatic brain inflamma-
tion [46]. In the human system, MCs differentiated from CD34+ blood progenitors were
shown to synthesize and release angiogenin [47], that is neuroprotective and promotes sur-
vival of motor neurons [48]. Hendriksen et al. [9] described several mediators involved in
neurogenesis, such as IL-6, IL-1β, TNF-α, histamine and serotonin, of which MCs could be
a key source. Furthermore, a recent study by Lenz et al. [13] described brain resident MCs
as a novel source of sex-specific variability during mice development, as the MCs-secreted
histamine stimulates microglia to release prostaglandin E2, affecting the masculinisation
process.

Emerging evidence indicates that MCs influence the onset and progression of neu-
roinflammatory diseases. In MS patients and rat models, large congregations of MCs were
found in CNS areas of inflammatory demyelination [49], associated with elevated tryptase
levels in the cerebrospinal fluid, BBB breakdown and neutrophil recruitment [50]. In a
mouse model of PD, MC proteases were shown to induce release of chemokine (C-C motif)
ligand (CCL) 2 from astrocytes, microglia, and neurons [51]. As CCL2 is a known chemoat-
tractant for neutrophils, monocytes, and macrophages [52], its release from activated glial
cells and neurons may attract these immune cells to the site. In a different mouse model of
PD, Hong et al. [53] demonstrated recruitment of MCs into the substantia nigra through
CCL2 release by microglia and astrocytes. The recruited MCs were shown to express
tissue transglutaminase 2 (TG2), which is associated with release of various inflammatory
mediators, such as histamine, TNF-α and leukotrienes. The same study also observed
increased levels of histamine, IL-6, TNF-α, leukotrienes and TG2 activity in sera of human
PD patients compared to healthy controls. Moreover, elevated levels of CCL2, together
with increased numbers and degranulation of MCs were observed in brain sections and
serum from C57BL/6 mice that suffered a traumatic brain injury [54]. In amyotrophic
lateral sclerosis (ASL), MCs by secreting IL-6 and IL-10 were suggested to be early players
in disease pathogenesis [55]. Degranulating MCs were also found to infiltrate skeletal
muscle and areas along the peripheral motor pathway in SOD1 rats, a transgenic animal
model with a G93A mutation in the SOD1 gene, designed to mimic ASL. This infiltration
decreased upon administration of masitinib, a c-Kit receptor inhibitor drug [56].

In cerebral spinal fluid from AD patients, higher concentrations of serum amyloid A
(SSA) were observed compared to normal controls [57]. A study by Barbierato et al. [58]
showed that TNF-α stimulation upregulates SSA1 expression in glial cells from Sprague-
Dawley rat cerebral cortices. As SSA activates and is a chemoattractant for MCs, its elevated
expression during AD [59,60] might attract MCs to β-amyloid peptide (Aβ) deposit sites
and thus suggesting a glial-mediated activation of MCs. However, at this stage these are
only speculations and further investigations are needed.

Of note, most of the data on the role of MCs in the brain was obtained using murine
models [13,50,51,53,58,61], with only a small level of validation in human systems [47,53,57].
Therefore, while data are suggestive, the degree to which MCs communicate with glial
cells, how they influence brain microenvironment and if they can act as main culprits in
neuroinflammatory diseases, is not yet fully understood.

3. Expression of P2XRs and the Role of ATP and P2XR Activation in Neuroinflammation

3.1. ATP Release during Inflammation and Brain Pathology

In the CNS, extracellular ATP acts as a fast-excitatory neurotransmitter and an im-
portant mediator for neuron-glial, glial-glial, and neuron-neuron communication [62,63].
In a healthy tissue, ATP is found extracellularly at negligible concentrations, with neu-
rons and glial cells carrying millimolar concentrations of ATP intracellularly [64]. This is
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released by Panx1 and Connexin channels, through vesicular transport or through mem-
brane stress/damage [65]. For example, during inflammation, necrotic cells set free up to
hundreds of µmol/L of ATP [66]. Increased concentrations of ATP have been detected in
brain pathologies upon trauma, ischemia, epilepsy, PD or MS [67–69].

3.2. Expression of P2XRs and The Role of ATP and P2XR Activation in Glial Cells

Extracellular ATP is the sole activator of all P2XR family members and undergoes a
rapid enzymatic degradation into adenosine diphosphate (ADP) upon extracellular release,
which is then further degraded into adenosine monophosphate (AMP) and adenosine [70,71].
P2XR engagement by ATP activates Na+ and Ca2+ influx, and K+ efflux, resulting in the
plasma membrane depolarisation and reorganization, release of cytokines (such as IL-6,
IL-8 and TNF-α) and caspase activation [72,73]. The seven P2XRs exhibit different affinities
for ATP and exist as homomeric or heteromeric receptors, with homomeric P2X5 and
P2X6 potentially not being functional in humans. For P2X6 in particular heteromerization
appears to be necessary for a correct folding and assembly [74–76].

Together with the P2XRs, eight different P2YRs belong to the purinergic receptor
family. P2YRs are G-protein coupling receptors expressed and functional on MCs and
glial cells and involved in AD or epilepsy disease pathogenesis [77–80]. However, since
the P2YRs are activated by multiple mediators, such as ATP, ADP, UTP, UDP and UDP-
glucose [81] and since this review only examines the unique role of ATP in linking glial
and MC activities, these receptors will not be discussed further.

3.3. P2XR Expression in Astrocytes

In astrocytes, P2X1 exists as a homomeric, or as a P2X1/P2X5 heteromeric receptor,
the latter having unique properties compared to its homomeric counterpart. For example,
the P2X1/P2X5 heteromeric receptor in astrocytes has a higher sensitivity to ATP with no
desensitization response compared to the homomeric P2X1 [82,83]. However, P2X1/P2X5
expression is age-dependent, with a lack of heterodimers in 6 month old mice [22]. It is
therefore unlikely that this receptor has an impact on astrocytes activities in adult mice.

P2X2 activation in astrocytes was found to regulate GABAergic transmission and
ASD like behaviour in C57BL/6J mice carrying a knockout of the type 2 inositol 1,4,5-
trisphosphate 6 receptors (IP3R2) gene, as mutations in this gene are associated with
ASD [84]. Activation of the P2X2 also led to an increase in mRNA expression of leukaemia
inhibitory factor (LIF), a cytokine inhibiting cell differentiation, in astrocytes isolated from
neonatal C57BL/6J mice. Thus, this contributing to the efficacy of electroconvulsive therapy
in psychiatric disorders [85].

Expression of P2X3 was reported in astrocytes in Sprague-Dawley rats [86] and in
primary astrocytes cultures obtained from rats cerebral cortex [87], with receptor activation
modulating craniofacial neuropathic pain [88].

Regarding P2X4, there is still limited evidence of its expression in astrocytes. This was
demonstrated by RT-PCR and immunohistochemistry in rat cells [89,90]. However, studies
performed in GFAP promoter-controlled EGFP-expressing (GFAP/EGFP) transgenic mice
and in vitro using hippocampal slices from transgenic GFAP/EGFP mice and Wistar rats
did not detect any P2X4-mediated ATP-induced current [82,91].

Rat cortical astrocytes [87] and human astrocytes isolated from foetal cortex ex-
press P2X5 [92]. However, knowledge about the receptor functionality is restricted to
the P2X1/P2X5 heterodimers [80].

The presence of P2X6 in astrocytes remains controversial, as RT-PCR and western blot-
ting of primary astrocytes from rats cerebral cortex didn’t show any expression [87], whilst
P2X6 expression was detected using qPCR in human astrocytes from foetal cortex [92] and
in astrocytes end-feet derived from Sprague-Dawley rats [93].

P2X7 activation was shown to attenuate LPS-induced release of TNF-α in primary
cultures of rat cortical astrocytes [94]. In contrast, stimulation of P2X7 in mouse astrocyte
cultures resulted in the secretion of various transmitter molecules, such as glutamate or
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GABA [95], and of a MAP kinase-controlled secretion of CCL2 in the Sprague-Dawley rat
astrocytes [96]. In the hippocampus of C57BL/6J mice, P2X7 activation with extracellular
ATP resulted in the release of neurotransmitters from astrocytes, leading to the stimulation
of surrounding neurons [97]. In human foetal astrocyte cultures, regulation of P2X7 was
induced by IL-1β [98] and its expression was observed in astrocytes from post-mortem
brain tissues sections in AD patients [99]. In SOD1 mice astrocytes, P2X7 activation
contributed to their toxicity towards motor neurons [100].

3.4. P2XR Expression in Microglia

In both mouse and human microglia, P2X4 and P2X7 are highly expressed [101], while
evidence for the expression of P2X1, P2X2, P2X3 and P2X6 remains controversial. In this
regard, microglia cultures obtained from Sprague-Dawley rats and BV-2 (immortalized
murine microglia) cells showed P2X1 expression [102,103], whilst C57BL/6J and SOD1
mice microglia cells displayed very low or no expression [104,105]. Xiang & Burnstock [106]
showed P2X1 expression in Wistar rats microglia only at late stages of embryonic develop-
ment and until day 30 of postnatal development, suggesting that the expression of P2X1 in
animal models might be species and age dependent. In human microglia, voltage-clamp
electrophysiology performed after ATP stimulation in two donors showed no evidence
of rapid desensitising inward current expected from P2X1 and P2X3 engagement [107].
RNA sequencing studies by Chiu et al. [108] and Solga et al. [109] in microglia from SOD1
and C57BL/6 mice, detected either none or extremely low expression levels of P2X1, P2X2,
P2X3, P2X5 and P2X6, respectively. On the contrary, western blot analysis of N9 murine
microglial cell line showed the presence of P2X1, P2X2, P2X3 and P2X6 [110]. Thus, dis-
crepancies in P2X1, P2X2, P2X3 and P2X6 expression were found not only between species
but also in similar murine systems.

P2X4 plays a major role in the regulation of neuronal and glial functions, as periph-
eral damage induces an upregulation of P2X4 in microglia and affects the inflammatory
response [111]. It appears that P2X4 in rat cultured microglia is predominantly stored
intracellularly while membrane expression is rapidly upregulated through C-C chemokine
receptor type (CCR) 2-mediated activation upon CCL2 or CCL12 ligand binding [112].
Stimulation of P2X4 in mice microglia leads to maintained mechanical hypersensitivity
after nerve injury, through the release of brain-derived neurotrophic factor [113], which is
a crucial signalling mediator between microglia and neurons [114]. Deletion of P2X4 in
P2X4−/− KO mice resulted in the absence of mechanical hypersensitivity after peripheral
nerve lesion [113]. In a mouse model of experimental autoimmune encephalomyelitis
(EAE), P2X4 was shown to be a modulator of microglia polarization and its increase in
expression to be a marker of the neuroinflammatory response [115]. Furthermore, P2X4
was also suggested to contribute to the activation and migration of Lewis rat microglia into
the site of a formalin-induced injury [116].

Activation of the P2X7 in mice microglia results in the activation of the inflammasome,
release of TNF-α, CCL2, IL-6, IL-1β, and IL-18, and increased cell death [117,118]. In healthy
human donors, microglia isolated from the cortex expressed functional P2X7, but no release
of IL-1β or IL-18 was observed upon LPS priming and subsequent ATP stimulation. The
authors hypothesized that the cultured cells switched from a M1 inflammatory phenotype
to an anti-inflammatory M2 phenotype in the presence of serum contained in the culture
medium, therefore possibly shifting the nature of the microglia behaviour [107].

P2X7 activity in microglia has been linked to several neuroinflammatory diseases.
In a mouse model of AD, upregulation of P2X7 expression was observed in microglia in
proximity to Aβ peptide aggregates, and this expression was further elevated in the later
stages of Aβ pathology. The same results were then observed in AD patients, suggesting
an importance of P2X7 in AD pathology [23,99,119]. P2X7 activation in microglia has also
been linked to MS, stress, depression, and PD in Sprague-Dawley rats, Wistar rats and
C57BL/6J mice models [24,25,120,121]. Upregulation of P2X7 expression in microglia was
observed in SOD1 mice [122] and receptor activation was found to modulate autophagic
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flux, a homeostatic mechanism involved in degradation of damaged organelles and protein
aggregates, whose abnormalities were reported in ASL [123]. Inhibition of P2X7 using bril-
liant blue G showed prolonged survival in female SOD1 mice [124], while administration
of JNJ-47965567 P2X7 inhibitor in the same model did not alter ALS progression [125].

3.5. P2XR Expression in Oligodendrocytes

Expression of P2X1, P2X2 and P2X3 was observed in oligodendrocytes progenitor
cells isolated from postnatal 1 day Wistar rats [126] and in human stem cell-derived
oligodendrocytes progenitor cells [127], while was absent in mouse mature and progenitor
oligodendrocytes [128].

P2X4 expression in oligodendrocytes was confirmed by western blot analysis, qPCR
and RNA sequencing in mice, rats and human progenitor oligodendrocytes [126–128].
However, Zabala et al. [115] were unable to link receptor expression to functionality in
these cells. P2X5 and P2X6 were not found in oligodendrocytes lineage cells [129].

In contrast to other P2XRs, the functionality of P2X7 in oligodendrocytes has been
demonstrated by Matute et al. [130] where a continuous activation of P2X7 led to the
oligodendrocytes’ death, due to the P2X7-mediated Ca2+ toxicity. Furthermore, an increase
in P2X7 expression in oligodendrocytes was found in samples from patients with MS, in a
mouse model in post-episodes of status epilepticus and during epilepsy [131], and in rat
model of ischemic damage [132].

Overall, P2XR activities in glial cells are yet unclear, with the exception of P2X7, which
engagement initiates the release of mediators whose nature differs between species [101,133].

3.6. Expression of P2XRs and The Role of ATP and P2XR Activation in MCs

In MCs, expression of P2X1, P2X4 and P2X7 has been confirmed by RT-PCR analysis
in LAD2 cells and human lung MCs, and by proteomics analysis in human and mouse
primary connective tissue MCs [19,134]. P2X6 expression has also been observed in LAD2
and human lung MCs, however its functionality has not been demonstrated yet [19,135].

The MC homomeric P2X1 binds ATP with high affinity, with only 1 µM needed to
activate P2X1 in LAD2 cells [19]. Study by Wareham & Seward [20] observed that the
engagement of the P2X1 triggers a fast and transient calcium influx and a prolonged
exposure to even low ATP concentrations may lead to its desensitisation. Even though it
was concluded that P2X1 activation in LAD2 cells does not trigger degranulation, it was
not investigated further if the activation might lead to a release of specific mediators.

Like the P2X1, P2X4 activation leads to a calcium influx into MCs without induc-
ing degranulation. However, P2X4 activation with an ATP concentration of less than
300 µM significantly increased degranulation mediated by high-affinity IgE receptor or by
G-coupled prostaglandin EP3 receptor stimulation in bone marrow-derived MCs (BMMCs)
from C57BL/6 mice [21,136]. P2X4 stimulation by ATP was also shown to enhance antigen-
induced phosphorylation of Syk and PLCγ signalling pathways in mice BMMCs, inde-
pendent of the P2X4-mediated calcium influx [137]. Inhibition of P2X4, by the potent and
selective benzodiazepine derivative 5-BDBD, in human lung MCs diminished release of
cysteinyl leukotrienes [135].

To date, P2X7 is the only P2XR demonstrated to induce MC degranulation. Activation
of P2X7 triggers degranulation of meningeal MCs derived from C57BL/6 mice and human
LAD2 cells [20,138], resulting in the immediate release of many pre-stored inflammatory
mediators (such as histamine, tryptase, chymase, IL-6, IL-1β, and CCL2), with others, such
as IL-5, CCL3 and eicosanoids, being newly synthesised over time [139,140]. Furthermore
Shimokawa et al. [141] reported that P2X7 activation by ATP induced the secretion of IL-33
in mouse BMMCs.

In contrast to glial cells, P2X1, P2X4, P2X6 and P2X7 expression has been observed
in vivo and in vitro in murine and human MCs, with P2X7 detected in brain resident
MCs [19,134,138].
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3.7. Expression of P2XRs: Public Gene Expression Databases

The availability of public datasets such as the iFANTOM and ImmGen consortiums
now provide a useful tool to glean additional information on the expression of P2XRs in
MCs and glial cells. Table 1 summarises the relative logarithmic expression (RLE) of P2XRs
in human skin MCs samples [142], cerebellum, cortex astrocytes, and oligodendrocyte
precursors [143] in comparison to other cell types (FANTOM5; www.fantom.gsc.riken.jp
accessed on 30 July 2021). The ImmGen consortium (www.immgen.org accessed on 30 July
2021) displays murine microarray data [144], reporting organ specific and tissue-dependent
P2XR expression in MCs (Table 2). P2X1, P2X4 and P2X7 are mostly expressed in the
peritoneal cavity while P2X2, P2X3, P2X5 and P2X6 expression is constitutive and shared
between organs and tissues. It should be noted, that P2XR expression is lower in MCs
and glial cells compared to other cell types, except for P2X1, which exhibits the highest
expression in skin MCs.

Table 1. Relative logarithmic expression (RLE) of P2XRs in MCs, astrocytes, and oligodendrocytes. P2XR RLE expression in
skin MCs [142], cerebellum and cortex astrocyte and oligodendrocyte precursors [143] was obtained using Fantom 5 and
compared to cell types with the highest RLE for a given receptor.

Gene MCs Astrocytes Oligodendrocytes Cell Types/Tissues with Highest RLE
Skin (n = 4) Cerebellum (n = 3) Cortex (n = 3) Precursors (n = 1)

P2X1 337.186 3.017 3.345 1.692 337.186 (MCs)
P2X2 0.032 0 0 0 15.242 (Seminal vesicle)
P2X3 25.120 67.947 96.481 51.310 282.548 (Smooth muscle cells)
P2X4 27.792 6.232 4.140 6.202 679.838(CD14+ monocytes)
P2X5 71.924 363.640 0.814 294.329 2237.838 (Bronchial epithelial cells)
P2X6 2.373 1.187 65.063 0 25.101(Cerebellum)
P2X7 14.628 0.164 0.324 0.564 692.939 (CD14+ monocytes)

Table 2. P2XR expression in mouse MCs of different tissue origin. Shown are robust multichip average (RMA) normalized
values. Data were obtained from the ImmGen consortium [144].

Gene MC Origin
Skin (n = 3) Peritoneal Cavity (n = 3) Tongue (n = 3) Oesophagus (n = 3) Trachea (n = 3)

P2X1 1356.95 2106.25 1715.59 1105.08 1535.27
P2X2 77.3146 73.6825 87.4627 85.148 76.2191
P2X3 65.3869 64.7405 61.4027 49.9133 51.1301
P2X4 1289.72 3261.39 1656.1 1986.01 2416.66
P2X5 165.822 117.41 146.774 142.33 143.221
P2X6 112.974 97.5069 107.431 122.073 100.487
P2X7 299.952 2413.83 695.205 871.043 1146.44

4. Interactions and Cross-Talk between MCs and Glial Cells in Neuroinflammation:
The Role of ATP and P2XRs

In recent years, there has been increased interest in the interactions and cross-talk
between MCs and glial cells. For example, MC derived histamine and ATP altered phago-
cytic activities of cultured microglia from Wistar rat cells [145], peripheral surgery in
C57BL6/J mice induced MC degranulation which led to BBB breakdown and microglial
activation [146]. Furthermore, the MC degranulator C48/80 dosed to the hypothalamus of
Sprague-Dawley rats induced microglia activation, phosphorylation of mitogen-activated
protein kinase (MAPK) and increased expression of H1R, H4R, protease-activated receptor-
2 (PAR2) and toll-like receptor (TLR) 4 receptors [147]. Interactions between MCs and
astrocytes through CD40/CD40L receptors, that caused the release of IL-1β, IL-6, TNF-α
and CCL2 from astrocytes, were observed in co-cultures of human MCs (HMC-1 cells and
U87 cells) and mouse (BALB/c) astrocytes [148]. In in vitro co-cultures, rat peritoneal MCs

www.fantom.gsc.riken.jp
www.immgen.org
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engaged with oligodendrocytes in a bidirectional cross-talk by adhering to them and releas-
ing granule content thereby causing morphological changes and initiating apoptosis [149].

At present, despite limited direct evidence of how activation of P2XRs in MCs affects
glial cells and vice versa, from indirect evidence we can speculate the likely effect that
activation of P2XRs could have on the communication between MCs and glial cells (Figure 1
and Table 3).
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Figure 1. ATP-mediated MCs interactions with microglia, astrocytes, and oligodendrocytes. The blood brain barrier consists
of a semi-permeable border composed of endothelial cells and tight junctions wrapped around a blood vessel. At the
abluminal side of the blood brain barrier a variety of cell types can be found, such as resident glial cells or wandering
immune cells. One of the immune cells found on the abluminal side are MCs that possess an ability to influence the function
of microglia, astrocytes, and oligodendrocytes, through activation of P2XRs, resulting in a release of various mediators, such
as of histamine, tryptase, IL-6, IL-13, TNF-α and IL-33. On the other hand, microglia can release TNF-α, IL-6 and potentially
IL-33 upon P2XR activation, which will result in altered function of mast cells and a stronger immune response.

Upon P2XR activation, MCs release a wide range of inflammatory mediators, that
modulate the activity of cells in their proximity [150–152]. For example, MC tryptase
activates microglial PAR2, resulting in the release of pro-inflammatory mediators such
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as TNF-α and IL-6, which will in turn upregulate PAR2 expression on microglia, cause
apoptosis in oligodendrocytes and release of glutamate from astrocytes [153–156]. Tryptase
also plays a role in promoting the expression of P2X4 on microglia, where the activation
of this receptor leads to a release of brain-derived neurotrophic factor [157]. On the other
hand, activation of microglia through P2X7 and the release of IL-6 and TNF-α, could affect
MC secretion of IL-13, IL-4, and upregulation of TLR2/TLR4 receptors [9,158].

Activation of P2X7 in MCs also triggers the release of histamine. About 50% of
all histamine present in the brain is released by MCs [159] and stimulates microglia to
secrete TNF-α, IL-1β and IL-6, while suppressing production of TNF-α and IL-1β in
astrocytes [9,160–162]. Histamine was also shown to negatively regulate the differentiation
of oligodendrocytes through H2 receptor engagement [163], while inhibition of H3 receptor
promoted murine oligodendrocytes differentiation and remyelination [164].

MCs secrete IL-33 upon P2X7 activation [165], which in mouse models promotes mi-
croglia migration to sites of CNS injury [166] and the release of pro-inflammatory mediators
that activate endothelial cells (thus facilitating leukocyte recruitment) [167], but inhibits
myelination [168]. ATP-mediated release of IL-33 in microglia has been suggested [169]
but remains controversial. IL-33 expression in microglia has been demonstrated in brain
samples of MS patients and in wild type C57BL/6J murine brain [168,170]. However,
primary cultures of C57BL/6J mouse microglia did not show any detectable levels of
IL-33 [171,172]. In contrast, astrocyte-derived IL-33 was found to delay disease onset in
the ASL transgenic mice model and promote microglia synapse engulfment in C57BL/6J
mice [173,174]. IL-33 is known as an alarmin and is a potent modulator of MC activities
and contributor to allergic inflammation. In MCs, IL-33 promotes the release of soluble ST2
receptor and enhances MC adhesion to laminin and fibronectin [175]. However, whether
specific MC activities are regulated by glial cell-produced IL-33 is yet to be determined.

While there is only limited evidence, especially in the human system, on how P2XR
engagement affects communication between MCs and glial cells, the data are suggestive
that P2XR activation could be a key mechanism in regulating cell-cell interactions in the
brain.

Table 3. MCs and glial cells activities induced by P2XR engagement.

P2XR Induced Activities

Mediators Glial Cells MCs References

Tryptase Upregulation of P2X4 on microglia N/A [157]

PAR2 Release of MC tryptase activates PAR2 receptor
on microglia

Activation of PAR2 receptor in
microglia results in TNF and
IL-6 release, affecting MCs

[154–156]

TNF-α/IL-6 Apoptosis in oligodendrocytes; glutamate
release from astrocytes

Secretion of IL-13 and IL-4
from MCs, together with

upregulation of TLR receptors

[9,153,158]

Histamine Release of TNF-α, IL-1β and IL-6 from microglia;
inhibition of TNF-α and IL-1β expression in

astrocytes; negative regulation of
oligodendrocytes differentiation

N/A [160–164]

IL-33 Promotion of microglia migration to site of CNS
injury and release of pro-inflammatory
mediators; inhibition of myelination by
oligodendrocytes; release of IL-33 from
astrocytes delays ASL disease onset and
promotes microglia synapse engulfment

Functions as alarmin on MCs,
affecting activation status and

mediator release

[166–168,173–175]
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5. Concluding Remarks

MCs, microglia, astrocytes, and oligodendrocytes play important roles in response
to the release of ATP during neuroinflammation. However, overall, it appears that P2X7
expressed in MCs might have the most influential effect on onset and progression of
neuroinflammatory diseases, as its activation results in MC degranulation and the release
of pro-inflammatory cytokines that have a significant downstream impact on microglia,
astrocytes, and oligodendrocytes activities. Whether this regulation is bi-directional and
ATP-mediated activation of P2XRs on microglia, astrocytes, and oligodendrocytes direct
MC activities remains unclear. More remains to be eluded, but it is possible that in future
the therapeutic blockade of MC P2X7 in AD, PD, or MS, perhaps with brain permeable
P2X7 antagonists, could ameliorate the downstream pathological effect on glial cells and
prove beneficial for patients with neuroinflammatory diseases.
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