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ABSTRACT

The clustered regularly interspaced short palin-
dromic repeat (CRISPR)/CRISPR-associated protein
9 (Cas9) system has become a successful and
promising technology for gene-editing. To facilitate
its effective application, various computational tools
have been developed. These tools can assist re-
searchers in the guide RNA (gRNA) design process
by predicting cleavage efficiency and specificity and
excluding undesirable targets. However, while many
tools are available, assessment of their application
scenarios and performance benchmarks are limited.
Moreover, new deep learning tools have been ex-
plored lately for gRNA efficiency prediction, but have
not been systematically evaluated. Here, we discuss
the approaches that pertain to the on-target activity
problem, focusing mainly on the features and compu-
tational methods they utilize. Furthermore, we eval-
uate these tools on independent datasets and give
some suggestions for their usage. We conclude with
some challenges and perspectives about future di-
rections for CRISPR–Cas9 guide design.

INTRODUCTION

The CRISPR–Cas9 system has revolutionized the field of
genome editing and promises the ability to examine genetic
interactions at their origin and the opportunity to cure se-
vere inherited diseases. Borrowing from the adaptive mech-
anisms of bacteria, it identifies a specific site by the comple-
mentarity between the guide RNA (gRNA) and the DNA
target sequence (1). Compared with previous gene editing

technologies, such as zinc finger nucleases (ZFNs) and tran-
scription activator-like effector nucleases (TALENs), which
bind to DNA sequences by protein-DNA recognition and
require substantial protein engineering, the CRISPR–Cas9
system requires only changing the guide sequence (2). Due
to its simplicity, it has been rapidly and widely adopted by
the scientific community to target and modify the genomes
of a vast array of cells and organisms (3).

However, a major challenge in the effective application
of the CRISPR system is to be able to identify target sites
that can be cleaved efficiently and for which the candidate
gRNAs have little or no cleavage at other genomic loca-
tions. Therefore, an ideal gRNA should maximize on-target
activity (guide efficiency) while also minimizing potential
off-target effects (guide specificity). Balancing these two re-
quirements can be a challenging task and as a result, signif-
icant effort in recent years has been focused on developing
computational tools to assist in the design of gRNAs. These
tools are designed to assist researchers in the selection of the
best target sites available. In particular, they help them ex-
clude undesirable targets from their experiments based on
predicted low efficiency or specificity, saving resources and
time (4).

Following the convention introduced in previous stud-
ies (4–7), the current gRNA design tools are grouped
into three major types: (i) Alignment-based or Candidate-
retrieval, where the suitable gRNAs are aligned and re-
trieved from the given genome by locating protospacer ad-
jacent motifs (PAM); (ii) Hypothesis-driven or Rule-based,
where the guide activity is predicted according to empiri-
cally derived, handcrafted rules (e.g. GC content) and (iii)
Learning-based, where the gRNAs are scored by models
trained on datasets of CRISPR experiments. Reported re-
sults suggest that the latter two types of tools perform better
than the alignment-based ones, because they take into ac-
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Figure 1. The overall outline of the presented study. We examined the on-
target activity problem for CRISPR–Cas9. Features affecting cleavage ef-
ficiency are initially described, followed by predictive tools to assist in the
guide design process. These tools are then evaluated on six datasets from
various organisms (i.e. human, mouse, zebrafish) using two metrics, Spear-
man correlation and normalized discounted cumulative gain (nDCG).
Tasks and tools not examined in the study are colored grey. Examples of
features, tools, and datasets are provided in parentheses.

count many different features (5). For learning-based tools
in particular, these features are combined by models that are
generated through machine learning (4,7).

Moreover, a shift has been observed recently in the
third category. While the initial learning-based tools re-
lied on conventional machine learning methods, several
deep learning-based methods have been explored lately for
gRNA activity prediction. For instance, convolutional neu-
ral networks (CNNs) are attractive solutions for this task,
due to their capability of performing automated feature ex-
traction from sequence data. Therefore, the study and eval-
uation of these novel tools is timely and interesting.

While some studies have focused on gRNA design tools
and their evaluation (5,8–10), there still exist key questions
that need to be answered:

• Do learning-based tools perform better than hypothesis-
driven ones?

• Are deep learning tools more accurate than previous ma-
chine learning tools?

• Is there a single best tool for all experiments and cell
types? If not, would it be more accurate to combine the
best tools into a meta-tool?

• Are gRNA design rules reproducible across different cell
types and organisms?

• How can we improve the gRNA efficiency predictions
and derive general gRNA design rules for the CRISPR–
Cas9 system?

This review addresses these questions, that pertain to
the on-target activity problem. Figure 1 presents the over-

all workflow of our study. First, we present the necessary
background for the CRISPR system and we describe the
factors that influence gRNA efficiency. Then, we intro-
duce some tools for gRNA activity prediction. Specifically,
hypothesis-driven and machine learning models are initially
presented, while we also provide a comprehensive overview
of the recent deep learning models. Due to space limita-
tions and the rapid development of the genome-editing
field, the two former categories are only briefly described.
For a more complete overview of those, the reader is re-
ferred to existing work (4,9,11). Following their introduc-
tion, we evaluate the current gRNA design tools with a fo-
cus on the deep learning ones. We conclude with some per-
spectives about future directions for CRISPR–Cas9 guide
design.

BACKGROUND

Clustered Regularly Interspaced Short Palindromic Re-
peats (CRISPR) were initially detected as a series of re-
peated sequences interspaced with short unique sequences
in the genome of Escherichia coli in 1987 (12). It was later
recognized that these short spacer sequences derive from
plasmid and viral origins (13). Based on the finding that
CRISPR loci are transcribed (14) and the observation that
CRISPR-associated (Cas) genes encode proteins with puta-
tive nuclease and helicase domains (13,15,16), research con-
cluded that the CRISPR-Cas system is an adaptive immune
system in archaea and bacteria (17).

Subsequent research has shown that this adaptive im-
munity occurs in three stages (Figure 2): (i) insertion of
DNA sequences from invading viruses or plasmids into the
CRISPR locus (known as the acquisition stage); (ii) tran-
scription of the CRISPR array and processing of the pre-
cursor transcript into smaller CRISPR RNAs (crRNAs)
(known as the expression stage) and (iii) crRNA-directed
cleavage of invading DNA by the Cas nucleases (known
as the interference stage) (18–20). Within this overall
scheme, various CRISPR-Cas systems use different molecu-
lar mechanisms to achieve DNA recognition and cleavage.
Based on these differences, they are grouped into distinct
classes, types and subtypes (21–23). For example, during ac-
quisition, the selection of spacer precursors (protospacers)
from the invading DNA appears to be determined by the
recognition of protospacer adjacent motifs (PAMs). PAMs
are usually a few nucleotides long and differ between vari-
ants of the CRISPR-Cas system, such as 5′-NGG-3′ (any
nucleotide followed by two guanines) for Cas9 (24,25). Sim-
ilarly, at the expression stage, the processing of pre-crRNA
into mature crRNA is achieved in different ways (26,27).
Finally, at the interference stage, the crRNA-guided cleav-
age can be mediated either by a multi-protein complex or by
a single, multi-domain protein. This is the main difference
which distinguishes between Class I and Class II CRISPR–
Cas systems, respectively (22,28).

The property of Class II systems to rely on a single pro-
tein for cleavage proved to be extremely useful for genome
engineering applications (29). In 2012, researchers adapted
the S. pyogenes Class II CRISPR–Cas9 system (SpCas9) to
genome editing and explained its basic mechanism (1). It in-
cludes two key components: a synthetic single-guide RNA
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Figure 2. Overview of the CRISPR–Cas9 immune system. Adaptive im-
munity by CRISPR–Cas systems is mediated by CRISPR RNAs (cr-
RNAs) and Cas proteins, which form multicomponent CRISPR ribonu-
cleoprotein (crRNP) complexes. Three processes underlie the Cas9 sys-
tem: acquisition, expression, and interference. During acquisition, foreign
DNA (red) is incorporated into the CRISPR locus. Expression involves
transcribing target DNA into non-coding pre-crRNAs to which trans-
activating crRNAs (tracrRNAs) attach, which function as a scaffold for
Cas9 binding. During interference, the Cas9 endonuclease uses these se-
quences to target foreign DNA for cleavage. The components of these pro-
cesses are indicated based on the involved genes. The non-cas components
are presented in grey, while the cas components are colored according to
function: spacer acquisition (yellow); crRNA processing (green); crRNP
assembly (blue); and target degradation (purple) (18).

(sgRNA) and the Cas9 nuclease. The sgRNA is a version
of the naturally occurring two-piece guide RNA complex
engineered into a single sequence. It consists of the native
crRNA that directs Cas9 to the corresponding target site,
and a trans-activating crRNA (tracrRNA) which forms a
scaffold for Cas9 binding (27). Precise targeting can thus be
achieved simply by synthesizing an sgRNA that comprises a
guide domain (gRNA) complementary to the target strand
and a constant tracrRNA. In the engineered CRISPR–Cas9
system, the gRNA is a 20-nucleotide (nt) sequence at the
5′ end of the sgRNA and is analogous to crRNA in the
prokaryotic system (Figure 3) (1).

An important feature of the SpCas9 system is the PAM,
which is a CRISPR-dependent and conserved DNA se-
quence motif adjacent to the target site, and is used by bac-
teria to distinguish between self and non-self DNA (24).

Therefore, target recognition requires both base pairing to
the gRNA sequence and the presence of the PAM (i.e. 5′-
NGG-3′) adjacent to the targeted sequence (1). When the
Cas9 binds with PAM and the target site pairs with the
gRNA, a double-strand break (DSB) is caused between
positions 17 and 18 of the 20-nt gRNA sequence (Fig-
ure 3) (1). Following the break, random insertions or dele-
tions (indels) can be generated via the non-homologous
end-joining (NHEJ) pathway, which is error-prone (gene
knockout). Alternatively, a desired modification can be in-
troduced through homology-directed repair (HDR) when
provided with a DNA template (gene knock-in) (30,31).

PREDICTING ON-TARGET ACTIVITY

The efficiency of DNA cleavage, both on-target and off-
target, depends not only on the intrinsic nuclease activ-
ity, but also on target site accessibility and the affinity
of DNA binding domain(s) (e.g. gRNA) to the target se-
quence. However, there is a lack of understanding on the ex-
act behavior of the engineered Cas9 nuclease in living cells,
especially regarding the dynamics of its interaction with
DNA, and the cell cycle-dependent cleavage activity. Due to
the limited biological knowledge, prediction of nuclease tar-
get accessibility and cleavage rates in living cells remains dif-
ficult. Therefore, experimental validation of target-site se-
lection is necessary. Computational approaches can analyze
and extract knowledge from large-scale CRISPR screens.
Thus, they can help identify gRNA features modulating
Cas9 activity as well as make plausible hypotheses regard-
ing its mechanism of action.

Various potential modulators (features) have been dis-
covered; the following sections discuss the most significant
and consistent features affecting cleavage efficiency, a sum-
mary of which can be found in Table 1.

Sequence features

In addition to determining the precise cleavage location, the
gRNA sequence is one of the most important determinants
of cleavage efficiency (33–41).

Protospacer adjacent motif (NGG). The canonical pro-
tospacer adjacent motif (PAM) of the CRISPR–Cas9 sys-
tem is an 5′-NGG-3′ trinucleotide sequence, that is, any nu-
cleotide (N) followed by two guanines (G) (1). Specific in-
teractions between Cas9 and the PAM are required for ef-
fective binding of the target sequence and local strand sep-
aration prior to cleavage. Even a single mismatch in the
PAM results in reduced Cas9 activity, so gRNAs should
always be designed to target DNA sequences containing
an NGG PAM (39). While the identity of the N is flexi-
ble, studies have reported that cytosines (C) are favored and
thymines (T) are disfavored in this position (33,36). An ex-
tended PAM may also be considered by including the next
nucleotide downstream from the PAM sequence. In this ad-
ditional position, G should be avoided (33,35).

gRNA sequence motifs. In most CRISPR applications, a
20-nt DNA oligonucleotide (oligo) representing the guide
sequence is cloned into an expression vector and expressed
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Figure 3. The CRISPR/Cas9 system. Cas9 in complex with sgRNA, containing a gRNA domain (red) and a tracrRNA scaffold (pink), induces a double-
stranded break 3 nucleotides upstream of the PAM.

Table 1. Guide RNA features that could influence on-target activity

Categories Efficient features Inefficient features

Overall nucleotide
usage

A count U, G count

A in the middle GG, GGG count
AG, CA, AC, UA
count

UU, GC count

Position-specific
nucleotides

G in position 20 C in position 20

A in position 20 U in positions 17–20
G, A in position 19 G in position 16
C in position 18 T in PAM (TGG)
C in position 16 G in position +1

(NGGG)
C in PAM (CGG)

Motifs NGG PAM (esp.
CGGH)

poly-N (esp. GGGG)

TT, GCC at the 3′ end

Structural GC content 40–60% GC > 80% or GC <

35%
High GC content in
positions 4–8

Stable self-folding

High GC content in
positions 15–20

Stable DNA/RNA
duplex

Low Tm in the middle
Accessibility in
positions 18–20

Epigenetic Target with open
chromatin

Methylated,
inaccessible target

Miscellaneous Target near N-terminus
of protein

Target introns, 5′/3′
UTRs

High Cas9-gRNA
concentration

Low Cas9–gRNA
concentration

Tm: melting temprature, UTRs: untranslated regions, H:
adenine/cytosine/thymine. Adapted from (32).

as the gRNA domain within the sgRNA. Thus, the effi-
ciency of both DNA oligo synthesis and the subsequent
transcription process affect CRISPR activity. In particular,
certain sequence motifs have been identified in the gRNA,
which interfere at these stages. Thus, researchers should
carefully consider whether the following features apply to

the experimental methods used in oligo synthesis and tran-
scription, especially for RNA polymerase-specific effects.
For example, a bias against gRNAs initiating with the din-
ucleotide 5′ AG has been observed, possibly due to 5′ end
transcript heterogeneity from in vitro transcription, using
T7 polymerase (38,42).

Repetitive bases (i.e. a stretch of identical contiguous
bases) could also influence DNA oligo synthesis (36).
Specifically, cleavage efficiency is significantly decreased
when the gRNA contains a poly-N motif, defined as five
contiguous A, five contiguous C, four contiguous G, or four
contiguous uracils (U). Furthermore, a GGGG sequence is
especially correlated with poor CRISPR activity, not only
due to poor oligo synthesis but also because of the propen-
sity to form a special secondary structure (guanine tetrad)
which makes the guide sequence less accessible to target
sequence recognition. On the other hand, a UUUU motif
can also interfere with transcription by RNA polymerase
III which terminates upon recognition of a repetitive U se-
quence (43). Cleavage efficiency is also decreased when the
3′ end of the target sequence has a ‘TT motif ’, defined as
either a TT-dinucleotide and at least one pyrimidine (TT +
Y) or four pyrimidines with at least two Ts (2T + 2Y) (44).
This could potentially be related to the tetra-T sequence at
the 5′ end of the scaffold sequence. The TT motif could ex-
tend the T-rich sequence, resulting in a transcription termi-
nation signal and decreased gene editing. At the same posi-
tion, a ‘GCC motif ’ decreases efficiency at the Cas9 target-
ing stage, irrespective of transcription. The potential under-
lying mechanisms range from inefficient loading over non-
specific binding to off-targets to co-factor-dependent mech-
anistic problems (44).

Overall nucleotide usage. Total nucleotide counts have re-
vealed significant differences between functional and non-
functional gRNAs, together with some conflicting results.
In particular, adenine (A) content has the most significant
mononucleotide contribution, with functional gRNAs con-
taining a greater number of As (36). This is largely due
to a regional preference in As toward the middle third of
the gRNA, around positions 9–16 (33–35). The higher A
content in this region corresponds to greater gRNA affin-
ity to Cas9, as shown in Cas9 loading assays (34). On the
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other hand, U and G content tend to be significantly less
represented in functional gRNAs. Contrary to the above,
Moreno-Mateos et al. (38) discovered based on Zebrafish
data, that G enrichment and A depletion contribute to the
stability, loading, and activity of gRNA. Excluding the sta-
bility factor, the first and last positions of effective gRNAs
were found to be strongly G-enriched and C-depleted, while
A and U were broadly absent from the gRNA sequence pro-
file. These findings contradict those of previous studies, pos-
sibly due to the different organism being studied. To add to
the confusion, Rahman et al. found that active sgRNAs are
G rich as well as A rich (45).

Regarding dinucleotides and trinucleotides, Wong et al.
(36) observed that both GG and GGG were significantly
depleted in functional gRNAs, while Malina et al. (46) dis-
covered that too many PAMs within the target sequence in-
hibit the CRISPR–Cas9 activity in vivo. Consistent with the
mononucleotide biases, UU and GC dinucleotides are dis-
favored in functional gRNAs, while the significantly favored
dinucleotides contain an A, namely, AG, CA, AC and UA.
However, there is no significant preference for AA, suggest-
ing that the bias for A in the middle of the gRNA requires
some degree of nucleotide heterogeneity.

Position-specific nucleotide composition. Nucleotide usage
at each individual sequence position reveals positions that
are critical for efficient editing. Nucleotides proximal to the
PAM sequence tend to be the most significant, consistent
with the observation that this region is crucial for target in-
terrogation and Cas9 loading (34,35,47). This feature-rich
region is known as the seed region and corresponds to po-
sitions 16–20 of the gRNA (48). For example, U is disfa-
vored at each of these four positions, consistent with the
fact that multiple Us in the spacer cause low sgRNA expres-
sion (33,36). The most impactful nucleotide seems to be at
position 20, where G is strongly preferred and C is strongly
disfavored (33,36,37). Adenine is also favored, indicating an
overall preference for purines at position 20. Similarly, there
is a preference for purines at position 19. On the other hand,
C is preferred at position 18, which is the CRISPR–Cas9
cleavage site (35). At position 16, there is a similar trend
in which C is enriched and G is disfavored. However, there
does not seem to be a clear nucleotide preference for posi-
tion 17, with some studies showing preference for G while
others show C enrichment and G depletion (33,35).

Structural features

RNA secondary structure is important in many biological
processes, since it can determine the nucleotide accessibil-
ity and resulting interactions at each locus. Previous stud-
ies investigating the role of structural accessibility in RNA-
guided target-site recognition have confirmed this hypoth-
esis (49). Likewise, overall secondary structure, self-folding
free energy, and the accessibility of individual nucleotides
are important features of sgRNA design (36).

First, the accessibility of certain nucleotides is signifi-
cantly different between efficient and inefficient sgRNAs.
The most impactful difference involves nucleotides at posi-
tions 18–20 and positions 51–53 (36). These positions cor-
respond to the 3′ end of the guide sequence and a region

of the scaffold RNA, respectively. Interestingly, one con-
served motif in the sgRNA consists of a stable stem-loop
secondary structure between the nucleotides at positions
21–50 (50). This conserved structure aligns positions 18–
20 with 51–53 in an antiparallel configuration (Figure 4).
Therefore, base-pairing can potentially occur between bases
19–20 and 52–53 if the sequences are complementary, re-
sulting in an extended stem-loop structure encompassing
positions 18–53 (36). This alteration in secondary structure
could impede either gRNA seed interactions with the target
DNA or scaffold interactions with the Cas9 protein, result-
ing in a decrease in efficiency. Since the scaffold sequence
in positions 52–53 is AA, T nucleotides at the 3′ end of the
gRNA could lead to additional base-pairing, resulting in
decreased accessibility. This structure-related feature may
also explain the observed disfavor of T at the positions clos-
est to the PAM.

Furthermore, the overall structural stability of the guide
sequence alone can be evaluated through thermodynamic
analysis. Specifically, the self-folding free energy of the
gRNA can be used to determine the propensity to form
secondary RNA structures through intramolecular interac-
tions. Nonfunctional gRNAs tend to have a more negative
self-folding free energy, corresponding to a greater propen-
sity for self-folding, compared to functional gRNAs (36).
This suggests that high gRNA stability does not help Cas9
activity. On the other hand, the stability of the DNA/RNA
hybrid in the R loop formation can also impact Cas9 activ-
ity. Strong DNA/RNA duplex binding is indicative of lower
editing efficiency.

The thermodynamic stability of the RNA can also be ap-
proximated by the GC content of the sequence, due to the
additional hydrogen bond in a GC pair compared to an AT
pair. Consistent with the free energy calculation, inefficient
sgRNAs have higher GC content on average compared to
efficient sgRNAs. However, gRNAs with lower GC content
tend to be less active too (33,34), and therefore, some GC
content is required. Experiments have shown that GC con-
tent in the range of 40–60% seems optimal (33,34,51). Re-
gional GC content could also be important for Cas9 activity
due to local interactions of the gRNA. When considering
GC content for 10-nt sub-sequences, the strongest predic-
tor of efficiency is high GC content in the first ten bases
(40). At a resolution of five nucleotides, higher GC content
in positions 4-8 is most indicative of higher activity. In con-
trast, there is a preference for lower melting temperature in
the middle of the gRNA, possibly related to the enrichment
in A nucleotides noted in (52). Finally, the six nucleotides
proximal to the PAM favor higher GC content which is con-
sistent with the position-specific nucleotide preferences.

The actual overall length of the gRNA has also been
shown to influence its activity. Shorter sequences such as
17- or 18-nt have higher specificity but lower efficiency than
19- or 20-nt spacers. On the other hand, gRNAs longer than
20 nucleotides are less effective (35,38).

Epigenetic features

In addition to the properties of the gRNA and target se-
quence, the molecular environment in which gene editing
occurs could also affect Cas9 activity. For example, the epi-
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Figure 4. Schematic representation of the sgRNA structure. The guide sequence is complementary to the target sequence and resides at the 5′ end of the
sgRNA. The highlighted nucleotides could potentially base pair, leading to an extended stem-loop structure. Black dots indicate weak bonding.

genetic features of target sequences are independent of the
other gRNA features. These additional features may ac-
count for differences in the efficiency of the same gRNA
sequence in distinct cell populations.

In particular, local chromatin structure has been identi-
fied as a major factor that influences the ability of Cas9 to
find the PAM and begin to bind DNA with the seed region
of the gRNA (37,48). For instance, Doench et al. (33) ob-
served that the N’-terminus of CD15 was a less effective
target site, perhaps reflecting gene-specific patterns. How-
ever, subsequent work (38) did not confirm a strong effect
of chromatin accessibility on CRISPR/Cas9 activity.

Differences between cell types can also be attributed to
the assays that have been used to capture the chromatin
state, as well as the variable or modest influence of a par-
ticular epigenetic feature on each cell. For instance, DNA
CpG methylation assays could reflect an aspect of chro-
matin accessibility not fully captured by DNase I hypersen-
sitivity (DHS). Thus, multiple assays could better explain
the binding variation when dealing with similar sequences
(48). This issue was studied by Haeussler et al. (8) using
datasets where the assay was repeated in a different cell type.
They observed that the measured efficiencies were highly
correlated for some cell type combinations, but not for all.
For instance, the Spearman correlation between the knock-
out efficiency of 2076 guides in HL60 and KBM-7 cell lines
was 0.752. On the other hand, the correlation of the 177k
library screens between RPE1 and HCT116 cells was 0.531
and 0.585 for the two replicates. Overall, even if the varia-
tion is attributed fully to differences in the chromatin state,
its influence is relatively modest, in the range of 10-20% of
the rank correlation.

To further illustrate the contribution of epigenetic fea-
tures, we studied four public datasets that measure the ef-
ficiency of gRNAs in human cells. These datasets were in-

Table 2. Correlation of efficiency between identical sequences with dif-
ferent epigenetic features

Number of Spearman
Cell line pairs identical sequences correlation

Total 1784 0.560
HELA-HL60 69 0.462
HCT116-HL60 40 0.560
HCT116-HELA 1675 0.556
HEK293T-HL60 - -
HEK293T-HELA - -
HEK293T-HCT116 - -

Cell line pairs that have no identical sequences are left blank.

cluded in the study of Chuai et al. (41) and were origi-
nally provided by Zhang et al. (53). They included sequence
features, as well as four epigenetic features (i.e. CTCF,
H3K4me3, DNase, RRBS), which we used to compare the
corresponding cleavage efficiency. Our goal was to confirm
the observation of Haeussler et al. (8) regarding the con-
tribution of chromatin to the measured efficiency. For this
reason, we performed a small-scale experiment, focusing on
identical sequences that differed in at least one epigenetic
characteristic. The results of this comparison are shown in
Table 2. In total, we found 4351 identical gRNAs between
all the pairs of the four human cell lines; 1784 of those had at
least one different epigenetic feature and a different numeri-
cal efficiency (Supplementary Tables S1–S3, Supplementary
Note S1). Based on this analysis and the findings of previ-
ous studies (8), we conjecture that epigenetic characteristics
have a significant, albeit variable, influence on gRNA activ-
ity. In order to confirm this, one would need to perform a
similar analysis across hundreds of cell lines using CRISPR
screen data.
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Miscellaneous features

Target sequence location. When the experimental outcome
is measured by the alteration of gene expression or gene
knockout, it is important to consider whether cleavage at
a specific genomic locus is likely to functionally disrupt the
gene. In this respect, relevant studies observed diminished
activity of gRNAs targeting close to the C-terminus, since
frameshift mutations close to the end of a protein are less
likely to disrupt expression. In addition, gRNAs targeting
non-coding regions, as well as 5′- or 3′-untranslated regions
(UTRs), are ineffective, although target sites that disrupt
splicing can be efficacious (33,34,39).

Cas9 concentration. Hsu et al. (54) reported that high con-
centrations of the SpCas9–sgRNA complex increase off-
site target effects, whereas lower concentrations of Cas9 in-
crease specificity and reduce on-target cleavage activity.

Sense/antisense strand. Examining the target strand as
a function of activity yielded conflicting results. Doench
et al. (33) found no statistically significant difference in con-
trast to a previously observed slight preference for the non-
transcribed strand (34).

TOOLS FOR GUIDE EFFICIENCY PREDICTION

Out of the three categories of guide design tools, we focused
on the latter two (i.e. hypothesis-driven and learning-based
ones), because they predict the actual efficiency, rather than
simply retrieving candidate guide RNAs. In particular, we
studied mainly the more recent deep learning models (for
CRISPR–Cas9) and chose one representative tool for the
hypothesis-driven and machine learning category, due to
space limitations.

Hypothesis-driven tools

Hypothesis-driven tools use empirically derived rules to
predict gRNA activity based on the previously described
features. For instance, CHOPCHOP (55) initially provided
two simple metrics; the GC content of the gRNA––ideally
between 40% and 80%––and whether the gRNA contains
a G at position 20. Later versions incorporated sequence,
structural, and chromatin characteristics to give the user a
broad selection of metrics to choose from (56,57).

Among those tools, we selected E-CRISP (58) because
it is simple to use and efficient. It is a web-based tool that
requires no programming knowledge or computing infras-
tructure and allows for fast iteration through gRNA design
and parameter selection. In particular, it allows researchers
to design guide RNAs to target any DNA sequence––from
single exons to entire genomes––for multiple species and
uses.

In order to do that, it identifies target sequences ending
with a PAM motif 5′-NGG/NAG-3′ and uses them to pro-
pose guide RNAs. It also uses a fast indexing approach to
locate binding sites and the alignment program Bowtie 2
to identify off-target effects. It outputs the successful de-
signs, ranked according to target specificity and efficiency.
It also assesses the genomic context (e.g. exons, transcripts,
CpG islands) of putative designs and provides an option to

re-evaluate given gRNAs for efficiency and specificity. Re-
garding on-target and off-target predictions, it utilises its
own ‘SAE (Specificity, Annotation, Efficacy) Score’ to de-
termine the quality of each gRNA, while Rule Set 1 (33) and
Spacer Scoring for CRISPR (SSC) (35) are also included in
its results.

For all these reasons and recommendations from pre-
vious studies (5,41), we chose E-CRISP to represent the
hypothesis-driven category. We use its ‘Efficacy Score’ (E-
score) to compare it to the other learning-based tools.

Machine-learning tools

The resulting efficiency of a gRNA is a complex interplay
of factors such as target sequence, cellular environment and
experimental conditions. Thus, a simple rule-based system
may not be adequate for choosing target sites and designing
CRISPR gRNAs.

On the other hand, machine learning models can cap-
ture this complex interplay of parameters. In particular, ma-
chine learning can produce CRISPR gene-editing models,
from a set of samples (experiments), without explicitly spec-
ifying the relationship between the features (target proper-
ties) and the label (experimental outcome). In the context
of CRISPR–Cas9, the experimental outcome can reflect the
target site’s ability to generate indels, induce a specific point
mutation, or control gene expression. The model trained by
machine learning can be stored and used to predict the out-
come of new experiments.

In order to train such a model we need to define appro-
priate labels, select a generalizable feature set, and choose
the proper algorithm for our data. Those decisions during
model (and experimental) design can lead to important dif-
ferences, producing a unique predictive model with distinct
features. Therefore, it is crucial to present, albeit briefly, the
machine learning methods that have been used so far to pre-
dict gRNA activity.

Existing machine learning tools can be grouped into three
categories:

• regression models, such as linear regression (35,38,40),
gradient boosting regression tree (GBRT) (39) and ran-
dom forests (RF) (59),

• classification models, such as logistic regression (33), sup-
port vector machines (SVM) (36,37,45,60) and RF (59),

• ensemble methods, such as stacking (61) and simple model
averaging (52).

Besides the algorithm that is used, current tools also dif-
fer in the features that they use. Specifically, while they gen-
erally use similar genetic data as input (gRNA sequence,
PAM, and/or adjacent nucleotides), they vary the window
size applied on the target sequence. The windows can range
from 23-nt (37) to 40-nt (35), introducing a form of variabil-
ity. For instance, Azimuth 2.0 (39), CRISPRpred (45) and
TUSCAN (59) use a 30-nt window, CRISPRscan (38) ac-
cepts a 35-nt sequence while sgDesigner (61) takes a 26-nt
gRNA as input.

Furthermore, tools differ in how they represent the tar-
get site in the mathematical model, that is, the feature space.
The first studies used combinations of position-specific nu-
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cleotides and dinucleotides, global nucleotide counts and
GC content. More recent studies have begun to include
non-sequence information, such as thermodynamic stabil-
ity of the gRNA and position of the cut site relative to the
transcription start site (TSS) (33,36,39). Azimuth 2.0 (39)
includes positional features like ‘exon targeted’ and ‘posi-
tion of target in gene’. Although Doench et al. (39) demon-
strated that such features can improve model performance,
they can lead to overspecialization and increased hetero-
geneity. On the other hand, sequence-only models can pre-
dict the efficiency of any guide RNA, without requiring
species-specific information. There is, therefore, a trade-off
between a general purpose model and an organism-specific
one. The data used to train each model also originate from a
specific organism and cell type under unique experimental
conditions. These factors influence the final model, trans-
lating into different design rules and predictions.

Azimuth 2.0 (39) is a state-of-the-art model from the cat-
egory of machine learning based ones, which is included
in our study. It uses a gradient-boosted regression tree
(GBRT) model trained on two datasets (39). These datasets
include gRNAs targeting human and mouse genes with dif-
ferent detection methods (flow cytometry and resistance
assays). The model includes sequence features, thermody-
namic features and location of the target within a gene. By
retaining the real-valued normalized ranks and adding fea-
tures not previously used, it has been shown to achieve good
predictive performance (39).

Deep-learning tools

Recent advances in computing technology have enabled a
new generation of machine learning methods, deep learn-
ing, which has been applied successfully to a number of un-
solved problems. Deep learning includes algorithms such as
artificial neural networks (ANNs) that can learn data rep-
resentations at multiple levels of abstraction (62).

ANNs, initially inspired by neural networks in the brain
(63,64), consist of multiple layers of interconnected com-
pute units (neurons). Given this structure, an ANN takes
the raw data at the lowest (input) layer and transforms them
into increasingly abstract feature representations by succes-
sively combining outputs from the preceding layer in a non-
linear way, describing highly complicated functions in the
process.

Therefore, deep learning provides an effective approach
for learning complex patterns at multiple layers (62). Com-
pared to traditional machine learning methods, deep learn-
ing algorithms can extract features from large, annotated
datasets, such as images or genomes, and use them to create
predictive tools based on patterns hidden in the data (65).
Using these algorithms, researchers can bypass the process
of feature creation, which is labour-intensive and requires
considerable domain knowledge (62).

For this reason, deep learning algorithms have been re-
cently used to manage increasing amounts and dimensions
of data generated by high-throughput analyses. For exam-
ple, ANNs and convolutional neural networks (CNNs) have
been successfully applied to predict splicing activity (66),
sequence specificities of DNA- and RNA-binding proteins
(67), and to study the effect of DNA sequence alterations

(68). For more information about the structure and func-
tion of CNNs, the reader is referred to Appendix A.

Being able to uncover underlying patterns in unpro-
cessed data, rather than requiring perfectly curated fea-
ture sets, is a useful capability in the CRISPR space. Thus,
various deep learning approaches have recently been used
for CRISPR gRNA design, including DeepCRISPR (41),
DeepCas9 (69), CRISPRLearner (70), DeepSpCas9 (71),
DeepHF (72), CNN-SVR (53) and C-RNNCrispr (73). Most
of these deep learning models represent the target sequence
using One-Hot-Encoding, while some capture the epige-
netic features too (Figure 5). The rest of this section presents
each CRISPR–Cas9 deep learning model, discussing their
commonalities and differences.

DeepCRISPR (41) is a novel deep neural network for
gRNA on-target knockout efficiency prediction, compris-
ing two parts. The first part is a deep convolutionary de-
noising neural network (DCDNN)-based autoencoder that
learns the underlying representation of gRNA regions in an
unsupervised manner. The DCDNN-based autoencoder is
followed by a full CNN model for predicting gRNA effi-
ciency. DeepCRISPR adopts a fine-tuning strategy to train
the model, utilizing the autoencoder to be part of the classi-
fier and then tunes the whole network (i.e. autoencoder and
classifier) with labeled data. The system is trained with both
sequence and epigenetic features from four human cell lines
(HCT116, HEK293T, HELA, and HL60) containing ∼15
000 gRNAs. In addition, DeepCRISPR uses data augmen-
tation to generate novel gRNAs with biologically meaning-
ful labels. This is done by exploiting the observation that
mismatches in the first two positions from the 5′ end usually
has no effect on cleavage efficacy. The augmentation creates
roughly 0.2 million non-redundant gRNAs for the training
process, further improving the tool’s performance. The final
model can be used for either regression or classification, by
using the actual numerical efficiency or a converted binary
value, respectively. In summary, DeepCRISPR was the first
deep learning model for gRNA design that used epigenetic
information, augmentation, and representation learning to
outperform the state-of-the-art tools across a variety of hu-
man datasets.

DeepCas9 (69) is another deep learning framework based
on CNNs that automatically learns the sequence deter-
minants and predicts the efficiency of gRNAs. It accepts
a 30-nt sequence, without additional epigenetic features.
The sequence is translated into a one-hot-encoded matrix
that is used as input by the CNN, essentially skipping the
steps of feature extraction and feature selection. The tool
also implements an ensemble strategy that combines three
deep learning models trained on different datasets (HL60,
HEK293T, mEL4) and outputs their weighted average. This
approach improves the predictive performance of the final
model compared to the individual ones. Thus, the efficiency
score of a new sequence is calculated with the following
weighted sum:

DeepCas9score = 0.2 ∗ DeepCas9mEL4

+0.3 ∗ DeepCas9293T

+0.5 ∗ DeepCas9HL60,
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Figure 5. Representation of the target sequence and its corresponding epigenetic features. The latter are only captured by DeepCRISPR, CNN-SVR and
C-RNNCrispr.

where DeepCas9mEL4, DeepCas9293T and DeepCas9HL60 are
the scores predicted by each of the three models, and
DeepCas9score is the final prediction.

DeepSpCas9 (71) is a regression model that predicts
gRNA on-target activities. Like other design tools, it ac-
cepts 30-nt sequences and uses a simple CNN architecture
to automatically learn their important features and predict
their efficiency. However, unlike other tools, it is trained
on a large, unique dataset of Cas9-induced indel frequen-
cies. This dataset was created by evaluating the gRNA ac-
tivities of 12 832 target sequences using a high-throughput
approach, based on a human cell library containing single-
guide RNA-encoding and target sequence pairs. By train-
ing on this dataset, DeepSpCas9 showed a stable and high
performance when tested against independently generated
datasets. Therefore, it can be used in different species, or-
ganisms, and cell types.

DeepHF (72) uses a recurrent neural network (RNN) to
predict gRNA activity. In particular, DeepHF uses a Bidi-
rectional long short-term memory neural network (BiL-
STM) to extract features and combines them with hand-
crafted biological features to construct the final model. It
also utilizes a fine-tuning strategy to improve the prediction
accuracy of the model under different expression condi-
tions (i.e. under a U6 or T7 promoter). Using this approach
and training on a dataset of ∼50 000 gRNAs, DeepHF has
been shown to outperform the current state-of-the-art tools
across various datasets.

CRISPRLearner (70) borrows ideas from DeepCRISPR
and DeepCas9 to create a system with improved perfor-
mance. In particular, it accepts 23-nt sequences and aug-
ments them by changing each one into a new gRNA with
two mismatches in the PAM distal region. It then uses those
sequences to train 10 models on 10 different datasets. In
contrast to DeepCas9, CRISPRLearner does not output
their weighted average but maintains the individual scores
of the ten models. The user can then calculate the efficiency
of a sequence using one of the 10 models, depending on the
organism or cell line of choice. Users can also train their
own model using a different dataset, expanding the system
and allowing it to predict gRNA efficiencies regarding new
cell types and organisms.

CNN-SVR (53) combines two major components: a
CNN for extracting gRNA sequence/epigenetic features
and a Support Vector Regression (SVR) algorithm for

predicting gRNA cleavage efficiency. CNN-SVR is pre-
trained on the same augmented dataset as DeepCRISPR
and can be fine-tuned for predictions on small cell-line-
specific datasets. In addition, it adopts a two-step feature-
selection strategy to identify important subsets of the initial
CNN features. To be specific, it ranks the importance of fea-
tures, based on information gain, and then uses sequential
forward search (SFS) to determine the optimal set. The se-
lected features are fed into the SVR classifier to complete
the gRNA activity prediction.

C-RNNCrispr (73) is a hybrid CNN and bidirec-
tional gate recurrent unit (BGRU) network that predicts
CRISPR–Cas9 gRNA on-target activity. It uses CNNs to
automatically learn the gRNA sequence features and four
epigenetic features. BGRU is then used to model the se-
quential dependencies of the gRNA features. C-RNNCrispr
is also pre-trained on the same benchmark dataset as CNN-
SVR and can be fine-tuned on small cell-line datasets to im-
prove predictive performance.

EVALUATION OF ACTIVITY PREDICTION TOOLS

Datasets

Several tools are available for CRISPR gRNA design, but
only a few of them have been compared on the same task
(5,8–10). In particular, previous studies have shown that
current models perform reasonably well when trained and
tested on different parts of the same data, using cross-
validation. However, predictions on independent datasets
are less accurate than expected (8). This observation indi-
cates the need to evaluate the tools on independent datasets
that differ from the training ones. The independent testing
sets could also be used to compare new deep learning tools
against the existing ones.

A total of six testing datasets were gathered from pub-
lished studies, namely: Labuhn (40,41), Shalem (33), Koike-
Yusa (8), Xi Xiang (74), Shkumatava (8) and Gagnon (8).
To avoid training bias, we only considered independent
datasets that were not used to train respective models. The
datasets we used come from various cell lines and organisms
(human, mouse, zebrafish). They also represent different ex-
perimental attributes that need to be considered in the sub-
sequent analysis. Table 3 presents an overview of the testing
datasets and their characteristics. The ‘Materials and Meth-
ods’ section provides further details.
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Table 3. Summary of testing datasets

Dataset name Number of instances Species/Cell line Guide RNA promoter Delivery method Analysis method

Labuhn 424 Human/HEL U6 Lentivirus Flow cytometry
Shalem 1278 Human/A375 U6 Lentivirus Resistance assay
Koike-Yusa 1064 Mouse/mESC U6 Lentivirus Resistance assay
Xi Xiang 10 592

Human/HEK293T
U6 Lentivirus Amplicon sequencing

Shkumatava 162 Zebrafish T7 RNA injection Sanger sequencing
Gagnon 111 Zebrafish T7 RNA injection Amplicon sequencing

Evaluation metrics

Another important aspect of the evaluation process is the
choice of metrics. We selected two different metrics to eval-
uate the current models; namely Spearman correlation and
normalized discounted cumulative gain (nDCG), capturing
different aspects of the models’ performance.

Spearman correlation evaluates the ability of the models
to predict the actual efficiency of each gRNA sequence by
comparing the predicted value to the one measured exper-
imentally. Spearman correlation has been used in most of
the existing literature (8,39,41,69–71), because the available
datasets, as well as the predictions of different models are on
substantially different scales. Therefore, while some mod-
els are trained to minimize the mean squared error (MSE),
the comparison between models and datasets is necessar-
ily done in terms of ranking, using Spearman correlation.
Furthermore, since most of the available datasets do not in-
clude labels (i.e. efficient versus non-efficient), classification
metrics were not directly applicable.

We also used another rank-based evaluation measure,
namely nDCG, in order to focus on the retrieval of the most
efficient gRNAs and ignore the less efficient ones. In other
words, using nDCG, we avoid judging how well a tool is do-
ing in predicting inefficiency.

Thus, our analysis evaluates both the general perfor-
mance of each model and their ability to identify the most
effective gRNAs. Details about the implementation of the
evaluation metrics are provided in the ‘Materials and Meth-
ods’ section.

Baselines and bounds

To highlight the differences between the tools being evalu-
ated, we introduce two baseline approaches. The first base-
line uses six extreme gradient boost (XGB) models, trained
on six different datasets. The final prediction is the aver-
age of their predictions, which we denote as OHE Average.
The second baseline, named simply Average, is the mean
of DeepCRISPR, DeepCas9, DeepSpCas9 and Azimuth 2.0
predictions.

In addition to the baseline systems, we introduce an up-
per and lower bound to the correlation coefficients in or-
der to facilitate the interpretation of our results. The up-
per bound is based on a previous study (8), which showed
that the measured efficiencies are not perfectly correlated
even for data from the same assay and cell line. Specif-
ically, they showed that for datasets where replicates are
available, the Spearman correlation is in the range of 0.71–
0.77. This illustrates the quality of the data and suggests

Table 4. Average Spearman correlation coefficients as mentioned in the
study that introduced each method

Models Same cell line New cell line

DeepCRISPR 0.601 0.406 (LOCO)
DeepCas9 - 0.351
DeepSpCas9 - 0.464
DeepHF 0.867 0.433
CRISPRLearner 0.432 -
CNN-SVR* 0.714 0.714 (LOCO)
C-RNNCrispr* 0.699 0.692 (LOCO)
Azimuth 2.0 0.514 0.462

‘Same cell line’: includes data from the cell line that was used to train the
specific model.
‘New cell line’: includes data from new cell line(s).
‘LOCO’: Leave-One-Cell-Out procedure.
*: model has been pre-trained on data including all cell lines.
There are no available data for E-CRISP, which is omitted.

that a correlation of ∼0.7 constitutes an upper limit of any
prediction.

We also define a lower bound based on the results ob-
tained by the different tools using cross-validation on the
training data. In order to determine the bounds, we present
the evaluation of each tool in their original study (Table 4).
According to these results, we choose a correlation of 0.4
to judge the success of a system in an experiment. If a tool
performs better than this on independent datasets, we argue
that it has obtained an acceptable prediction ability, and can
be used on independent cell lines. We did not take into con-
sideration the results of CNN-SVR and C-RNNCrispr as
they were pre-trained on a benchmark dataset that included
all cell lines. Thus, their results are likely biased. The choice
of 0.4 correlation is further supported by Haeussler et al.
(8), who show that such values are high enough to reduce
the number of guides in practice, even for genome editing
projects of just a few loci.

Comparative analysis

In this section, we present the results of our comparison
of the eleven different prediction tools. First, we observe
that the correlation between predicted and actual efficiency
varies considerably (Figure 6). This is especially evident in
the case of DeepCRISPR which has the best performance in
the HEL cell line but performs poorly in the other datasets.
Across all datasets, DeepHF and DeepSpCas9 are consis-
tently among the most accurate models, confirming their
good general performance. However, the same holds for
the baseline models, especially the Average one, which is
close to or better than DeepSpCas9 and DeepHF in the
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Figure 6. Comparison of gRNA efficiency predictions using Spearman correlation. The name and number of instances for each dataset are shown in
parentheses.

four cell lines using a U6 promoter (i.e. HEL, A375, mESC,
HEK293T).

On the other hand, there are some tools that achieve
similar performance across all datasets. These include
CRISPRLearner, CNN-SVR and C-RNNCrispr.
CRISPRLearner performs better than the other two.
Specifically for CRISPRLearner, it should be noted that
every prediction was done by first choosing the most
suitable model. This explains why it outperforms the
other tools (except DeepHF) on zebrafish data, since the
selected model was trained on a zebrafish dataset using the
same promoter. DeepHF was also fine-tuned on a relevant
dataset and achieved similarly good performance. Despite
individual differences, all design tools performed worse on
the datasets that differed from the ones they were trained
on (Table 4).

Figure 7 provides a different view of the predictive ability
of each model. This view illustrates the good and robust per-
formance of DeepHF, DeepSpCas9 and the baseline mod-

els more clearly. DeepCas9, which is also an average, and
Azimuth 2.0 follow the other three tools in performance.
Therefore, conventional machine learning models, such as
XGB (OHE Average) and GBRT (Azimuth 2.0) seem to
achieve at least comparable performance to the deep learn-
ing ones. Finally, even though E-CRISP is more accurate
than some learning-based tools (e.g. CNN-SVR), it does not
achieve high enough correlations. However, it demonstrates
a stable performance across all datasets.

Performance on the best 20 predictions, according to
nDCG@20, is quite different from Spearman correla-
tion (Figure 8). While DeepCRISPR still outperforms
the other tools on the Labuhn dataset, E-CRISP and
CRISPRLearner achieve better results using this metric.
C-RNNCrispr also improves, especially on the Labuhn,
Shalem, and Koike-Yusa dataset. On the other hand,
DeepHF and DeepSpCas9 show a consistently good per-
formance according to both metrics. Therefore, nDCG@20
seems to capture a unique aspect of the models’ ranking
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Figure 7. Spearman correlation for each tool and dataset. Each polygon represents a tool and the edges illustrate the obtained correlation for the respective
dataset. In general, the larger the polygon area, the better the overall performance of the tool.

ability, which is distinct from the correlation analysis. How-
ever, according to nDCG@20, the differences between the
models become less evident and the comparison more dif-
ficult. For this reason, the radar charts are not helpful in
the case of nDCG@20 and we do not illustrate them here.
They can be found in the provided Supplementary material
(Supplementary Figure S1).

In summary, we conclude that there is no single best
model across datasets and metrics. One model may out-
perform the others according to correlation, but perform
poorly when evaluated according to the top ranking abil-
ity. Therefore, it is crucial to choose the appropriate metric
when comparing different models.

Case study for gRNA design

In this section, we examine how researchers can use the ex-
isting tools and the knowledge about on-target activity in

their experiments. In other words, we want to assess the im-
pact of our analysis and how its results can be used to bet-
ter inform the guide design process. To accomplish this, we
present two case studies that involve the treatment of a ge-
netic disorder. In particular, we apply the evaluated tools to
select the appropriate gRNAs for each case and illustrate
how they can better inform the experimental design. Sim-
ilar to Peng et al. (52), we study the guide design process
using retinitis pigmentosa (RP) and X-linked chronic gran-
ulomatous disease (X-CGD) as examples. Experiments on
these two diseases have been successfully undertaken by do-
main experts recently (75,76).

Yu et al. (75) attempted to knockdown the Nrl gene to
prevent retinal degeneration in a mouse model and sug-
gested an adeno-associated virus (AAV)-based CRISPR–
Cas9 system for gene disruption as a promising treat-
ment option for patients with RP. To accomplish that, they
designed five candidate gRNAs (denoted NT1 to NT5)
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Figure 8. Comparison of gRNA efficiency predictions with nDCG@20. The name and number of instances for each dataset are shown in parentheses.

against the mouse Nrl coding region. Among those, they
selected NT2 for the in vivo study based on its higher
ability to generate indels and lower predicted off-target
potential.

For our comparison, we used CHOPCHOP (55) to re-
trieve all the candidate sequences for Nrl gene knockdown
in the mouse genome (mm39). In total, 147 potential spacer
sequences were found with the PAM 5′-NGG-3′. The cleav-
age efficiencies of the 147 candidate gRNAs were predicted
by the most representative tools. DeepSpCas9, DeepHF, Av-
erage, and DeepCRISPR were used for their performance
based on Spearman correlation, while CRISPRLearner,
C-RNNCrispr and E-CRISP were selected according to
nDCG@20. Finally, we ranked the predictions of each tool
in order to compare the position of the selected gRNA (i.e.,
NT2). The results of this evaluation are shown in Table 5.

We observe that the three most accurate tools in our eval-
uation, DeepSpCas9, DeepHF, and Average, rank the se-
lected gRNA (NT2) very highly (second position). Interest-
ingly, E-CRISP, a hypothesis-driven tool with a stable per-

Table 5. Rank of the selected guide (NT2) based on each tool’s
predictions

Model Rank Evaluation performance*

DeepCRISPR 87 Variable (SC, nDCG)
DeepSpCas9 2 Best (SC, nDCG)
DeepHF 2 Best (SC, nDCG)
Average 2 Best (SC, nDCG)
CRISPRLearner 33 Good (nDCG)
C-RNNCrispr 17 Good (nDCG)
E-CRISP 2 Stable (SC, nDCG)

* Based on the results of the comparative analysis (Figures 6–8). The
corresponding metric is shown in parentheses. SC: spearman correlation,
nDCG: normalized discounted cumulative gain.

formance, also identifies the efficient guide sequence. How-
ever, DeepCRISPR, which was the most accurate tool in the
HEL cell line but performed poorly in the others, ranked the
selected gRNA at position 87. Similarly, CRISPRLearner
and C-RNNCrispr, which demonstrated a good perfor-
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Table 6. Predicted efficiency of each gRNA from the De Ravin study

gRNA2 gRNA3 gRNA8 gRNA1

Actual cleavage 0.21 0.0125 0.01 0.004
DeepCRISPR 0.099 0.431 0.096 0.464
DeepSpCas9 0.629 0.482 0.122 0.063
DeepHF 0.628 0.421 0.312 0.363
Average 0.594 0.437 0.190 0.220
CRISPRLearner 0.559 0.393 0.255 0.371
C-RNNCrispr 0.202 0.164 0.189 0.157
E-CRISP 0.530 0.353 0.270 0.281

The evaluated gRNAs are ordered from most to least efficient. The maxi-
mum actual and predicted efficiencies are marked in bold.

mance based on the nDCG metric but not according to
Spearman correlation, did not include the chosen gRNA in
their top-ranked guides.

Regarding the second case study, De Ravin et al. (76) used
CRISPR–Cas9 to repair a mutation in the CYBB gene of
CD34+ hematopoietic stem and progenitor cells (HSPCs)
from patients with the immunodeficiency disorder X-CGD.
Unlike the previous example, the cutting site should be close
to the mutation site in order to promote HDR and cor-
rect the point mutation. Four guide sequences (gRNA1,
gRNA2, gRNA3 and gRNA8) around the CYBB muta-
tion site were evaluated, of which gRNA2 displayed max-
imal cutting efficiency. Similar to the previous case, we used
the evaluated tools to predict the cleavage efficiency of each
gRNA. The resulting predictions can be seen in Table 6.

We observe that all tools except DeepCRISPR identify
the most efficient guide sequence. In addition, DeepSp-
Cas9 ranks all the gRNAs correctly in contrast to the other
tools, which swap at least a pair of guides (e.g. gRNA8
and gRNA1 for E-CRISP). These findings confirm that
tools with an adequate performance in our evaluation can
at least identify some of the most efficient gRNAs. On the
other hand, tools that demonstrated a biased performance
(e.g. DeepCRISPR) may miss efficient sequences and even
lead to conflicting results. Finally, tools that perform well
when evaluated with both metrics (e.g., DeepSpCas9) seem
to identify correctly both the efficient and the inefficient gR-
NAs.

The presented use cases suggest that our evaluation can
capture the tools’ abilities to identify efficient gRNAs and
guide gene editing experiments for various applications. We
also illustrate that the top-performing tools can be used
to suggest the top-ranked gRNAs (e.g. top 3) and narrow
down the scope of the search for efficient guides (i.e. from
147 to 3–5 sequences in our case). Such a recommendation
approach can save time and cost, without sacrificing accu-
racy and efficiency.

DISCUSSION

Challenges

Our results show that there is room for improvement in the
tools that predict gRNA efficiency. They also highlight sev-
eral open challenges, that extend to the design process, in-
cluding both data acquisition and modeling. In this section,
we highlight the main challenges and suggest ideas and di-
rections for improvement.

Data sparsity and heterogeneity. Sparsity and quality of la-
beled data are important challenges in the process of train-
ing gRNA efficiency predictors. There are relatively few gR-
NAs with known efficiency as it is expensive to collect such
data. Insufficient labeled data make the predictive mod-
els inefficient, even when data augmentation techniques are
used, as we demonstrate in the evaluation of DeepCRISPR.

Given the data sparsity, most of the existing methods
have used a single data set or a small number of gRNAs
to learn a predictive model. Therefore, their prediction and
guide design rules are likely to be biased or incomplete. For
example, in the study of Xu et al. (35) the sequence determi-
nants selected for HL60 and mESC cells were not identical.
In the same study, the authors recognized that some cell-
specific sequence preferences may be missed. To overcome
the bias of a single data set and predict gRNA efficiency
more accurately, some recent tools combine several of the
available datasets. However, the different ways of combin-
ing the datasets can lead to different results.

Even when experimentally labeled data are available, their
use for supervised learning should be done with great care.
In CRISPR gene-editing experiments, the outcome can be
measured with various methods. Often, the label is of-
ten gene knockout efficiency, such as the amount of gene
expression measured by fluorescence. In particular, green
fluorescent protein (GFP)-based and drug-resistance as-
says can capture functional gene knockout, aiming to in-
directly quantify gRNA activity (33,39); they define a phe-
notypic outcome. Such experimental methods are relatively
easy to perform, but they usually underestimate the actual
CRISPR gRNA activity and could produce artifacts in the
training data. For instance, equally efficient Cas9 cleavage
sites may not result in comparable phenotypic changes, as
demonstrated in (77). The authors of (77) observed that the
performance of the predictive models trained with flow cy-
tometry data was better than those trained with resistance
assay data, indicating that there is substantial heterogeneity
among different experimental measurements.

However, guide activity can also be captured directly us-
ing deep sequencing (78). This method measures exactly the
presence of mutations introduced by CRISPR–Cas9 at the
relevant target site. Despite its accuracy, this is a costlier ap-
proach and does not provide information about phenotypic
outcome. Furthermore, the endogenous DNA repair ma-
chinery might affect the readout of the sequencing methods.

To further complicate the process of data labeling and
model training, gRNA activity is sometimes represented in
public datasets using a discrete variable (high/low) and in
others using a continuous one (typically taking values in the
range of 0–100%). In the latter case, a regression model can
be trained to predict the exact gRNA efficiency, while in the
discrete case, a classification model can predict whether that
gRNA is active or not. The two types of models are suitable
for different use cases and are hardly comparable. Although
classification is potentially less informative than regression,
exact prediction of gRNA efficiency is a much harder prob-
lem. This fact is supported by our analysis that shows ac-
tual CRISPR efficiency to be only weakly correlated with
classifiers’ predictions. Limited sample sizes and incomplete
feature sets favour coarse-grained high/low classifications
which are more accurate, albeit less informative than con-
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Table 7. Guide RNA features based on Deep Learning models

Categories/models Efficient features Inefficient features

Overall nucleotide
usage
DeepCRISPR A, U in the middle C in the middle
CNN-SVR A, U in the middle G count
C-RNNCrispr NN in positions

17–19

Position-specific
nucleotides
DeepCRISPR G in position 20 A in position 20

C in positions 17–20 U in positions 17–20
G in position 16

CNN-SVR A in position 20 G in position 20
C in positions 17–20 U in positions 17–20

C-RNNCrispr A in position 20 A in positions 3–6
C in positions 17–19
U in position 20

Motifs
DeepCRISPR C in PAM (CGG) T in PAM (TGG)

G in PAM (GGG) A in PAM (AGG)
CNN-SVR T in PAM (TGG) C in PAM (CGG)

A in PAM (AGG) G in PAM (GGG)

Epigenetic
DeepCRISPR,
CNN-SVR,

Open chromatin (esp.
position 17)

Methylated DNA
[RRBS]

C-RNNCrispr [CTCF, DNase]

CTCF: CCCTC-binding factor, RRBS: reduced representation bisulfite se-
quencing, N: any nucleotide.
Conflicting results are marked in bold.

tinuous efficiency predictions. Therefore, the ability of clas-
sification algorithms to differentiate between highly active
and less active gRNAs remains valuable as a stopgap solu-
tion until regression-based tools can more accurately model
gRNA efficiency.

Features for optimal gRNA efficiency. Designing and se-
lecting meaningful gRNA features for efficiency prediction
is a difficult process. This process also requires good knowl-
edge of the CRISPR gene editing mechanism which has
not been fully resolved yet. Moreover, feature identification
can extend to hypothesis generation; extracting and rank-
ing relevant features can promote the design of CRISPR
experiments to further elucidate the gene editing mecha-
nism. Deep learning can facilitate the feature identification
procedure, through representation learning. In this section,
we compare the results of automated feature identification
through deep learning to the features discussed in the In-
troduction (Table 1). Table 7 presents the features that were
identified in three previous studies using deep learning mod-
els (41,53,73).

We observe that different - and sometimes contradicting -
features are selected by deep learning models. For instance,
uracils (U) were found to be disfavored at the four positions
closest to the PAM by DeepCRISPR and CNN-SVR, which
is consistent with the fact that multiple Us in the spacer lead
to low sgRNA expression (33). However, C-RNNCrispr fa-
vored the presence of U at position 20. Similarly, Deep-
CRISPR favored cytosine (C) and disfavored thymine (T)
in the variable nucleotide of the PAM, which is consistent

with the results of previous studies. In contrast, CNN-SVR
produced the opposite result; T was favored and C was dis-
favored.

Having said that, there are certain features that were rec-
ognized by all three models and they coincide with previous
findings. In particular, position 17 has a consistent prefer-
ence for C, which is the DNA cleavage site of the CRISPR
system. There is also a general preference for open chro-
matin structure, as indicated by CTCF and DNase, and a
relative avoidance of DNA methylation, as shown by the
RRBS assay. Finally, we note that most of the top features
were generated from the seed region of the gRNAs. This
observation coincides with previous finding that a proto-
typical 10–12 nt PAM-proximal seed sequence largely de-
termines target efficacy. We conclude that, although deep
learning may help in extracting features, its results need to
be functionally validated, in order to confirm their impor-
tance for CRISPR activity prediction.

Algorithm selection. Previous studies have shown that
proper algorithm selection is crucial in training robust mod-
els to predict gRNA efficiency (39). According to the liter-
ature, linear regression has achieved some success (38), but
the more successful models use more complex approaches
such as Random Forest (59), Support Vector Machines
(36,37), and Gradient Boosted Regression Trees (39), which
consider interactions between the individual features (79).

On the other hand, the strength of deep learning is the au-
tomated identification of important features through repre-
sentation learning. Such approaches have undoubtedly im-
proved the state-of-the-art in speech recognition, visual ob-
ject recognition, object detection, and many other domains
(62). However, the search space for CRISPR targets is much
smaller than the typical image analysis task. An image may
consist of millions of pixels, with objects at different scales,
locations, and orientations, while a typical CRISPR target
consists of 20–30 bases, with known coordinates for objects
such as the gRNA target and PAM. This reduces the po-
tential benefits of deep learning approaches over more tra-
ditional machine learning ones. In addition, current pub-
lic datasets have only tens of thousands of guide sequences,
which are often insufficient for training a deep learning
model. Nevertheless, this situation may change as differ-
ent Cas enzymes and more complex applications are be-
ing considered, including genome-wide search for optimal
targets.

Hence, we conclude that deep learning is but one tool in
the toolbox and the right machine learning approach may
differ per task. This was demonstrated by the performance
of the simple Azimuth 2.0 algorithm in our analysis, and has
also been argued in the literature, for example, in the case
of CRISPR-GNL (80), a Bayesian ridge regression solution
that outperforms its deep learning counterpart, DeepCas9.
Therefore, choosing the proper algorithm depends on the
task and may not be based solely on predictive accuracy.
In particular, interpretability, the ability to identify impor-
tant features, and their interactions are all key factors that
can influence the final choice. In the case where more than
one algorithm is applicable to a problem, comparisons and
benchmarks are often appropriate to identify the optimal
solution.
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Highlights

Our analysis shows that the predictive ability of each model
varies considerably for different test sets, especially when us-
ing zebrafish test data. This confirms previous findings that
the optimal on-target efficiency prediction model strongly
depends on whether the guide RNA is expressed from a U6
promoter or transcribed in vitro with the T7 promoter (8).
No single model outperformed all others across datasets,
suggesting that a careful selection of CRISPR gRNA de-
sign tools per task is necessary.

The efficiency of a guide RNA is a complex interplay
of factors such as sequence composition, secondary struc-
ture, and numerous others that are yet unknown. This fact
strongly influences the performance of different models and
determines the type of data and the task for which it can
be used. In general, we show that learning-based tools can
tailor the model to particular data, despite the limited bio-
logical knowledge of the CRISPR–Cas9 mechanism. More
importantly, they can extract additional characteristics and
make plausible hypotheses for further investigation. For
those reasons, learning-based tools generally perform bet-
ter than hypothesis-driven ones and should be preferred.

Interestingly, the selection of machine learning algorithm
is not the most important design choice. We observed that
simpler machine learning tools can outperform some of
the new deep learning ones. Large datasets, obtained with
uniform, unbiased experimental measurement, play a cru-
cial role in training a generalizable model, as in the case of
DeepSpCas9 and DeepHF. Additionally, data labels based
on sequencing, rather than phenotypic outcome, may lead
to more accurate models, albeit at a cost (59). Therefore,
more time should be spent collecting and correctly labeling
datasets, designing and extracting meaningful features.

It also follows from our study that the predictive abil-
ity of each tool will vary depending on its intended use.
If the model is applied to data that are similar to its train-
ing dataset, it will likely achieve an acceptable performance.
That is not always the case, though, making systematic eval-
uations valuable and necessary. Because the training dataset
has such a strong influence on the final model, it is crit-
ical to know the characteristics of the data a model was
trained on. As a rule of thumb, models trained on pheno-
typic data are better suited to identifying target sites that
induce functional changes but are limited to tasks relating
to the same condition as the training set. In contrast, models
trained on sequencing data are more universally applicable,
but are only capable of predicting genotype changes, rather
than their functional result. It is therefore important to se-
lect carefully the appropriate model for a particular task
(test dataset), based on the attributes of the experimental
design. If such a model is not available, a generalizable tool
(e.g. DeepHF) or a meta-tool (e.g. the average in our study)
could be used to obtain a decent predictive performance.

It is critical for users of gRNA efficiency prediction tools
to know which one best suits their research. It is also criti-
cal to use the appropriate metric when evaluating the avail-
able models to make that decision. Without a good evalua-
tion criterion, it is not possible to choose the best model or
features. In this study, we evaluated current tools using two
different metrics and obtained very different results. Thus,

users should select carefully the appropriate evaluation met-
ric before moving to model selection. The choice of metric
depends mainly on the intended use of the model’s predic-
tions, such as large scale knockout screens or targeted gene
therapy.

Finally, extracting meaningful, reproducible design rules
is not trivial and is further complicated by data heterogene-
ity. Specifically, we show that studies lead to different and
sometimes even conflicting results about the importance of
predictive features. Existing public datasets about gRNA ef-
ficiency may suffer from a number of biases, creating confu-
sion and preventing unimpaired transfer of the underlying
features to other datasets.

To derive reproducible design rules, effective integration
of data from different cell types and assays is required. How-
ever, it is not clear how that process should be done nor how
much it will improve the trained models. An alternative so-
lution would be to carry out large-scale CRISPR activity
experiments under standardized experimental conditions,
instead of merging CRISPR activity datasets measured by
different methods. This will reduce data heterogeneity at the
cost of time and resources. On the other hand, it is worth
noting the confirmation of several reliable features, such as
the GC content, the seed region, and the secondary struc-
ture of gRNAs, which can be used as a starting point for
good design rules.

In summary, there is little consensus between existing
tools for gRNA efficiency prediction. We have identified
a number of challenging design issues, which need to be
addressed. Adequately addressing these issues will likely
translate to improvements in guide design, paving the way
for more precise and efficient genome editing using the
CRISPR–Cas9 system.

Conclusion

The CRISPR–Cas9 technology has rapidly emerged as a
state-of-the-art technology for functional genome-editing
studies. Because of its simplicity, efficacy, specificity, and
versatility, this technology has tremendous advantages
over other gene-editing technologies. The machine learning
gRNA design tools serve as an important platform for the
efficient application and development of the CRISPR sys-
tem. However, the existing models still have some flaws, such
as their sensitivity to data heterogeneity, unclear mechanism
of decision making, insufficient training datasets and inade-
quate ability to produce general gRNA design rules. Hence,
further efforts are required to improve in silico gRNA design
with high on-target activity and reduced off-target effects.

MATERIALS AND METHODS

Data collection and processing

This section describes the process we followed to collect, ex-
tract and prepare the data used in our study.

Training datasets. We used ten public experimentally-
validated gRNA efficiency datasets, which were collected
and processed by Haeussler et al. (8). These datasets cover
several cell types of five organisms, some of which have been
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used to develop existing tools and algorithms. We kept only
five of those to train and develop our baseline model, based
on the performance of each XGB model under 10-fold cross
validation. We also excluded all the zebrafish datasets to cre-
ate a model with consistent gRNA design rules. The selected
datasets were:

• The Chari dataset, consisting of 1234 guides targeting
HEK293T cells with scrambled SpCas9 targets, whose
target mutation rates were the readout for efficiency (37).

• The Wang/Xu dataset, consisting of 2076 guides target-
ing 221 genes whose deletion resulted in a growth disad-
vantage in the leukemia cell line HL60. The knockout ef-
ficiency of this dataset was evaluated based on the decline
in abundance in the screens (34,35).

• From the Doench dataset, only 951 guides targeting six
cell-surface proteins genes in mouse-EL4 cells, which
could be assayed by flow-cytometry, were kept. There
the abundance of integrated gRNAs in FACS-isolated,
target-negative cells was used as a measure of knockout
success (33).

• A new version of Doench et al. dataset, consisting of 2333
guides targeting eight human genes in A375 cells whose
knockout success was inferred from resistance to one
of three drugs (vemurafenib, 6-thioguanine and selume-
tinib) (39).

• The dataset from Hart et al., consisting of 4239 guides,
targeting 829 genes determined to be essential in human
HCT116 cells (8,81).

In addition, we extracted two zebrafish datasets
(i.e. ‘Shkumatava’ and ‘Gagnon’) to use in our evaluation
as independent data (8). To select only the required se-
quences for each dataset, the ‘dataset’ column was used,
which contained the study name. Using these names, seven
files corresponding to the seven datasets mentioned above
were created.

However, each dataset had its own measurement scale
for knockout efficiencies, producing datasets with non-
standardized efficiency measurements. Thus, it was neces-
sary to rescale each of these values to a standard mea-
surement scale. To accomplish this, we applied a Min–Max
rescale procedure to the cleavage efficiency of each dataset.
The Min-Max normalization maps a value in the range [0,
1] via the following equation:

Ynorm = Y − Ymin

Ymax − Ymin
,

where Ymin and Ymax are, respectively, the minimum and
maximum efficiency value of the dataset, Y is the original
efficiency and Ynorm is the normalized value. This rescaling
function was applied on each efficiency measurement of the
five training datasets.

Moreover, some datasets included sequences that were
shorter than 23-nt, meaning that these sequences were not
in the form of a 20-nt sequence followed by a 3-nt PAM,
leading to non-standardized sequences. For example, the
Doench A375 and Hart datasets comprised sequences of
length 20-nt. Therefore, we extracted 23-nt sequences in
the appropriate form from the provided sequence context.
Specifically, the 20-nt sequence was found in the long 100-nt

sequence and then extracted along with the 3 following nu-
cleotides, obtaining a 23-nt sequence. Subsequently, we ex-
tracted the 30-nt sequences in a similar fashion. Finally, we
used the provided DeepSpCas9 training dataset (71), with-
out any changes.

Testing datasets. A total of six testing datasets were
gathered from published studies, namely: Labuhn (40,41),
Shalem (33), Koike-Yusa (8), Xi Xiang (74), Shkumatava
(8) and Gagnon (8). We chose these datasets as they were
not used to train the models we evaluated. Thus, they al-
lowed for a fair and unbiased comparison.

The Labuhn dataset was provided in the supplementary
material of Chuai et al. (41) and was used without further
changes. This dataset was reported recently, utilizing flu-
orescent reporter knockout assays with verification at se-
lected endogenous loci for gRNA knockout efficiency mea-
surement. The dataset contains a total of 424 gRNAs for
HEL cells (40).

The Shalem dataset was provided by Doench et al. (33)
and contains 1278 gRNAs targeting 414 genes. The gRNA
efficiency is expressed as the log2 fold change in abundance
during two weeks of growth in A375 cells.

The Koike-Yusa dataset was provided by Xu et al. (35).
It originally contained 87,897 gRNAs targeting 19 150
mouse protein-coding genes in mouse embryonic stem cells
(mESCs) (82). By posterior analysis, 311 essential genes
were identified and 1064 gRNAs were retained (35). We
extracted 23-nt and 30-nt sequences from the Shalem and
Koike-Yusa datasets using our custom scripts (provided in
Supplementary material). We also calculated the mean log2
fold change value from Koike-Yusa and used this value for
the correlation analysis of gRNA predictions.

The dataset from Xiang (74) was preprocessed by remov-
ing gRNAs supported by <200 reads and by intersecting the
datasets of gRNAs with efficiencies measured at day 8 and
day 10, thus retaining data for 10 592 gRNAs. The mean of
the efficiencies measured at day 8 and day 10 was used for
the comparative analysis.

The Shkumatava and Gagnon datasets were obtained
from Haeussler et al. (8). They include a set of 163 and 111
guide sequences in zebrafish, respectively. Guides were tran-
scribed in vitro with the T7 RNA polymerase kit and their
efficiency represented the number of mutated sequencing
clones obtained from zebrafish embryos. After extraction,
we found two identical sequences with different efficiencies
in the Shkumatava dataset; we kept only one and used their
average as its final efficiency.

Datasets for epigenetic features. The four human datasets
that we used to study the epigenetic features were integrated
and processed by Chuai et al. (41) and provided by Zhang
et al. (53). These datasets were originally collected from
public datasets (34,39,81). They covered gRNAs targeting
1,071 genes from four different cell lines, including HCT116
(4239 samples) (81), HEK293T (2333 samples) (39), HELA
(8101 samples) (81) and HL60 (2076 samples) (34). Each
entry in the datasets contained the 23-nt gRNA sequence,
four kinds of corresponding symbolic epigenetic features, as
well as numerical and binary cleavage efficiency. The gRNA
efficiency measurements were restricted to experimentally-
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validated assays, where the efficiency was defined as the log-
fold change in the measured knockout efficiency. The epige-
netic features included CTCF and H3K4me3 information
obtained from the ChIP-Seq assay, chromatin accessibility
information from the DNase-Seq assay, and DNA methy-
lation information from the RRBS assay.

We used these features (sequence, epigenetic, numerical
efficiency) to search for identical gRNAs among all pairs
of cell lines and extract their epigenetic information. Our
processed datasets, thus, include all pairs of identical se-
quences with their corresponding epigenetic features and
can be used to confirm our analysis (Supplementary Tables
S1–S3).

Activity prediction tools

DeepCRISPR (41) predictions were generated using the
command-line version of the tool, with sequence fea-
tures only, since the epigenetic features of the tested
cell lines were not available in ENCODE (83). Hence,
all the tools were compared on the same task using
sequence-only information. The source R code of Deep-
Cas9 was downloaded from https://github.com/lje00006/
DeepCas9 and used with the provided weights (69). Deep-
SpCas9 prediction results were computed using the authors’
web-based implementation available at http://deepcrispr.
info/DeepSpCas9. DeepHF (72) predictions were gener-
ated using the source code available at https://github.com/
izhangcd/DeepHF. Regarding CRISPRLearner (https://
github.com/pierclgr/CRISPRLearner), a different model
for each dataset was used. Specifically, we used the trained
‘Doench mEL4’ and ‘Chari 293T’ model for the Koike-
Yusa and Xi Xiang predictions, respectively. In addition,
the ‘Moreno-Mateos Zebrafish’ model was used for the
Shkumatava and Gagnon datasets. Due to reproducibil-
ity issues, we retrained the ‘Wang-Xu HL60’ and ‘Doench
Hg19’ models and used them to obtain predictions for
the Labuhn and Shalem dataset, respectively. We also re-
trained CNN-SVR and C-RNNCrispr using only sequence-
level features following the training process the authors de-
scribed in their studies. Azimuth 2.0 prediction results were
retrieved using the source code available at https://github.
com/microsoftResearch//azimuth (39). For a fair compari-
son with the other algorithms, we did not specify the op-
tional parameters which determine the position of the guide
within the gene. E-CRISP (Version 5.4) predictions were
obtained using their web platform. We applied the pro-
vided evaluation feature of the tool on our datasets with
default options (‘number of 5′ mismatch positions ignored
by the program’ and ‘tolerated edit distance to the target se-
quence’ were set to zero), after selecting the appropriate or-
ganism. We processed the results in a suitable format and in-
tegrated all the predictions into a single file for further anal-
ysis. All the tool implementations were tested for function-
ality in January 2022. We also provide example prediction
scripts for each tool at https://github.com/VKonstantakos/
CRISPR-Deep-Learning.

Baseline model implementation

We trained 6 Extreme Gradient Boost (XGB) models on 6
different datasets. The datasets consisted of the five datasets

extracted from Haeussler et al. (8) and the one that Deep-
SpCas9 used (71). We did not create any manual fea-
tures but instead represented the sequences using One-Hot-
Encoding. Hyperparameters were also not optimized; we
used the default XGBRegressor with objective function
‘reg:squarederror’. We then used the six trained models to
make predictions on each of the six independent datasets
and took their average as the final predicted score. The sec-
ond baseline model was the average of the predictions we
got from DeepCRISPR, DeepCas9, DeepSpCas9 and Az-
imuth 2.0. We chose these models because each one imple-
mented a unique training technique and was trained on dif-
ferent datasets.

Evaluation metrics

Spearman correlation and normalized discounted cumu-
lative gain (nDCG) were used to measure the consistency
between experimentally determined gRNA efficiencies and
predicted scores. The Spearman rank correlation between
two variables is equal to the Pearson correlation between
the rank values of those variables. In addition, the Spear-
man correlation coefficient between two datasets {xi} and
{yi} can be computed as:

ρs = 1 − 6
∑

d2
i

n(n2 − 1)
,

where di is the pairwise distance of the ranks of the variables
xi and yi and n is the number of samples. We used Spear-
man correlation because it does not carry any assumptions
about the distribution of the data and is more robust to out-
liers compared to Pearson correlation coefficient (84). It was
also adopted in previous gRNA activity prediction studies
(8,39,41,69–71).

In addition, we borrowed nDCG from the information
retrieval (IR) literature, in order to capture the ability of
each tool to rank sequences correctly, according to their ef-
ficiency, without necessarily requesting an accurate predic-
tion of the efficiency itself (85). Similarly, we implemented
Precision (86) at different thresholds for the same purpose,
which did not prove useful due to the discretization of the
continuous actual efficiency into distinct intervals. Besides,
Precision does not evaluate the ranking of the relevant doc-
uments, in contrast to nDCG. Thus, it was not used for our
analysis.

One interesting characteristic of nDCG is that the top re-
sults get more attention than the last ones through a dis-
count function. This function can be set to zero for a spe-
cific cut-off k, whereby the remaining results after the kth
one are completely ignored (85). This is interesting because
we do not want to base our judgment on how well a tool is
doing in predicting inefficiency. In our experiments, we set
k to be the top 20 predicted gRNAs of each dataset. This
choice was based on the number of guide RNAs that are
typically evaluated for a specific gene. The nDCG value for
each tool on each dataset was then calculated as follows:
First we obtained a predicted gRNA efficiency rank list,
based on the tested tool, where variable i represents the i-
th gRNA in the rank list. Secondly, a variable reli was used
to represent the relevance of the ith gRNA, where reli was
the real efficiency score of the corresponding gRNA on the

https://github.com/lje00006/DeepCas9
http://deepcrispr.info/DeepSpCas9
https://github.com/izhangcd/DeepHF
https://github.com/pierclgr/CRISPRLearner
https://github.com/microsoftResearch//azimuth
https://github.com/VKonstantakos/CRISPR-Deep-Learning
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test dataset. Finally, the performance of the tool, when con-
sidering the top k gRNAs, was measured by nDCGk using
the following formula:

nDCGk = DCGk

I DCGk
, where DCGk =

k∑

i=1

reli

log2(i + 1)

is the discounted cumulative gain (DCGk) for the obtained
rank list and IDCGk is the ideal discounted cumulative gain
(i.e. a perfect ranking algorithm has nDCGk = 1.0). Spear-
man correlation was calculated using the Scipy library,
while nDCG was calculated with the provided Python script
for k = 20 using the equation above.
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APPENDIX A. CONVOLUTIONAL NEURAL NET-
WORKS

Convolutional neural networks (CNNs) (62), a class of
ANNs, have lately gained popularity in analyzing image-
based data. They were inspired by Hubel and Wiesel’s sem-
inal work on the cat’s visual cortex (87), which showed that
simple neurons respond to small motifs in the visual field
and complex neurons respond to larger ones.
The basic CNN architecture includes three types of layers:
convolutional layers, pooling layers, and fully connected
layers (Figure 9) (62). Convolutional layers aim to learn
feature representations of the inputs. Similar to the corti-
cal neurons, they contain a set of learnable filters that have
a small receptive field but extend through the full depth of
the input volume. The receptive fields of different neurons
(filters) partially overlap such that they cover the entire vi-
sual field (input). These filters scan the provided input for
local patterns and pass the results to the next layer. Differ-
ent filters might, for example, detect edges in an image, or
sequence motifs in a genomic sequence.
The pooling layers of the CNN, on the other hand, deter-
mine the presence of a pattern in a region by calculating the
maximum or average pattern match, thereby aggregating in-
formation from the whole region into a single number. This
way, pooling layers merge semantically similar features into
one, reduce the dimensions of the representation, and create
an invariance to small shifts and distortions.
A CNN typically consists of several convolutional and
pooling layers, allowing to learn more and more abstract
features at increasing scales from small edges, to object
parts, and finally entire objects. After the successive applica-
tion of convolutional and pooling layers, there may be one
or more fully connected layers that aim to perform high-
level reasoning. They connect all neurons of the last pool-
ing layer to every single neuron of the new layer to generate
global semantic information (88). An example of a CNN
architecture is shown in Figure 9.
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Figure 9. An example of a CNN being used to extract features from DNA sequences. First, the sequence is encoded by ‘one-hot’ vectors with a 1 at the
position corresponding to the nucleotide type (A, C, G or T), and zero otherwise. The convolution and pooling operations are then applied to the input
vectors to produce the output of each layer as a feature map. In this example, the convolutional layer includes two (4 × 4) filters that detect sequence motifs,
while the pooling layer aggregates their output using the maximum pattern match. Finally, the output of the fully connected layers is fed to a regression
layer that assigns a score to the given sequence.


