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Abstract

           Ventricular fibrillation (VF) is known as a main responsible cause of sudden cardiac death
which claims thousands of lives each year.  Although the mechanism of VF induction has been
investigated for over a century, its definite mechanism is still unclear.  In the past few decades,
the development of new advance technologies has helped investigators to understand how the
strong stimulus or the shock induces VF.  New hypotheses have been proposed to explain the
mechanism of VF induction.  This article reviews most commonly proposed hypotheses that are
believed to be the mechanism of VF induction.    

Keywords: ventricular fibrillation, induction; mechanism

Introduction

            Ventricular fibrillation (VF) was first described by Erichsen in 1842.1  It is known as a
fatal cardiac arrhythmia that can cause sudden death.  This life-threatening VF has drawn the
strong attention of a number of investigators for over a century.  The study of VF induction can
be traced back to the original Ludwig and Hoffa study in 1850 in which they used a strong
faradic current to induce VF. However, it was not until 1940 that Wigger and Wegria established
the fundamental work which demonstrated that VF could be induced when a strong premature
stimulus was applied during a certain period of the cardiac cycle.2    This period is known as the
“vulnerable period”,  a period which corresponded to a portion of the T-wave of the surface
electrocardiogram.  The  finding  of  VF  induction  by  a  strong  stimulus  delivered  during  the
vulnerable  period  has  allowed  many  investigators  to  advance  the  understanding  of  its
mechanism.  Although many theories have been proposed as the fundamental mechanism of VF
induction,  none  is  universally accepted.  Current  debates  are  discussed  base  on  whether  (1)
reentrant3,4,5 or (2) focal pattern6,7,8  that is responsible for VF induction after the shock.  In this
review, four commonly proposed hypotheses are presented. 

The non-uniform dispersion of refractoriness hypothesis 

            It is known that membrane potential differences always exist in the intact heart during
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systole and diastole.  This is a result of the unequal levels of the resting membrane potentials as
well  as  the  depolarization  potentials  in  myocardial  cells  and  pacemaker  cells.9,10,11  This
heterogeneity is known as the “dispersion of refractoriness” of the tissues9,12 and already appears
throughout the cardiac cycle of a normal heartbeat.  It is well accepted that to induce VF, the
strength  of  a  premature  stimulus  must  be  sufficiently strong (i.e.  a  threshold  level)  and  be
delivered during the vulnerable period.2,13  This shock strength is known as the VF threshold
(VFT).14,15,16 It is believed that VF is induced when the amount of heterogeneity or dispersion of
refractoriness reaches a level that allows unidirectional block to occur, leading to reentry and
fibrillation.9,17  This concept was supported by the discovery that VF is  most  likely to occur
when the dispersion of refractoriness increases.4,5,18,19  By preconditioning the heart in a various
setting  to  set  up  a  non-uniform dispersion  of  refractoriness  such  as  by slowing  heart  rate,
stimulating cardiac sympathetic nerve, or by causing ischemic myocardium, many VF induction
studies  have  demonstrated  that  the  VFT  was  decreased  when  the  degree  of  dispersion  of
refractoriness increased.4,14,20    Because of the heterogeneity of refractoriness of cardiac cells in
various regions on the heart, activations are generated by the stimulus in excitable areas which
are blocked unidirectionally when they encountered areas of greater refractoriness, leading to
reentry and eventually VF.  Therefore, in this hypothesis, VF occurs by reentry caused by non-
uniform dispersion of refractoriness.  
            It has been shown that responses of cardiac tissues to the shock can be in one of three
categories, depending on the state of the myocardium at the time of the shock.21,22,23  First, the
action potential  duration will  be extended if  the shock is delivered to effective or relatively
refractory tissue.12,24,25   This is commonly known as the “graded response”.  Second, the action
potential will not be affected by the shock if it falls into the absolute refractory tissue.  And third,
a new action potential will be created if the shock falls into the completely recovered tissue.  The
degree of dispersion of refractoriness caused by a strong stimulus  is mainly due to different
responses of cardiac cells in different areas, resulting in the heterogeneity of refractory period
extension in different cardiac cells throughout the heart.18,26,27  
            The vulnerable period is known to have a high degree of dispersion of excitability during
the  cardiac  cycle.9  Hence,  when  a  premature  stimulus  is  applied  to  the  heart  during  the
vulnerable  period,  the  response  of  the  myocardium  to  the  shock  creates  an  even  greater
dispersion of refractoriness because the cardiac myocardium is irregularly excitable during that
period, facilitating reentry and resulting in the initiation of VF.4,19,28,29  Since a certain amount of
heterogeneity exists in the normally functioning heart, the differences between this amount of
preexisting heterogeneity and the heterogeneity induced by the electrical stimulus required for
VF induction (i.e. at VFT) is sometimes considered the margin of safety.9
            Other groups of investigators, however, suggested that focal  activation could initiate
fibrillation due to the non-uniform dispersion of refractoriness hypothesis.6,7,8  In vitro studies
have shown that abrupt differences in repolarization of adjacent cardiac cells were found at the
site where the repetitive firing occurred (i.e. focal re-excitation),8 and these sudden repolarization
differences  have  been  considered  to  be  a  mechanism  for  VF  induction.8,30,31  The  role  of
premature stimulus delivered during the vulnerable period in the in vivo studies, however, is still
controversial.  Both the increase in automaticity of the pacemaker fibers and reentry due to the
unidirectional block have been demonstrated to be responsible for VF induction.32,33,34

The critical point hypothesis  

            It is known that the potential gradient created by the shock is very strong at sites close to
the shocking electrode and is weaker at more distant sites.35  This gradient distribution, therefore,
creates a non-uniform gradient field.  The critical point hypothesis is based on this fact and the
fact  that  there  are  three  possible  responses  of  cardiac  tissue  when  a  premature  stimulus  is
delivered  to  cells  of  different  excitability:  no  response,  graded  response  (i.e.  refractoriness
extension), and new activation.  This hypothesis states that the mechanism for VF induction is
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due to unidirectional block and unidirectional propagation of activation caused by those three
different responses of cardiac tissues, leading to reentrant  activation and, finally, VF.21  The
difference between the critical point hypothesis and the non-uniform dispersion of refractoriness
hypothesis  is  that  the  critical  point  hypothesis  suggests  the  reentrant  pattern  as  the  sole
mechanism for VF induction, whereas the latter could have either reentrant or focal excitation as
the mechanism for VF induction.21  
            The critical point hypothesis was first proposed mathematically by Winfree36 considering
the heart as an excitable media, and was later demonstrated experimentally by Frazier et al21 in
1989.  In this experimental study, a strong premature stimulus (S2) was delivered to myocardium
after a train of basic pacing stimuli (S1).  At an appropriate timing of the S2 delivery, they found
the 3 types of myocardial responses to the S2 in 3 distinct regions (Figure 1).  First, the new
activation created by the S2 shock arose at the recovered tissues, close to the S1 electrode, and
was ready to propagate toward the excitable region (area 1, Figure 1).  (2) At the region far from
the S1 electrode but close to the S2 electrode, the tissues were in their relative refractory period
at the time the premature stimulus was delivered.  The S2 shock was strong enough to create a
graded response, prolonging the refractoriness of the tissues in that area (area 2, Figure 1).  As a
result, the new activation could not propagate through it.  (3) At the region farthest away from
the S1 electrode (area 3, Figure 1), the S2 shock had no effect on the tissues in this whole area
because the tissues close to the S2 electrode were still in their refractory period and not excitable
and the S2 shock was too weak to create any response in the tissues far from it.  However, the
myocardium in this region had sufficiently recovered in time to be excited by the activation front
which propagates from the directly excited region.  This activation front could then reenter the
area 2 and return to the area 1 again, since these cardiac tissues were already excitable.

Figure  1.  An  illustrated  diagram  of  the  critical  point  formation.  S1  represents  a  pacing
electrode.  S2 represents an electrode that delivers a strong stimulus.  When S2 is delivered at an
appropriate  time  following  an  S1  stimulus,  three  areas  of  different  cardiac  responses  are
observed.  An Arrow represents the direction of reentry observed after the S2 shock is delivered. 
A filled square represents the point where the critical point is formed.  See text for details. 

            The activation front would circle around the point where the three different cellular-
response regions met (dark circle in Figure 1).  This reentrant activation front could continue if
the  pattern  of  refractoriness  of  myocardium were  maintained,  or  could be  interrupted  if  the
excitable pattern was changed.  It is important to note that in the critical point hypothesis, the
angle between the S1 and S2 stimulus must be greater than zero to create the critical point for
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reentry.21  This  reentrant  activation  front  could  continue  if  the  pattern  of  refractoriness  of
myocardium were maintained, or could be interrupted if the excitable pattern was changed.  The
formation  of  a critical  point  was thought  to  generate fibrillation in  both  VF induction by a
premature stimulus and failed defibrillation.37,38,39,40 However, reentry is not always the pattern
observed during VF induction or failed defibrillation.  Therefore, critical point formation may
not be the sole mechanism of VF induction.  

The upper limit of vulnerability hypothesis  

            It is known that when a premature stimulus is given during the vulnerable period, there is
a  minimal  strength  needed  to  generate  the  inhomogeneity  of  excitability  of  cardiac  tissues
required to induce VF.  This strength is known as the VFT.14  When the strength of a premature
stimulus is increased up to a level that VF is no longer induced at any time during the vulnerable
period, this lowest strength that cannot induce VF is known as the upper limit of vulnerability
(ULV).41,42  The critical point hypothesis could be used to explain the existence of this ULV. 
Since the formation of a critical  point  requires  the cross point  between the critical  potential
gradient and optimal excitable tissues, if this cross point is removed from the heart, the critical
point will not be formed.43  It has been shown that as shock strength increases, distance of the
critical potential away from the shocking electrode also increases.35 When the shock reaches the
ULV strength, the critical value is off the heart.  Thus, no critical point is formed, and no VF is
induced even when the shock strength is further increased.43,44

The virtual electrode polarization hypothesis

            This  is  the  recent  hypothesis  proposed  by  Efimov  to  explain  the  induction  of
fibrillation.45  The concept of this hypothesis is similar to that of the critical point hypothesis,
except that this hypothesis is not base on the potential gradient created by the shock delivered to
the myocardium.  The findings that the shock can cause (1) depolarization or hyperpolarization
of cardiac cells close to the shocking electrode, and (2) opposite polarization of cardiac cells in
the region adjacent to (1) are the fundamental concept of this hypothesis.  When the optimal
transmembrane potential gradient is generated in the region near the shocking electrode, reentry
can be observed as activation propagates from depolarized tissues into hyperpolarized regions
(see figure 7 in reference 45). This hypothesis is proposed to explain how fibrillating activation
was observed after failed defibrillation (see figure 11 in reference 45).
    Although reentry has been proposed in most hypotheses as the mechanism responsible for VF
induction,  recent  VF  induction  studies  in  pigs  have  demonstrated  different  findings. 
Chattipakorn  et  al  have  shown  that  following  near  ULV  shocks,  the  first  few  post-shock
activations arose on the epicardium in a  focal  manner before degenerating into VF.46,47  No
reentry was observed in these studies. It has also been shown that ablation performed in the
region  where  the  early post-shock  activation  occurred  could  significantly decrease  the  ULV
shocks.48  It is possible that focal activation observed in these studies is epicardial breakthrough
resulting  from transmural  or  endocardial  reentry.  Further  studies  are  under  investigation  to
validate this hypothesis.  Other mechanisms including the vortex theory and the mother rotor
theory also have been proposed to be responsible for initiation and maintenance of VF. 49,50,51 
The definite mechanism, however, have yet to be revealed.

Conclusion

            Similar  to defibrillation mechanism, the mechanism of VF induction is  complicate. 
Although its mechanism has been investigated for so many decades, how VF is induced is still
debated.  Further studies of VF induction and defibrillation are essential since they will provide
important information on the fundamental mechanism that can be used to improve the treatment
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and prevention of sudden cardiac death, which is mainly caused by VF in the future. 
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