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Abstract: Rapid and sensitive detection of botulinum neurotoxins (BoNTs) is important for immediate
treatment with proper antitoxins. However, it is difficult to detect BoNTs at the acute phase of infection,
owing to its rarity and ambiguous symptoms. To resolve this problem, we developed a surface-enhanced
Raman scattering (SERS)-based immunoassay technique for the rapid and sensitive detection of BoNTs.
Magnetic beads and SERS nanotags as capture substrates and detection probes, respectively, and Nile
Blue A (NBA) and malachite green isothiocyanate (MGITC) as Raman reporter molecules were used
for the detection of two different types of BoNTs (types A and B), respectively. The corresponding limits
of detection (LODs) were determined as 5.7 ng/mL (type A) and 1.3 ng/mL (type B). Total assay time,
including that for immunoreaction, washing, and detection, was less than 2 h.
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1. Introduction

Botulinum neurotoxins (BoNTs) are regarded as one of the most serious high-risk biological agents
used in bioterrorism. Considering their high toxicity (LD50∼1 ng/kg), ease of handling, and low price,
BoNTs are listed as “Category A” bio-threat agents together with anthrax, plague, smallpox, tularemia,
and viral hemorrhagic fevers by the US Centers for Disease Control and Prevention (CDCP) [1–3].
BoNTs have also been designated as lethal infectious agents for bio-terror by the Korea Centers
for Disease Control and Prevention (KCDC). Seven different BoNT serotypes (serotype A–G) are
known, of which the A, B, E, and F types are considered harmful to humans [4]. Intoxication with
these BoNTs causes flaccid paralysis owing to the inhibition of neuromuscular signal transmission,
which is identical for all serotypes. Muscle paralysis starts from the face, spreads to the whole body,
and in severe cases, leads to death due to respiratory paralysis [5,6]. Immediate treatment with
a specific antitoxin for a given toxin type is the only way to relieve the symptoms before the toxin
enters nerve terminals [7,8]. Therefore, it is urgent to develop a rapid and accurate detection technique
for toxic serotypes of BoNTs.

The gold standard method for the detection and identification of BoNTs is the mouse toxicity and
neutralization bioassay (e.g., mouse bioassay), which is the only FDA-approved method to confirm
the presence of active BoNTs [9,10]. However, this method has several drawbacks, including labor
intensiveness, cost ineffectiveness, animal use, and time consumption (longer than four days). To resolve
these problems, herein, we developed a surface-enhanced Raman scattering (SERS)-based immunoassay
technique using magnetic beads [11–15]. The SERS-based bioassay technique has recently received
great attention, owing to its high sensitivity and multiplex detection capability. Raman active
sites called “hot junctions” show promise in their ability to overcome the low sensitivity problem
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associated with conventional Raman or fluorescence spectroscopy [16–20]. Herein, magnetic beads
and gold nanoparticles (AuNPs) were used to capture antibody-supporting materials and detect
antibody-conjugated sensing probes, respectively. This magnetic bead-based assay offers several
advantages over conventional SERS assays using two-dimensional substrates [21–23]. First, the loading
density of capture antibodies could be improved, as the three-dimensional magnetic beads have
larger surface-to-volume ratio than any two-dimensional surface. Second, the assay does not require
an extended incubation time because the fast molecular diffusion near three-dimensional beads
facilitates faster kinetics of antibody–antigen assays. Finally, more reproducible detection is possible,
as SERS signals are measured for the average ensembles of AuNPs in solution phase.

In the present study, the feasibility of our SERS-based magnetic immunoassay was investigated
for the rapid and sensitive detection of BoNT types A and B. The limit of detection (LOD), sensitivity,
and assay time were compared with those of an enzyme-linked immunosorbent assay (ELISA)
for validation.

2. Materials and Methods

2.1. Materials

Gold (III) chloride trihydrate (HAuCl4·3H2O), tri-sodium citrate (Na3-citrate),
1-ethyl-3-(3-[dimethylamino]propyl) carbodiimide (EDC), N-hydroxysuccinimide (NHS),
thiol-PEG-COOH (HS-PEG-COOH, MW∼3500), bovine serum albumin (BSA), Nile blue A (NBA),
3,3’,5,5’-tetramethylbenzidine (TMB), liquid substrate system for ELISA, horseradish peroxidase
(HRP)-conjugated goat anti-rabbit polyclonal antibody, and HRP-conjugated goat anti-mouse
polyclonal antibody were purchased from Sigma-Aldrich (St. Louis, MO, USA). Malachite green
isothiocyanate (MGITC), phosphate-buffered saline (PBS) (10×, pH 7.4), and carboxylic acid-activated
magnetic beads (Dynabeads MyOneTM) were obtained from Invitrogen (Eugene, OR, USA),
whereas HRP conjugation kit (ab102890) was supplied by Abcam (Cambridge, UK). We procured
3,3’,5,5’-tetramethylbenzidine (TMB) buffer from GenDEPOT (Katy, TX, USA) and inactivated
botulinum toxins A and B from the Korea Center for Disease Control and Prevention (KCDCP).
Anti-botulinum toxin antibody sets were also provided by KCDCP. Commercial carboxylic
acid-conjugated magnetic beads (Dynabeads®MyOne) were purchased from Thermo Fisher Scientific
(Waltham, MA, USA). Ultrapure water (18 MΩ·cm−1) used in this work was obtained from Milli-Q
water purification system (Billerica, MA, USA).

2.2. ELISA Test

Sandwich ELISA was performed to test the antibody-binding capability of BoNTs. For BoNT/A
assay, monoclonal capture antibodies (100 µL, 0.5 µg/mL) in Na2CO3-NaHCO3 buffer (pH 9.6) were
immobilized on the surface of a 96-well plate and incubated overnight at 4 ◦C. The wells were
blocked with 200 µL of PBS buffer (containing 1% BSA) to reduce non-specific binding. After 2 h,
BoNT/A (100 µL) in the range of 0–1 µg/mL was added to different wells and allowed to react
for 2 h. Polyclonal detection antibodies and HRP-linked secondary antibodies were sequentially
added at an interval of 2 h. After incubation for another 2 h, TMB solution was added to induce
TMB-HRP enzymatic reaction. PBST containing 0.05% (v/v) Tween-20 (200 µL, thrice) was used
for washing. TMB stop buffer was added to terminate the reaction and absorbance was measured
at 450 nm wavelength. For BoNT/B assay, HRP-conjugated polyclonal detection antibodies were used
instead of secondary antibodies to avoid any cross-reaction between capture antibodies and secondary
antibodies. An HRP conjugation kit was used to attach HRP to detection polyclonal antibodies,
as per the manufacturer’s instructions. Other steps were the same as those for BoNT/A.
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2.3. Preparation of Antibody-Conjugated SERS Nanotags

AuNPs were prepared as previously reported with the seeded-growth method [24]. Briefly,
75 mL of 2.2 mM sodium citrate solution was heated to its boiling point under vigorous stirring and
mixed with 0.5 mL of 25 mM chloroauric acid (HAuCl4) upon boiling. The change in the color of the
solution from light yellow to bluish gray and then to soft pink was noted in 15 min. The resulting gold
seed solution was cooled to 90 ◦C and sequentially treated with 0.5 mL of 60 mM sodium citrate and
0.5 mL of 25 mM HAuCl4 12 times at an interval of 2 min. The color of the solution finally changed
from pink to deep red. The solution was stirred for 30 min at 90 ◦C and cooled to room temperature.
The shape and size distribution of AuNPs were characterized with dynamic light scattering (DLS)
and transmission electron microscopy (TEM).

Antibody-conjugated SERS nanotags were also prepared, as previously reported. Two Raman
reporters, 2.0 µL of 10−5 M MGITC and 1.5 µL of 10−4 M NBA, were added to 1.0 mL of AuNP
solution and allowed to react for 30 min under constant stirring (500 rpm). In total, 40 µL of 12.5 µM
HS-PEG-COOH linkers were added to each solution to facilitate their immobilization on the surface
of AuNPs via Au-S bonds. After stirring for 3 h at room temperature, the PEGylated AuNPs were washed
twice with DI water. To activate -COOH terminal groups on the surface of AuNPs, 4 µL of 0.5 mM
EDC and 4 µL of 0.5 mM NHS were sequentially added. After 30 min, excess EDC/NHS was washed
twice with DI water and the NHS-activated AuNPs were reacted with 30 µL of 0.1 mg/mL detection
antibodies overnight at 4 ◦C. Approximately 100 µL of 1% (w/v) BSA aqueous solution was added
to block any unbound sites on the surface of AuNPs. The mixture was shaken for additional 30 min
and centrifuged at 5000 rcf for 10 min to remove unbound proteins. After discarding the supernatant,
the pellets were re-dispersed in PBS buffer.

2.4. Preparation of Antibody-Conjugated Magnetic Beads

The magnetic property of commercial beads is superparamagnetic, and the average diameter size
is estimated to be 1 µm. Core material is composed of Fe3O4 and the surface was homogeneously
coated with highly cross-linked polystyrene and hydrophilic layer of glycidyl ether. Their surface
was conjugated with carboxylic acids for antibody immobilization. In brief, 200 µL of 0.5 mg/mL
carboxylated magnetic beads were prepared using 15 mM MES buffer (pH 6). After washing thrice
with MES buffer, the solution was incubated with 2.5 µL of 0.1 M EDC and 2.5 µL of 0.1 M NHS
for 30 min, followed by washing of the beads thrice with MES buffer. The beads were treated with
5 µL of 1 mg/mL mouse anti-BoNT monoclonal antibody overnight at 4 ◦C with continuous shaking.
After washing three times with PBS buffer, the reaction mixture was treated with 20 µL of 1% (w/v)
BSA aqueous solution for 30 min at room temperature. Unreacted reagents were removed by washing
the beads thrice with PBS. The final product was stored in PBS at 4 ◦C for further use.

2.5. SERS-based Immunoassay of BoNT/A and BoNT/B

Parallel sandwich immunoassays for BoNT/A and BoNT/B were performed with spiked samples
at eight different concentrations. First, 40 µL of SERS nanotags and 20 µL of BoNT-spiked samples
were mixed and allowed to react under constant stirring. After 30 min, 20 µL of antibody-conjugated
magnetic beads were added and allowed to react for 1 h. The mixture was washed thrice
with PBST and the immunocomplexes were resuspended in PBS and transferred to a capillary
tube for Raman measurements.

2.6. Instrumentation

DLS measurement was performed with a Nano-ZS90 instrument (Malvern, UK) and TEM images were
acquired using a JEOL JEM 2100F instrument at an accelerating voltage of 200 kV. Size distribution of AuNPs
was calculated using ImageJ software. ELISA was performed using a microplate reader (Synergy H1
Hybrid Multi-Mode Reader, BioTek, Winooski, VT, USA) equipped with a 96-well plate. Raman spectra
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were measured with a Renishaw inVia Raman microscope system (Renishaw, New Mills, UK). A He-Ne
laser at 633 nm was used as the excitation source with a power of 20 mW. The Rayleigh line was
removed using an edge filter located in the collection path. Raman scattering signal was collected using
a charge-coupled device (CCD) camera at a spectral resolution of 1 cm−1. BoNT immunocomplexes
from microtube were transferred to a capillary tube, and their Raman scattering signals were measured
by focusing a laser spot on the tube using a 20× objective lens. Baseline correction for each Raman
spectrum was performed using Renishaw WIRE 4.0 software.

3. Results and Discussion

Figure S1a shows the TEM image of AuNPs synthesized with the seeded-growth method.
The average diameter was estimated to be 45 ± 5 nm. Figure S1b shows the size distribution
of AuNPs, as determined with DLS measurements. The error bars indicate standard deviations
from three measurements. Figure 1 demonstrates the process for the preparation of two different
types of detection antibody-conjugated SERS nanotags. In Figure 1a, two Raman reporter molecules
(MGITC and NBA) were adsorbed on the surfaces of AuNPs. BoNT antibodies (types A and B) were
subsequently immobilized on the surfaces of AuNPs using HS-PEG-COOH. Optimization of the amount
of HS-PEG-COOH was important to retain the stability of SERS nanotags. To determine the optimum
concentration, six different concentrations of HS-PEG-COOH were tested with the colloidal solution
containing AuNPs. After centrifugation, the pellet was re-suspended in PBS and the aggregation
properties were investigated.
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Figure 1. (a) Sequential process for the synthesis of two different types of BoNT SERS nanotags.
(b) UV/Vis spectra for AuNPs (black), BoNT/A (green), and BoNT/B (blue) SERS nanotags. (c) Raman spectra
for BoNT/A (i) and BoNT/B (ii) SERS nanotags.

Figure 2a shows the UV/Vis spectra of PEGylated AuNPs for various concentrations
of HS-PEG-COOH in the range of 63 nM to 2.0 µM. Figure 2b shows the corresponding images
of PEGylated AuNPs. As shown in these figures, aggregation was observed from a concentration
of 250 nM HS-PEG-COOH along with a change in the color of the solution to deep purple
at concentrations lower than 125 nM. In the presence of low concentration of HS-PEG-COOH,
the negative charge of citrate ions on the surface of AuNPs is neutralized by the salts in PBS.
Therefore, AuNPs aggregate; however, higher concentrations of HS-PEG-COOH stabilize the surface
of AuNPs. Hence, the optimum concentration of HS-PEG-COOH for the stabilization of SERS
nanotags was determined to be 0.50 µM. Detection BoNT/A and BoNT/B antibodies were conjugated
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on AuNPs using EDC/NHS coupling reactions. No significant change of Raman signal intensities was
observed after antibody conjugation. Capture antibody-conjugated magnetic beads were prepared with
a similar method. Carboxylic acid-functionalized magnetic beads were activated with EDN/NHS and
immobilized with capture BoNT antibodies. UV/Vis spectral data in Figure 1b show that the surface
plasmon bands for both BoNT/A and BoNT/B were slightly shifted from 527 nm to 531 nm upon
immobilization of the corresponding antibodies on the surfaces. These spectral changes confirm
that both BoNT antibodies were successfully immobilized on the surfaces of AuNPs. Raman spectra
of BoNT/A (i) and BoNT/B (ii) SERS nanotags in Figure 1c also demonstrate the successful adsorption
of the Raman reporter molecules on the surfaces of AuNPs.
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Figure 2. (a) UV/Vis spectra of PEGylated AuNPs for various concentrations of HS-PEG-COOH
in the range of 63 nM to 2.0 µM. (b) Corresponding image of PEGylated AuNPs.

Figure S2a shows the sequential process for the preparation of capture BoNT antibody-conjugated
magnetic beads. Carboxylic acid-functionalized magnetic beads were used for the fabrication of capture
substrates. The surfaces of magnetic beads were activated with the NHS/EDC coupling reaction,
and then immobilized with BoNT antibodies. The remaining sites were treated with BSA to prevent any
nonspecific binding. The conjugation was determined with the enzyme-catalyzed reactions. Anti-mouse
IgG HRP conjugates were incubated with bare and antibody-conjugated magnetic beads. The addition
of TMB and TMB stop buffer to each well resulted in a change in the color of antibody-conjugated
magnetic beads from colorless to yellow. Enzyme immunoassays frequently incorporate the use
of HRP as the enzyme label. This enzyme usually catalyzes the oxidation of a chromogen which can be
quantified after termination of the enzyme reaction. A chromogen widely used for this purpose is
TMB. The absorbance at 450 nm was measured to quantify the target BoNT toxins. However, no color
change was detected for bare magnetic beads. Figure S2b demonstrates the difference in the relative
absorption intensities at 450 nm for BoNT/A (i) and BoNT/B (ii) antibody-conjugated magnetic beads.
Herein, the histogram for control indicates the absorption intensity of bare magnetic beads.

Figure 3 shows the schematic illustration of the sequential process of SERS-based immunoassays using
magnetic beads and SERS nanotags. Target BoNT toxins were mixed with detection antibody-conjugated
SERS nanotags in a microtube, and then captured by the capture antibody-conjugated magnetic beads
through antigen-antibody immunoreactions. We used a magnetic bar to collect magnetic sandwich
immunocomplexes on the wall of the microtube, and then washed the supernatant solution with PBST three
times using a micropipette. The magnetic immunocomplexes were re-dispersed in PBS and the solution
was transferred into a capillary tube for the analysis of Raman signals. In the presence of target BoNT
toxins, strong Raman signals were observed; however, Raman signals were relatively weak in the absence
of BoNT toxins.

In the present work, the strongest Raman peak intensities at 1614 cm−1 (MGITC) and 1639 cm−1

(NBA) were used for the quantitative evaluation of BoNT/A and BoNT/B toxins, respectively.
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Figure 4a,b shows the Raman spectra for various concentrations of BoNT/A and BoNT/B, respectively.
Their concentrations varied from 0 ng/mL to 1.0 µg/mLml. In the absence of BoNTs, weak Raman signals
were observed owing to the formation of few immunocomplexes in the microtube; hence, most SERS
nanotags in the supernatant solution were removed during washing. An increase in BoNT concentration,
however, led to the formation of more immunocomplexes, as evident from the corresponding increase
in Raman signal intensities. Figure 4c,d demonstrates the corresponding calibration curves for BoNT/A
and BoNT/B, as constructed from the intensity variations at 1614 cm−1 (MGITC) and 1639 cm−1

(NBA), respectively. The error bars indicate standard deviations from the measurements for three
immunocomplex replicas. The LODs, as determined with the SERS-based immunoassay method,
were 5.7 ng/mL (R2 = 0.999) and 1.3 ng/mL (R2 = 0.999) for BoNT/A and BoNT/B, respectively.Sensors 2019, 19, x 6 of 9 
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ELISAs were also performed for both BoNT toxins to evaluate the SERS-based immunoassays
using magnetic beads and SERS nanotags. Figure 5 shows the ELISA standard curves and images
of 96-well plates for different concentrations of BoNT/A (a) and BoNT/B (b). The dynamic ranges
for both BoNT toxins varied from 0 ng/mL to 1.0 µg/mL. The increase in BoNT concentration led
to a change in the color from colorless to deep yellow. The related LODs determined by ELISA were
0.5 ng/mL (R2 = 0.999) and 5.0 ng/mL (R2 = 0.999) for BoNT/A and BoNT/B, respectively.
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4. Conclusions

In the present study, we developed a SERS immunoassay technique for the rapid and sensitive
detection of BoNT/A and BoNT/B using SERS nanotags and magnetic beads. Two different types
of detection antibody-conjugated SERS nanotags, labeled with MGITC and NBA, and capture
antibody-conjugated magnetic beads were fabricated for the dual detection of BoNT/A and BoNT/B.
Total assay time was less than 2 h, including immunoreaction, washing, and detection, and the sample
volume needed was lower than that for ELISA.
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