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Abstract: Infectious long-noncoding (lnc) RNAs related to plants can be of both viral and non-viral
origin. Viroids are infectious plant lncRNAs that are not related to viruses and carry the circular,
single-stranded, non-coding RNAs that replicate with host enzymatic activities via a rolling circle
mechanism. Viroids interact with host processes in complex ways, emerging as one of the most
productive tools for studying the functions of lncRNAs. Defective (D) RNAs, another category of
lnc RNAs, are found in a variety of plant RNA viruses, most of which are noncoding. These are
derived from and are replicated by the helper virus. D RNA-virus interactions evolve into mutually
beneficial combinations, enhancing virus fitness via competitive advantages of moderated symptoms.
Yet the satellite RNAs are single-stranded and include either large linear protein-coding ss RNAs,
small linear ss RNAs, or small circular ss RNAs (virusoids). The satellite RNAs lack sequence
homology to the helper virus, but unlike viroids need a helper virus to replicate and encapsidate.
They can attenuate symptoms via RNA silencing and enhancement of host defense, but some can be
lethal as RNA silencing suppressor antagonists. Moreover, selected viruses produce lncRNAs by
incomplete degradation of genomic RNAs. They do not replicate but may impact viral infection,
gene regulation, and cellular functions. Finally, the host plant lncRNAs can also contribute during
plant-virus interactions, inducing plant defense and the regulation of gene expression, often in
conjunction with micro and/or circRNAs.

Keywords: RNA viruses; long noncoding RNAs; defective RNAs; satellite RNAs; subviral RNAs;
viroids; RNA interference

1. Introduction: lncRNAs

Over several decades numerous classes of noncoding RNAs (ncRNAs) have been identified in all
organismal kingdoms. Among the three basic groups of ncRNA are short ncRNA, such as micro RNAs
(miRNAs), small interfering RNAs (siRNAs), tRNA-derived stress-induced RNAs (tiRNAs), small
nucleolar RNAs (snoRNAs) and piwi-interacting RNAs (piRNAs), middle size ncRNAs, and long
non-coding RNAs (lncRNAs), >200 nt in length, such as cold assisted intronic noncoding RNA
(COLDAIR), HOX antisense intergenic RNA (HOTAIR), etc. [1,2]. In particular, the genes encoding
lncRNAs occur in very large numbers in the human genome (58,648 genes) and their regulative roles
are implicated at all levels of gene expression, influencing multiple cellular activities. In general,
lncRNAs account for 68% of ncRNAs [3,4].

In plant genomes, lncRNA transcripts situate as intergenic RNAs, antisense RNAs, intronic
RNAs, and non-overlapping antisense RNAs [5]. LncRNAs can function at various levels
including transcriptional, post-transcriptional, and translational regulation or even post-translational
modification, having implications for dosage compensation, splicing, cell cycle, and differentiation,
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or for controlling diseases, and in turn play roles in flowering, morphogenesis, reproduction, crop yield
or stress response. An example of regulation of flowering is lncRNA COLDAIR, which is downregulated
by cold treatment, recruits a protein PRC2 which suppresses the expression of Flowering Locus C (FLC
locus), and then induces flowering [6].

LncRNAs can regulate histone modifications at the chromatin level, via interacting with or acting
as scaffolds for methylation and acetylation complexes. Such epigenetic effects are well described in
the case of repressive complex PRC2 [7] or COMPASS-like complex [8], which are targeted by lncRNAs
to the cognate chromatin sites and cause chromatin remodeling via histone methylation [9]. LncRNAs
can also regulate DNA methylation via RNA-dependent DNA methylation process, interacting with
DNA methyl transferases, or by gene silencing mechanisms [10].

At the transcription level, lncRNAs can act as co-factors that modulate the activity of transcription
factors, e.g., during plant immune responses (expression of PR proteins [11,12]). LncRNAs regulate
messenger RNA (mRNA) alternative splicing, can act as miRNA sponges or as precursors of miRNAs
and siRNAs, or can mediate RNA decay and stability. Post-transcriptionally, lncRNAs participation in
the regulation of translation and post-translational modification has been observed at various levels of
protein synthesis. Overall, most of the nuclear lncRNAs do not function alone as independent factors
but interact with other factors via complex (cascade) mechanisms, and there is no single universal
function of lncRNAs [11].

In this review, we focus on lncRNAs related to plant RNA viruses, both to those that do not
originate from virus genomes (viroids and satellite RNAs) and those of viral origin (defective-interfering
DI RNAs or subviral RNAs) (Figure 1). Various types of these viroids, satellite RNAs, and other
virus-derived lncRNAs have been identified for many plant viruses that can modulate the overall viral
infectivity and host transcriptome. Recent development in next generation sequencing (NGS) has
made research on these lncRNAs cheaper and more extensive.
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2. Viroids

Viroids are a group of infectious plant lncRNAs that are composed of RNA genomes and replicate
by using the host enzymatic activities. Viroids carry the circular, single-stranded, non-coding RNA
molecules that represent the smallest known replicons among all living objects, ranging between 246
to 401 nucleotides (nt) in length [13,14]. Viroid RNAs (vd-RNAs) do not carry any functional open
reading frames and can be defined as circular lncRNAs.

Their mode of action along with the host processes makes the viroids unusually complex lncRNA
molecules [15]. Uniquely, viroids can multiply and accumulate in the infected plant tissue by using
host RNA polymerases. So far, no animal viroid RNAs have been described. Interestingly, circular
single-stranded (ss) viroid RNAs replicate autonomously in plant cellular organelles, either in nuclei
or in chloroplasts. No sequence homology with the host plant genome or with a potential helper virus
genome has been observed among viroids. Currently, several thousand variants of viroid sequences
are available in the National Centre for Biotechnology Information (NCBI) databank. Based on the
presence of the central conserved region (CCR) containing the C-domain, viroids are classified into
two families, the Pospiviroidae and the Avsunviroidae, each further divided into genera according to
their RNA structures and relationships. A brief overview is given in Table 1 (see Supplementary Data,
Table S1 for detailed elaboration) [16].

Table 1. A brief overview of the various members of viroids belonging to Avsunviroidae and Pospiviroidae.
(Elaborated details on all the members reported in the International Committee for Taxonomy of Viruses
(ICTV) and references are provided with Table S1 in the Supplementary Data).

Viroid Classification Type Species Genome and Pathogenesis

Avsunviroidae

Avsunviroid Avocado Sun Blotch Viroid
(ASBvd)

The viroids in this family have a circular genome of
247–399 nucleotides. Viroids are characterized by a specific

central conserved region (CCR) in the RNA and have
hammerhead ribozymes (HHR) required for symmetric rolling

circle replication in the chloroplast. Most viroids are
symptomatic to the host whereas some can be asymptomatic.

Pelamoviroid Peach latent mosaic viroid
(PLMvd)

Elaviroid Eggplant latent viroid
(ELVd)

Pospiviroidae

Pospiviroid Potato spindle tuber viroid
(PSTVd) The genome size ranges from 246 to 371 nucleotides. The viroids

lack central conserved region (CCR) and ribozyme activity.
Replication in the nucleus by asymmetric rolling circle

replication is catalyzed completely by host enzymes. It can
infect a wide range of hosts including Solanaceae, Asteraceae,

Compsitae, and others including various economically important
fruit crops like apples, citruses and some ornamental plants.

Hostuviroid Hop stunt viroid (HSV)

Cocadviroid Coconut cadang-cadang
viroid (CCCVd)

Apscaviroid Apple scar skin viroid
(ASSVd)

Coleviroid Coleus blumei viroid (CBVd)

Both families of viroids adopt the rolling-circle replication (RCR) mechanism, but the Pospiviridae
replicate by asymmetric and the Avsunviridae by symmetric rolling-circle mechanisms (Figure 2).
Pospiviroidae replicates in the nucleus, where the host DNA dependent RNA polymerase II is involved
in the transcription of the viroid RNA [17]. Studies of the PSTVd, the type species of the Pospiviroidae,
have shown that the host transcription factor TFIIIA is required for the transcription of the viroid
RNA. Out of two splicing variants, TFIII-9ZF and TFIII-7ZF, the latter is involved in the transcription
of the viroid RNA, which is regulated by the ribosomal protein L5 (RPL5) [18–20]. In Pospiviroidae
the monomeric circular viroid RNAs replicate by the RCR mechanism to produce an oligomeric
longer-than-unit strand, that is cleaved into replicative monomeric RNAs by one or more host
ribonucleases (RNases) most likely the members of RNase III family. The recognition of the cleavage
site by host RNases is determined by the stem-loop structures in the viroid RNAs around the CCR
region. Thus produced monomeric linear (ml) RNA serves as a template for the synthesis of the ml (+)
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strand RNA [21]. The ml (+) RNA is then ligated into the circular (+) RNA. It has been demonstrated
by Nohales et al. (2012) that the viroids force host DNA-ligase, most likely DNA-ligase I, to act as RNA
ligase to circularize the ml (+) strand RNA [22,23].
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Figure 2. Rolling circle replication (RCR) in the Pospiviroidae and the Avsunviroidae. The members of
Pospiviroidae replicate by the asymmetric RCR mechanism (A) inside the host nucleus with the help
of the host enzymes. The circular + strand (Red) of viroid RNA is copied into the–strand (Blue) by
the RCR, which is linearized by the host RNases, and the linear RNA is then used as the template
for the synthesis of the + strand. Finally, the host ligases circularize the viroid RNAs. As shown in
panel (B), the members of Avsunviroidae replicate by the symmetric rolling circle mechanism using the
nuclear-encoded polymerase (NEP) in the chloroplast. Replication of RNA strands with both polarities
are completed by the RCR mechanism. In this family, the viroid RNAs have autocatalytic ribozymes
that catalyze the cleavage of the circular oligomeric form of the viroid RNAs into monomers (Diagram
adapted from the Flores et al. FEBS Letters 567, 2004).

The members of Avsunviroidae replicate in the chloroplasts by the symmetric RCR mechanism,
where (+) stranded circular viroid RNAs are copied into the oligomeric (-) RNAs that are cleaved and
ligated to the mc (-) strands. The mc (-) strands are used as a template to undergo a second round of the
RCR to produce mc (+) RNA [17]. The nuclear-encoded polymerase (NEP) are predicted to catalyze the
transcription of the viroid RNA at a specific initiation site, which is located at the (A+U)-rich terminal
loops in the avocado sun blotch viroid (ASBVd), and a 6–7 bp GUC-rich double-stranded RNA motif in
the peach latent mosaic viroid (PLMVd) [24–27]. The cleavage of the replication intermediates of both
the polarities required for the replication is known to be facilitated by the autocatalytic hammerhead
ribozymes (HHR) in Avsunviroidae [28,29]. Besides, the HHR can also catalyze the ligation reaction
in-vitro to circularize the ml RNAs. However, the efficiency of the HHR and the requirement for a
higher concentration of Mg2+ beyond physiological conditions questioned the feasibility of the reaction
in vivo [21]. However, Nohales et al. (2012) have shown that in the replication of eggplant latent
viroid (ELVd) the catalytic activity of the chloroplastic isoform of eggplant tRNA ligase mediates the
circularization of both ml (+) and (-) strands. Another work also demonstrated that a recombinant
eggplant tRNA ligase can mediate circularization in ASBVd, PLMVd, and Chrysanthemum chlorotic
mottle viroid (CChMVd) [30].

The extensive secondary structure plays a critical role in the viroid life cycle, such as in host plant
invasion, replication, pathogenesis, and transport. Viroid RNA structures have been studied in great
detail by using SHAPE analysis whereas their structural 3D complexity has been confirmed via the direct
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visualization of single-RNA molecules by atomic force microscopy [31,32]. Structure prediction of the
stability of viroid molecules can help explain how viroids escape the RNA silencing pathways [33,34].

Viroid infections often cause disease symptoms in such important crops as apple, avocado, coconut,
grapevine, hop, peach, potato, tomato, and others [35]. Recent findings shed new light on molecular
mechanisms of interaction, securing regulation of viroid replication in the plant cell. For example,
potato spindle tuber viroid (PSTVd), a model viroid, requires a splicing form of transcription factor
IIIA (TFIIIA-7ZF) for its multiplication via direct interaction with a splicing regulator RPL5, which in
turn favors the expression of TFIIIA-7ZF [18]. There is some evidence that viroid replication links to
RNA silencing, e.g., for PSTVd that can replicate efficiently in the presence of DCL4, but not of DCL2
host genes [36]. Interestingly, small RNAs originated from PLMVd also appeared to participate in the
cleavage of chloroplast mRNA for heat shock protein [33], likely inducing the pathogenic symptoms of
viroid infection. Similarly, the miRNA-induced cleavage of the virulence region of PSTVd targeted the
pyrophosphatase mRNA. PSTVd also targeted a bromo domain-carrying protein VIRP1 in tomato [37].
PSTVd failed to infect VIRP1-suppressed N. benthamiana plants, signifying that this viroid should be
viewed as a functional lncRNA [38].

Viroids have emerged as productive tools with which to study the interactions not only of their
replicable lncRNAs, but also the plethora of functions of host lncRNAs in general [39]. Current
research focuses on the transcriptomic analysis of viroid-infected plants to identify e.g., the patterns
of viroid-siRNA-induced RNA silencing of host mRNAs. This helps to obtain a holistic picture of
viroid-induced regulation or the widespread degradation of the host gene expression. Yet translation
also appears to be affected/regulated by viroids [40]. It has been shown that viroid molecules were
present in the ribosomal fractions [41]. In general, the above and similar findings provide new insights
to better understand viroid biology and thus the means for viroid control.

Among several hypotheses regarding the origination of viroids, Kiefer et al. (1983) suggested that
they might come from transposons or retroviruses [42]. However, more currently, because they contain
catalytic RNA elements, Flores et al. (2014) considered viroids as remnants of ‘the RNA world’ that
arose earlier than DNA and proteins. In some retrotransposons ribozyme activities, were found, further
emphasizing a link between TEs and catalytic RNAs [43]. This is supported further by recent findings
with ASVd, another model viroid, which has been shown to bear a double hammerhead ribozyme,
also found in mobile elements and other viroid-like RNAs [44,45]. Recently, Catalan et al. (2019) have
proposed a possibility of the de novo origin of viroid-like replicons via a parsimonious scenario. From the
pool of various RNAs in eukaryotic cells, some can circularize and serve as seeds of the process [46].

NGS has been widely used in viroid research for the discovery of new viroids and diagnostic
purposes. The technology has been employed to analyze viroid sequences and host gene expression
(transcriptomic) in response to viroid infection [47]. Progressive filtering of overlapping small
RNAs-1/-2 (PROF1/PROF2) uses deeply sequenced small RNAs and assembles them into circular RNAs
representing possible viroids and satellite RNAs. This software discovered the apple hammerhead
viroid (AHVd) from apple plants and a novel grapevine latent viroid (GLVd) from an old grapevine
plant [48]. Recently, the PROF2 in combination with the assembly software Velvet allowed the discovery
of viroid-derived small RNAs responsible for host RNA silencing in Coleus blumei infected with coleus
blumei viroids (CbVds). Based on the NGS data it has been revealed that the central conserved region
(CCR) of the viroid is pivotal in the biogenesis of sRNAs for both host RNA silencing and the genome
replication of the viroids [49]. Deep sequencing revealed the viroid heterogeneity, with 3939 variants
of inoculated parent PLMVd detected after six months of infection in the natural host [50]. Similarly,
transcriptome analysis of the citrus bark cracking viroid (CBCVd) revealed a new variant of the viroid
from citrus plants in Pakistan. Interestingly, the viroid was highly diverse phylogenetically from
CBCVd found in other Asian countries [51]. Therefore, NGS has proved to be an important asset in the
discovery of novel viroids and can be used for viroid screening and quarantine.
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3. Replicative lncRNAs: Defective and Defective-Interfering RNAs

Defective (D) and defective interfering (DI) RNAs represent of the class of lncRNAs that are
derived from the helper RNA virus genome by one or more premature termination and reinitiation
events, resulting in functional replicative templates [52]. The replication of DI RNAs is completely
dependent on the helper virus, which usually limits virus replication and alleviates symptoms.
Sometimes, however, the DI RNAs can intensify the disease symptoms, e.g., as observed for broad
bean mottle virus (BBMV) [53,54]. In some cases, the virally-derived RNAs do not interfere with
virus disease, and these are referred to as defective (D) RNAs. In this review, if not further specified,
we will use the inclusive term defective RNAs for both D and DI RNAs. The majority of defective
RNAs are noncoding [55–58]. Defective RNAs could accrue up to 60% of viral RNA during infection,
but the encapsidated fraction might be much lower. Interestingly, defective RNAs are often not
vector-transmissible [52,59,60]. The systemic movement of these RNAs seems to be host dependent,
e.g., the cucumber mosaic virus (CMV) DI RNA moves systemically in tobacco species but not in
tomato or cucurbits [60–62]. The genetic relatedness to the helper virus distinguishes defective RNAs
from satellite RNAs, as the latter are also dependent on a helper virus but genetically (sequence-wise)
are not related.

Current analytical developments, especially in NGS sequencing, have progressed rapid
advancements in the understanding of the mechanisms of the generation of DI RNAs, and their
role as signals promoting antiviral immunity during infection, affecting viral dynamics and evolution
during host-virus interactions. The diversity of defective RNAs is much larger than initially detected
and they appear to be present in virtually every virus population. The use of single-cell sequencing
technology and bioinformatics detected jumbled or rearranged viral sequences, and their populations
are not the same if generated in different hosts [63]. Truncated viral genomes result from large internal
deletions that remove several or all essential genes but retain replication and/or packaging signals.
Yet other species result from multiple recombination events and various sequence rearrangements [64].

Defective RNAs generally consist of the non-contiguous portions of the helper virus genome,
synthesized by the viral RNA-dependent RNA polymerase (RdRp). The replication-dependent
template-switching mechanism, either the replicase dependent or the forced template-switching
mechanism, are among the well documented and popular means for synthesis of the defective
RNAs [65]. The analyses of species such as Cucumber necrosis virus, Brome mosaic virus, Turnip crinkle virus,
Cucumber mosaic virus, Bovine viral diarrhea virus, and Hepatitis C virus have shown that RNA breaks,
strong hairpin structures, or that AU–rich stretches enhance the replicase in order to switch the
template between the donor RNA and the acceptor RNA, leading to mosaic or truncated progeny
RNAs, with loss in peptide coding functionality, but retaining the ability to replicate [66–70]. Besides
these extensive recombination events, other events like point mutations, hypermutations, frameshifts,
single nucleotide deletions, and copy backs are known to synthesize the various classes of defective
RNAs. Copy backs involve sequence rearrangements resulting in reverse complement duplications,
forming stem-like structures. Defective RNAs can also be generated de novo randomly due to faulty
viral proteins such as mutated RdRp, nucleoprotein variants, and other structural proteins that affect
replication and recombination, as illustrated in Figure 3 [63].

To date, DI RNAs resulting from the above mechanisms have been characterized for a variety
of plant RNA viruses carrying positive-sense, negative sense, double-stranded and ambisense
genomes [52,60]. For the members of Crinivirus, DI RNAs comprise a mosaic of the multipartite
parental viral genome [71], while deletions are characteristic of DI RNAs in Tombusviruses [65,72].
Tobra-, Potex-, Furo-, Peclu-, and Beny-viruses accumulate single-deletion defective RNAs. Although
DI RNAs derived from the same virus can vary in their structure, some elements are highly conserved,
namely those essential for RNA viability, such as retaining the cis-acting sequences essential for RNA
replication by viral RdRp or encapsidation signals.



Pathogens 2020, 9, 765 7 of 19
Pathogens 2020, 9, x FOR PEER REVIEW 7 of 19 
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Figure 3. The schematic representation of mechanisms of the generation of defective viral RNAs.
(a) Either altered RdRp fidelity due to mutations or effects of virus-encoded co-factors, such as the
influenza A virus (IAV) NEP or the paramyxovirus C protein, can favor the generation of D RNAs.
(b) Variants of the nucleoprotein with altered binding to viral RNA can promote D RNA generation.
(c) Altered structural proteins, such as the PPXY domain in the matrix protein of arenaviruses, can
lead to encapsidation of the D RNAs. (d) Inter- and intra-recombination events using homologous
sequences (red) can lead to the formation of D RNAs. (Courtesy Vignuzzi and Lopez, 2019, Nat. Micro.)
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The roles of viral replicase proteins, the replication/recombination sequence domains, host factors,
and growth conditions have been found to affect the above mechanisms of defective RNA generation [73].
The role of replicase proteins in RNA recombination has been shown by using the mutant of the
BMV helicase-like 1a protein mutant, where the mutant affected the nature of the RNA recombination
products in comparison to the wild type (wt) 1a protein [74]. Similar effects have been demonstrated
in many animal viruses where recombinant RdRp are found to be associated with attenuated virus
accumulation, in most cases correlated with the accumulation of the defective RNAs [75–78]. Besides
RdRp, other structural proteins as shown in Figure 3, are also known to be involved in the generation
of defective RNAs, like the nuclear export protein (NEP) in the influenza virus which increased DI
production, the paramyxovirus protein C increases the DI RNAs via the copy-backs [79,80]. Similarly,
in Potato mop-top virus the 8K protein and the triple gene block 1 (TGB1) proteins are known to alter the
biogenesis of the DI RNAs [81]. The conserved sequence domains (elements) or secondary structures in
the viral RNAs are also known to control the mechanism of replication and recombination, contributing
directly to the generation of defective RNAs. For example, the enrichment of the AU sequences in the
RNA2 and RNA3 of the BMV is known to increase the frequency of imprecise crossovers [82–84].

Host factors can influence the mechanism of the DI-RNA generation. Using the yeast single
gene knock out library, several dozens of host genes that could affect virus RNA recombination have
been identified in tomato bushy stunt virus (TBSV). The host exoribonuclease-like XRN1 is found to
promote the formation of DI-RNAs [65,85]. The role of RNA editing causing D RNA diversity has
been shown for human RNA viruses [86,87]. Thus, the current data suggest a combination of such
factors, including random errors such as deletion formation by viral polymerase due to the lack of
proofreading activity, and mutations in the other structural proteins, as contributing to the biogenesis
of defective RNAs. Besides, the generation of copy-back sequences appears to be another factor, which
is not completely random, being directed by specific signal sequences [88].

The pathogenesis of the DI RNAs in Tombusviruses and Cucumoviruses has been extensively
studied [52,65] and de novo generation of DI RNAs has been observed for the first time in Tombusviruses,
after serial passages of DI RNA-free viral RNA through host plants. The presence of a DI RNA
considerably attenuates Tombusvirus infection, from lethal necrosis to persistent symptoms. In general,
DI-RNAs have complex relationships with the helper virus (HV) regarding the competition for viral-
and host factors, and mitigation of antiviral responses and/or disease symptoms in the host plant.
D RNAs have also been reported in the tomato black ring virus (TBRV), one of the Nepoviruses.
The D RNA formed by a single deletion in the RNA1 molecule interfered with the replication of TBRV.
Recently, DI-RNA has also been shown to increase the vertical seed transmission of the virus [89,90].

Defective RNA-virus interactions evolve into mutually beneficial combinations.
Such domestication processes enhance virus fitness, giving the helper virus competitive advantages in
its relationship with the host, mostly by moderating disease symptoms [65]. The rate of evolution
of DI RNAs appears to be faster than that of the helper viruses due to their small size and reduced
competition for translation. However, the shorter genome of DI RNAs has disadvantages for
cooperative binding to viral movement proteins, reducing their cell-to-cell movement in the infected
plants. An example of the interplay between virus and molecular DI RNA parasite has been
demonstrated for Potato mop-top pomovirus, where regulation of virus accumulation depended on the
antagonistic roles of the relative levels of 8K protein and D RNAs (the 8K gene is needed for efficient
virus accumulation but D RNA impairs efficient virus accumulation) [81].
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The mechanism of interference is not clearly understood but the possibilities include (i) competition
for transacting factors, (ii) interaction with viral products, (iii) inhibition of pathogenicity determinants,
and/or (iv) activation of RNA interference [81]. The first hypothesis, however, is not able to explain the
persistence of infection with Tombusviruses [72,91]. Functional interactions between genomic and DI
RNAs are also not directly responsible for attenuation of symptoms, at least for some DI RNAs [92].
As for the third hypothesis, the data revealed efficient induction of siRNAs by DI RNAs but DI RNAs
were poor targets for virally derived siRNAs [59]. This suggests that DI RNAs contribute to efficient
degradation of the helper virus genome, via inducing systemic RNA interference ahead of virus spread.

Recent NGS data for animal RNA viruses demonstrate that hundreds of defective RNAs can
arise within a single viral infection, but only some are repeatedly detected in different samples [88].
More research is required towards understanding whether similar processes occur for plant RNA
viruses, but also into how plant viruses and their DI RNAs co-evolve within the framework of the host
and the outside environment [63].

4. Replicative RNAs: Satellite RNAs

The lack of sequence homology to the helper virus distinguishes defective RNAs from
sequence-unrelated satellite (sat) RNAs, although they are also dependent on the helper virus
(Table S2). In contrast to viroids, sat RNAs both replicate and encapsidate by a helper virus [93].
These molecular parasites of viruses usually affect (attenuate or enhance) viral symptoms [94,95].
The first example of pathogenic satRNA was reported in 1977, causing lethal necrosis disease in tomato
plants by CMV [96]. Some results suggest similarities between satRNAs and viroids, e.g., based on the
fact that satRNA of CMV replicated in the nucleus independently of the helper virus [97].

As far as their general organization, the satRNAs include three categories of single-stranded
(ss) RNAs: large linear ss RNAs (0.7–1.5 kb) that encode a protein, small linear ss RNAs (less
than 0.7 kb), and small circular ss RNAs. An example of the first category is Bamboo mosaic virus
satRNA, which encodes an RNA-binding protein [98]; however, as such, it cannot be considered
as a lncRNA. The small satRNAs, both linear and circular, do not encode any protein, a feature of
classical lncRNAs. SatRNAs associated with different helper viruses belonging to various families
and genera are briefly tabulated below in Table 2. (See Supplementary data in Table S2 for more
elaborate detail). Some examples of small linear satRNAs are tobacco necrosis virus small satellite
RNA, tomato bushy stunt virus satellite RNA, peanut stunt virus satellite RNA, tobacco bushy top
virus satellite RNA, and others [99]. This well-studied category of satRNAs is very analogous to
other lncRNAs, especially in the case of CMV satRNAs [100,101]. The majority of CMV satRNAs do
attenuate CMV infection but some can induce lethal infection, leading to necrosis or chlorosis due
to the presence of specific sequences or silencing of some host genes [102]. The systemic necrosis on
tomato is likely caused by triggering programmed cell death with CMV D-satRNA [103], whereas
CMV Y-satRNA-derived siRNAs are known to saturate the virus-encoded suppressor of RNA silencing
(VSR), leading to attenuation of the symptoms [104]. In Nicotiana tabacum, a large amount of siRNAs
derived from Y-sat RNA shows yellowing of leaves caused by the down-regulation of chlorophyll
biosynthetic gene ChlI by RNA silencing [95,105]. The peanut stunt virus (PSV) showed exacerbated
and accelerated symptoms in the presence of the PSV satRNAs. The Nicotiana benthamiana plants
co-infected with the satRNAs showed a higher fold change of differentially expressed genes (DEGs)
involved in the biosynthesis of secondary metabolites, translation, ribosome biogenesis, and RNA
metabolic processes [106].
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Table 2. A brief overview of various linear and circular satRNAs showing respective belonging to
different families and genera of viruses. (More elaborate details can be found in Table S2, provided
with the Supplementary data).

Family/Genus of
Helper Virus Example Genome and Pathogenesis

Linear Small Satellite RNA

Tombusviridae
Tomato bushy

stunt virus (TBSV)
satellite RNA

The genome is linear long non-coding RNA, ranging from 339 to 901
nucleotides. Most satRNAs are pathogenic to the helper viruses
whereas some, like black beet scorch virus (BBSV) satellite RNA, is
known to intensify symptoms and virus accumulation.

Bromoviridae
Cucumber mosaic

virus (CMV)
satellite RNA

Umbravirus

Groundnut
rosette virus

(GRV) satellite
RNA

Circular Sat RNAs

Secoviridae
Tobacco ringspot

virus (TRSV)
satellite RNA

Also known as virusoids, they have circular long non-coding RNAs
ranging from 220 to 457 nucleotides. The RYMV satRNA is the
smallest known pathogenic subviral agent. The RNA secondary
structure is conserved with a hammerhead ribozyme. They replicate
by rolling circle mechanism using the helper virus machinery and
are encapsidated by the helper virus coat protein. Mostly pathogenic
to the helper virus, leading to attenuation of the symptoms in host
plants. The replication of satRNAs is known to be supported by
heterologous helper viruses across different species.

Luteoviridae
Barley yellow
dwarf virus

(BYDV)

Sobemovirus
Rice yellow
mottle virus

(RYMV) satellite

Zhu et al. (2011) suggest that satRNA attacks CMV RNA via RNA silencing [107], leading
to enhancement of host defense response, e.g., by guiding RNA-directed DNA methylation [108].
Since RNA silencing plays an important role in defense against RNA viruses, this has been surmised
as the cause of the origination of replicable sat RNAs, because these could strengthen the silencing
activity via the RDR6-dependent siRNA amplification system [108,109].

Interestingly, the third category of small circular satRNAs is called virusoids, because they
are similar to viroids but are dependent upon the helper virus [110]. The circular satRNAs have
the ribozyme for autocatalytic cleavage and ligation required for their replication by rolling circle
mechanism [111]. These satRNAs can be encapsidated either as circular RNAs or linear RNAs; the linear
forms circularize in plant cells during replication [112] Well studied examples of this group include
tobacco ringspot virus (TRSV) satRNA, which has a ribozyme activity [113], and rice yellow mottle
virus (RYMV) satRNA that encodes a possible highly basic, active peptide [114].

The structures of satRNAs are known to be conserved and are required for successful replication.
For example, in lucerne transient streak virus satellite RNA (LTSV satRNA), most of the mutations
reverted to the wild type by 21 days post-inoculation (dpi) and had wild-type secondary structures [111].
Thus, satRNAs have a very interesting relationship with the helper virus (HV) and the host. Some
satRNAs are pathogenic to the HV, which means they attenuate both HV accumulation and symptom
induction [115], whereas other satRNAs attenuate HV accumulation but disease symptoms are
aggravated in the host plants [116]. SatRNAs can also act as the RNA silencing suppressor (RSS)
antagonist to aggravate symptoms in the host plants [104]. The relationship between satRNAs and HV,
along with the host plants, can be exploited for therapeutic use for the development of virus-resistant
crops [117–119]. Moreover, studies of the satRNAs associated with animal viruses related to human
diseases are also recently progressing, such as Hepadnavirus associated satellite-like RNAs (HDV),
and Adeno associated satellite virus (ASV) [120].
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5. Nonreplicative Lnc RNAs of Plant Viruses

Plant RNA viruses generate subviral RNAs (subgenomic RNAs, sgRNAs) for high-yield translation
of downstream ORFs. sgRNAs can be produced by internal initiation from the subgenomic promoter,
by premature termination, leader primed transcription, or discontinuous transcription. BMV, one of
the most commonly studied plant RNA viruses, transcribes sgRNA4 from an internal subgenomic
promoter in the RNA3, which is translated into the coat protein [121]. By the same token, BMV RNA3
transcribes its 5′ portion by premature termination producing sgRNA3a to facilitate the translation of
virus movement protein [122].

However, selected viruses produce non-replicating RNAs that do not encode any protein, often by
incomplete degradation of genomic RNAs. Such degradation can be due, e.g., to cellular 5′ to 3′ XRN1
exonuclease, until it stops at a structured element. Such lncRNA products may then interact with
different cellular factors used for transcription, translation, splicing, or RNA interference [123–125].
One example of lncRNA degradation product has been found in red clover necrotic mosaic tombusvirus
(RCNMV). This 400 nt lncRNA, dubbed SRf1, is a 3′ UTR derivative of RNA1, gets encapsidated,
and functions as a repressor of synthesis of the negative-strand of RCNMV RNA [126]. Yet, in Benyviridae,
the beet necrotic yellow vein virus generates a non-encapsidated 500 nt lncRNA (RNA3sub) of yet to
be established function [127].

Among common features shared by virally-derived lncRNAs are their highly stable structures,
the use of RNAPII or RNA degradation mechanisms for their production, their importance in the
infection cycle, and their direct intervention in gene regulation. This can modulate the hormonal and
metabolic signaling pathways to enhance viral infection. For example, the citrus tristeza virus (CTV)
produces a lncRNA called low molecular weight tristeza 1 (LMT1), which is associated with maintaining
virus accumulation, movement, and infectivity by lowering the production of salicylic acid (SA) and
reactive oxygen species (ROS) required for antiviral defense [128]. Thus, viral lncRNAs play important
roles in disease development [129], and they can be targeted by RNAi mechanisms, possibly to overflow
the cellular defense system (likely in the form of counteracting competing-endogenous ceRNAs) [130].

6. Host lncRNAs during Plant-Virus Interactions

Regarding the origination of plant lncRNAs, one theory links their biogenesis to TE
elements [131,132]. Because TEs closely link to retroviruses, they are probably derived from a
common ancestor [133]; lncRNAs might have evolved from viruses through TEs, but in such a way
that they resisted/survived RNA silencing [134]. Along these lines, computer studies on human DNA
viruses have revealed homologies to human lncRNAs, suggesting an evolutionary association between
lncRNAs and viruses. Consequently, viruses, especially cancer-related viruses, may have evolved from
noncoding RNA transcripts [135].

Studies have been conducted to evidence the contribution of host lncRNAs during plant-pathogen
interactions [136]. For instance, lncRNAs appear to function in plant defense against viral infection [137].
In the TYLCV (tomato yellow leaf curve virus)-resistant line of tomato, different regulation profiles of
lncRNAs, and long noncoding natural antisense transcripts (lncNATs), were observed, as compared to
susceptible lines; similar effects were detected in N. benthamiana [138]. Host lncRNAs had participated
in defense signaling, controlling the expression of miRNA, where the transcription of miRNA-target
genes was upregulated by lncRNAs.

In another work on the TYLCV-tomato system aiming at the identification of lncRNAs as key
regulators of gene expression, the NGS RNA-seq revealed different patterns of lncRNAs and circRNAs
in infected vs. uninfected susceptible plants [139]. The silencing (by VICS) of the circ RNA’s
parental genes resulted in decreased TYLCV virus accumulation. The circRNAs are among the novel
endogenous lncRNA in eukaryotes associated with many biological functions such as development,
and biotic/abiotic stress. The circRNAs are generated during post-transcriptional processing via the
back splicing of precursor mRNAs [140–142]. The authors identified novel lncRNAs and circRNAs that
functioned as regulators of TYLCV infection, several acting as susceptibility genes in TYLCV infection,



Pathogens 2020, 9, 765 12 of 19

whereas some exonic circ RNAs upregulated the expression of host genes. Similarly, in response
to the maize Iranian mosaic virus (MIMV), the maize plants showed differential expression of the
circRNAs such that 155 circ RNAs were upregulated whereas five were down-regulated. Interestingly,
the secondary structure analysis of the differentially expressed circRNAs predicted that 33 of those
RNAs might interact with 23 maize miRNAs that are responsible for the regulation of plant metabolism
and development [143]. In the watermelon plants, the cucumber green mottle mosaic virus (CGMMV)
infection differentially expressed 67 lncRNAs and 548 circRNAs that are responsible for the metabolic
pathways, such as phenylalanine metabolism, citrate cycle, and endocytosis [144]. The role of circ-
and other lnc-RNAs in up- and down-regulation of expression of their parental genes have been also
observed in rice [145] and kiwifruit [146]. The circ RNAs can also act as miRNA sponges to prevent
the degradation of target mRNAs [147–149]. All these examples illustrate that host lncRNAs play a
complex role in the regulation of defense responsive genes, observed in plants not only for viruses but
for other pathogens too [136].

7. Final Remarks

Several decades of extensive research on viroids have contributed significant progress toward
the understanding of interactions of vd-RNAs with plant cell components, especially to explain the
involvement of vd-sRNA in viroid-induced disease symptoms and induced gene expression, and the
role of RNA silencing. However, further analyses are required on the mechanisms of viroid-induced host
gene expression, as well as on the contribution of circRNAs in the regulation of translational machinery.
Structure prediction techniques will further the study of viroid biology, especially concerning means of
escape from RNA silencing surveillance.

Likewise for D RNAs, recent NGS sequencing projects have revealed considerable diversity among
D RNAs in plant viruses. Nevertheless, some questions remain, including the detailed molecular
mechanisms of the D RNA biogenesis, their control of host-virus pathogenesis, the degree to which
D RNA populations contribute to virus evolution and host range, and how the interactions of D RNAs
with viral and/or host factors affect the stages of the virus life cycle or induction of symptoms.

As for host plant lnc RNAs and plant responses to pathogens/viruses, although a great number
of host- and pathogen-related lncRNA has been discovered in many organisms, and considerable
efforts have been undertaken to recognize lncRNA-mediated plant defense against viruses, the precise
antipathogenic defense remains largely obscure, e.g., in terms of the link to the RNA silencing machinery.
In general, lncRNAs have been found to play a role in the modification of chromatin architecture, and
to interact with transcription and translation factors, with proteins of signaling cascades, or with other
cell host factors. These lncRNAs could likely act to overthrow cellular defense systems. Understanding
the relevance of lncRNAs to disease in terms of virulence development and anti-viral immunity will
change our views on RNA regulations and will facilitate the designing of new antiviral strategies.

Supplementary Materials: The following are available online at http://www.mdpi.com/2076-0817/9/9/765/s1,
Table S1: The list of viroid published by the International Committee on Taxonomy of Viruses (ICTV) and a brief
description of the characteristics of the members of Avsunviroidae and Pospiviroidae. The table lists only the
species that has NCBI Genebank accessions. *—Possible members, TS—Type species, RNP—Ribonucleoprotein.,
Table S2: The list of linear and circular satRNAs, and a brief description of the relationship of satRNAs with helper
virus and the plant host. *—Possible members, satRNA—Satellite RNA, DI-RNA—Defective Interfering RNA,
CP-ORF—Coat protein-open reading frame.
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