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Advanced colon cancer is a malignancy with poor response to various treatment modalities including ionising radiation (IR) and
chemotherapy. Both IR and chemotherapeutic agents have been shown to act by inducing apoptosis, a type of cell death antagonised
by the Bcl-xL gene product. Since approximately 60% of human colon cancers express Bcl-xL, it was the aim of this study to explore
the potential of Bcl-xL antisense oligonucleotides as a novel radiosensitisation strategy. Caco-2 colon cancer cells were treated with
Bcl-xL antisense oligonucleotides in combination with IR or cisplatin, and Bcl-xL protein expression, apoptosis, cell viability and
clonogenic survival were examined. Bcl-xL antisense oligonucleotide specifically reduced the Bcl-xL protein level by almost 50% in
Caco-2 cells. The decreased threshold for the induction of apoptosis resulted in a 300% increase of apoptosis after IR or cisplatin
treatment and led to a 60% reduction of cell proliferation beyond response rates achieved with IR. These data suggest that Bcl-xL is
an important factor contributing to the treatment resistance of human colon cancer. Specific reduction of Bcl-xL protein levels by
antisense oligonucleotides qualifies as a promising therapeutic strategy for colon cancer that may help overcome resistance and
improve clinical outcome in this malignancy.
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Colorectal carcinoma is the second leading cause of cancer death
in Western countries with an incidence rate of 1 : 3000 (Midgley
and Kerr, 1999; Greenlee et al, 2000). Surgical resection is the first
choice of therapy for localised tumours, but at least 40% of
patients with colorectal cancer will develop local recurrence or
metastases during the course of the disease. For patients with
advanced colorectal cancer, adjuvant chemotherapy and/or ionis-
ing radiation (IR) offer a small but significant survival advantage
(Midgley and Kerr, 1999; Wils et al, 2001). While in the US
postoperative (chemo)radiotherapy is considered the adjuvant
treatment of choice, most European investigators have advocated
for preoperative intensive short-course irradiation instead (Wils
et al, 2001). Nevertheless, irrespective of the therapeutic strategy
selected, advanced colorectal cancer remains a prime example for
poor response to adjuvant treatment due to low sensitivity to both
IR and chemotherapy.

The mechanisms responsible for the resistance of this malig-
nancy to IR or chemotherapeutic drugs are not yet fully under-
stood. Apoptosis is currently a subject of intense research, and
there is growing evidence that tumour cells, at least in part, die by
apoptosis in response to IR or cytotoxic treatments (Desoize, 1994;
Huang et al, 1997; Coultas and Strasser, 2000; Evan and Vousden,
2001; Reed, 2001). The members of the Bcl-2 multigene family are a
pivotal set of apoptotic regulators that consist of partially

interacting proteins highly conserved from nematodes to mam-
mals (Kroemer, 1997; Antonsson and Martinou, 2000; Tsujimoto
and Shimizu, 2000). Among the various Bcl-like proteins, the
effects and functions of Bcl-x in controlling apoptosis induced by
IR or chemotherapy have been studied recently. The Bcl-x gene is a
Bcl-2 homologue and plays an important role in the regulation of
programmed cell death in a variety of tissues (Xerri et al, 1998;
Tsujimoto and Shimizu, 2000). Bcl-x is alternatively spliced into
two mRNAs. The protein product of the larger Bcl-x mRNA (Bcl-
xL) functions as a repressor of programmed cell death (Kroemer,
1997), whereas the smaller splicing product Bcl-xS, encodes a
protein capable of accelerating cell death (Antonsson and
Martinou, 2000; Tsujimoto and Shimizu, 2000). While it becomes
increasingly clear that the two close relatives Bcl-2 and Bcl-xL show
different cellular expression patterns and may complement each
other’s antiapoptotic function, the exact mechanisms of action
remain unclear (Kroemer and Reed, 2000; Robertson and Orrenius,
2000).

The antiapoptotic effects of Bcl-xL against IR- and chemother-
apy-induced apoptosis have been demonstrated in various human
cancer cell lines (Huang et al, 1997; Amarante-Mendes et al, 1998;
Nagane et al, 1998; Srinivasan et al, 1998). The most pronounced
effects were observed in cells containing the highest levels of Bcl-xL

expression.
Antisense (AS) oligonucleotides are modified single-strand

stretches of nucleotides capable of inhibiting protein expression
by complexing with the complementary target mRNA preventing
translation. Antisense oligonucleotides hold great promise as
agents for specific manipulation of gene expression and have been
used to inhibit gene expression both in vitro and in vivo (KitadaRevised 13 June 2003; accepted 8 July 2003
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et al, 1994; Keith et al, 1995). Bcl-xL downregulation by AS
oligonucleotides has been observed in different types of cancer
cells leading to an increase in susceptibility to apoptotic stimuli
(Amarante-Mendes et al, 1998; Lebedeva et al, 2000). Recently, it
was shown that Bcl-xL AS oligonucleotides are capable of
sensitising colon cancer cells in vitro to 5-fluorouracil (Nita et al,
2000). Furthermore, bcl-2/bcl-xL bispecific oligonucleotides sig-
nificantly reduced Bcl-xL expression that leads to increased
apoptosis and delayed tumour growth in a xenotransplantation
model for colon cancer (Gautschi et al, 2001). Taylor et al (1999)
demonstrated specific downregulation of Bcl-xL by AS oligonu-
cleotides (ISIS 16009) in keratinocytes and epithelial cells and
sensitisation to UV-B radiation- and cisplatin-induced apoptosis.
However, the effect of Bcl-xL AS oligonucleotides on radio-
sensitivity of colon cancer has not yet been explored.

Given the overexpression of Bcl-xL protein in more than 60% of
human colon cancers (Krajewska et al, 1996; Maurer et al, 1998)
and its positive correlation with poor prognosis (Biroccio et al,
2001), we hypothesised that downregulation by Bcl-xL by AS
oligonucleotides may sensitise colon cancer cells to IR or cisplatin.

MATERIALS AND METHODS

Cell culture

The human colorectal carcinoma cell line Caco-2 was obtained
from American Type Culture Collection (ATCC, Manassas, VA,
USA) and maintained in basal tissue culture medium (DMEM)
supplemented with 8% foetal calf serum, 1% penicillin, and 1%
streptomycin (all Gibco BRL, Paisley, UK) in a humidified 5% CO2,
95% ambient air atmosphere at 371C. For treatment, Caco-2 cells
were incubated with oligonucleotides and exposed to IR or
cisplatin at the time points and concentrations as indicated. Cells
were irradiated with a conventional radiation source (Stapilipan,
Siemens, Munich, Germany) at a dose rate of 1 Gy min�1. Cisplatin
was obtained from Ebewe (Unterach, Austria).

Immune blotting

Western blotting of lysed oligonucleotide-treated cells was
performed using chemiluminescence detection (Tropix, Bedford,
MA, USA). Antibodies reacting with Bcl-x and actin were obtained
from BD PharMingen (Franklin Lakes, NJ, USA) and Sigma (St
Louis, MO, USA), respectively. Equal protein loading in each lane
was documented by actin protein expression. The expression levels
of proteins were determined by densitometric analysis of
autoradiogramms with a Herolab E.A.S.Y. RH densitometer
(Herolab, Wiesloch, Germany) and the E.A.S.Y. Win32 software
(Herolab). Signal strength of each Bcl-x signal was normalised to
actin and the ratios between Bcl-x protein expression in AS
oligonucleotides-treated cell extracts and control extracts were
calculated. Changes of protein expression below 20% were not
regarded as significant.

Oligonucleotides

HPLC purified 20-mer 20-O-methoxyethyl chimerical phosphor-
othioate oligonucleotides complementary to the human Bcl-xL

were provided by ISIS Pharmaceuticals (Carlsbad, CA, USA). The
sequence of the Bcl-xL AS oligonucleotide ISIS 16009 was 50-CTA
CGC TTT CCA CGC ACA GT-30. An 8-base mismatch (MM)
oligonucleotide (ISIS 16967) 50-CTC CAA TGT CCC CTC AAG GT-
30 was used as an internal control oligonucleotide. Underlined
bases indicate 20-O-methoxyethyl modification. For the screening
experiments, further Bcl-xL antisense oligonucleotides were tested:
ISIS 15999 (50-TCC CGG TTG CTC TGA GAC AT-30), ISIS 16011
(50-CTG GAT CCA AGG CTC TAG GT-30), and ISIS 22783 (50-CTG

GAT CCA AGG CTC TAG GT-30). All oligonucleotides were
resuspended in 0.9% saline solution.

Delivery of oligonucleotides

Cells were seeded at a density of 0.25� 106 ml�1 in six-well plates
24 h before oligonucleotide treatment. Cultures were then incu-
bated for 4 h at 371C with 200 nM oligonucleotide in the presence of
10 mg ml�1 lipofectin (Gibco) as an uptake enhancer, according to
the manufacturer’s protocol. After incubation, the oligonucleo-
tide–lipofectin mixture was replaced by complete medium and
cells were cultivated as described above. For the screening
experiments, cells were incubated for 48 or 72 h with oligonucleo-
tides at a concentration of 50mM without uptake-enhancing
lipofectin.

Assessment of cell viability and clonogenic survival

For the assessment of cell growth in vitro, cells were incubated
with oligonucleotides and exposed to IR at the time points and
doses as indicated. Cisplatin was used at a dose almost doubling
the number of apoptotic cells compared to untreated cells (50 mM).
At 24, 48, 72, and 96 h after oligonucleotide treatment, the number
of viable cells was determined by a tetrazolium salt-based assay
(WST-1 assay, Roche Diagnostics, Basel, Switzerland).

For determination of clonogenic survival following IR, cells were
seeded in six-well plates and exposed to increasing single doses of
IR. Postirradiation cells were plated in 6 cm dishes at a seeding
density of approx. 1000 cells per well (in triplicate). After an
incubation period of 10 days, culture dishes were stained with
crystal violet and colonies of 450 cells were counted at low
magnification.

Flow cytometry

Apoptotic cells were identified by their sub-diploid DNA content
using flow cytometrical analysis as previously described (Nicoletti
et al, 1991). Cells were washed in PBS, fixed in ice-cold 70%
ethanol for a minimum of 1 h, washed in PBS and incubated in PBS
containing 0.1% DNase-free RNase A and 100mg ml�1 propidium
iodide for 30 min and 1.5� 104 events analysed on a FACScalibur
flow cytometer (Becton Dickinson, NJ, USA) with an argon laser
tuned at 488 nm. Gates were set to exclude subcellular particles.
The percent gated populations represent cells that are hypochro-
matic due to chromatin condensation and contain subdiploid DNA
contents (percentage of apoptotic cells). The apoptotic morphol-
ogy of this cell population was confirmed by fluorescence
microscopy.

Statistical analysis

Statistical significance between treatment groups was determined
using one-way ANOVA and Bonferroni post hoc test analysis. P-
values of o0.05 were considered to be of statistical significance.

RESULTS

Specific downregulation of Bcl-xL in Caco-2 cells

In a screening experiment to identify the most potent Bcl-xL AS
oligonucleotides, Caco-2 cells were incubated with four different
AS oligonucleotides targeting different sites of the Bcl-x mRNA as
described in the Material and Methods section. After a 48-h
incubation period at a concentration of 50 mM, the Bcl-xL AS
oligonucleotides ISIS 16009 targeting the translation initiation
codon site of Bcl-xL resulted in the most prominent down-
regulation of Bcl-xL protein expression by approximately one-third
compared to the saline control (Figure 1A). Although a longer
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incubation period of 72 h revealed marked downregulation of Bcl-x
protein by all the AS oligonucleotides applied, ISIS 16009 was still
the most potent AS oligonucleotide (Figure 1B).

We therefore focused further experiments on ISIS 16009 as the
lead compound. Using an uptake-enhancing lipid (lipofectin),
oligonucleotide concentrations were reduced to nanomolar con-
centrations minimising possible nonspecific oligonucleotide
effects reported earlier at micromolar concentrations (Stein,
1995). Treatment of Caco-2 cells with 200 nm ISIS 16009 for 4 h
in the presence of lipofectin led to a significant reduction
(Po0.001) in Bcl-xL expression after 48 h by almost 50% compared
to saline control (Figure 2; 47% AS/Sal, s.d. 75%). No significant
change of Bcl-xL protein expression in cells incubated in the
presence of the same concentration of MM oligonucleotide were
observed (110% MM/Sal, s.d. 79%; P40.13). Concomitantly
performed Western blot analysis of the cellular lysates demon-
strated no changes in Bcl-xS expression levels after oligonucleotide
treatment (Figure 2; 96% AS/Sal, s.d. 75%; 86% MM/Sal, s.d.
74%; both P40.1). Prolongation of the incubation period to 72 h
led to no more pronounced downregulation of Bcl-xL protein
expression (data not shown).

Bcl-xL AS oligonucleotides lower the apoptotic threshold

To study the influence of Bcl-xL AS oligonucleotides on facilitating
apoptosis in Caco-2 cells, the relative percentage of apoptotic cells
compared to untreated controls was assessed by flow cytometry.
Cells with a sub-G0/G1 DNA content due to chromatin condensa-
tion were considered apoptotic (Nicoletti et al, 1991). Caco-2
cancer cells were incubated for 4 h with saline, ISIS 16009 AS, or
MM oligonucleotides at a dose of 200 nM in the presence of uptake-
enhancing lipofectin. After a 48-h resting period, Caco-2 cells were
treated with IR. Increasing doses of IR (0–12 Gy) resulted in a
dose-dependent rise in the number of apoptotic cells up to a

doubling of apoptotic cells at a dose of 12 Gy compared to
nonirradiated cells. Treatment of Caco-2 colon cells with ISIS
16009 Bcl-xL AS oligonucleotides alone significantly enhanced the
rate of apoptotic cells compared to saline controls (Figure 3;
Po0.05), whereas no significant increase of apoptotic cell death in
the group treated with MM oligonucleotides was observed.
However, the combination of Bcl-xL AS oligonucleotides and IR
resulted in a pronounced increase of apoptotic cell death by about
300% compared to irradiated Caco-2 cells pretreated with either
saline or MM oligonucleotides at all IR doses examined (Figure 3).
These differences were highly statistically significant (Po0.001).
The combination of ISIS 16009 Bcl-xL AS oligonucleotide and an
IR dose of 12 Gy approximately doubled the rate of apoptotic cells
compared to AS oligonucleotide treatment alone (Po0.012). No
statistically significant differences were observed between the

A 

B 

Actin 

Actin 

Bcl-xL

Bcl-xL

Sal 22783 16009 16011 15999 Sal

Sal 22783 16009 16011 15999 Sal

Figure 1 Screening of Bcl-xL AS oligonucleotides: Western blots of
Caco-2 cells 48 h (A) and 72 h (B) after treatment with four different AS
oligonucleotides at a concentration of 50 mM; lane 1: saline (Sal), lane 2: ISIS
22783, lane 3: ISIS 16009, lane 4: ISIS 16011, lane 5: ISIS 15999, and lane 6:
saline (Sal).

Actin 

Bcl-xS

Bcl-xL

Sal AS MM 

Figure 2 Bcl-xL downregulation by Bcl-xL AS oligonucleotides (ISIS
16009): Western blot of Caco-2 cells 48 h after a 4-h treatment with
200 nm oligonucleotides in the presence of 10 mg ml�1 lipofectin; lane 1:
saline (Sal), lane 2: ISIS 16009 Bcl-xL AS oligonucleotides (AS), lane 3: 8-
base mismatch oligonucleotides (MM). A representative blot of four
independent experiments is presented.
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Figure 3 Bcl-xL AS oligonucleotides facilitate the induction of apoptosis
in human colon cancer cells. Caco-2 cancer cells were incubated for 4 h
with saline (Sal), antisense (AS), or eight-base mismatch (MM) oligonucleo-
tides at a concentration of 200 nM in the presence of 10mg ml�1 lipofectin.
After 48 h, cells were treated with increasing doses of IR (0–12 Gy). At
96 h after oligonucleotide treatment, cells were harvested and analysed by
FACS for apoptosis. Columns represent mean percentages of apoptotic
cell death from four independent experiments; bars¼ s.d.
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saline control and MM oligonucleotide pretreated cells supporting
a specific Bcl-xL AS oligonucleotide mode of action.

Additionally, we investigated the combination of Bcl-xL AS
oligonucleotides and the chemotherapeutic agent cisplatin. Cis-
platin at a dose of 50 mM in combination with ISIS 16009 AS
oligonucleotides almost doubled the rate of apoptotic cells
compared to saline or MM oligonucleotides pretreated cells
(SalþCis 7.2%, s.d. 72.7%; ASþCis 18.9%, s.d. 75.9%;
MMþCis 5.1%, s.d. 71.7%; both Po0.002; data not shown).
Levels of apoptosis after cisplatin exposure in cultures pretreated
with MM oligonucleotides did not differ significantly from the
ones in the saline group.

Bcl-xL AS oligonucleotides radiosensitise Caco-2 cells

To determine the influence of Bcl-xL AS oligonucleotides on cell
viability and treatment resistance, Caco-2 colorectal cancer cells
were treated with ISIS 16009 Bcl-xL AS, MM oligonucleotides or
saline in combination with IR at the same time points and
concentrations as described above.

We first determined cell viability after AS oligonucleotide mono-
treatment in a time course experiment by the tetrazolium-based
WST-1 assay (Figure 4A). Bcl-xL AS oligonucleotides alone
significantly reduced the viability of Caco-2 cells compared to
MM control or sham-treated cells beginning 72 h after incubation
with oligonucleotides (Figure 4A; Po0.003). At 96 h, cell viability
was reduced by one-third relative to the MM control (66% AS vs
MM, s.d. 713%; Po0.001). Cell viability of the MM oligonucleo-
tide-treated cells did not differ from the saline control except at
96 h after oligonucleotide administration when a moderate
inhibition of cell growth compared to saline treatment was
observed (Po0.05).

For combination experiments, Caco-2 cells were exposed to IR
48 h after incubation with oligonucleotides. Starting from 72 h after
AS oligonucleotide treatment, combinations of Bcl-xL AS oligonu-
cleotides and IR significantly reduced the viability of Caco-2 cells
compared to controls (Figure 4B; all at least o0.005). In dose–
response experiments, ISIS 16009 significantly sensitised human
Caco-2 colon cancer cells to increasing IR doses of 2, 6 and 12 Gy
by 30– 60% relative to irradiated control cells (Figure 4C; Po0.05).
MM oligonucleotide treatment combined with IR did not lead to
results statistically significantly different from those obtained with
irradiated saline groups at any dose or time point investigated.

It is known that induction of apoptosis as well as tetrazolium-
based short-term proliferation assays do not necessarily predict
overall sensitivity of cancer cells to genotoxic treatment (Brown
and Wouters, 1999). Especially for studies assessing the fraction of
cells maintaining their reproductive integrity after IR, it is sensible
to perform colony-forming assays. We therefore performed
clonogenic assays of Caco-2 cells treated with Bcl-xL AS
oligonucleotides at increasing doses of IR (Figure 5). Administra-
tion of ISIS 16009 alone resulted in a statistical nonsignificant
trend towards reduced clonogenic survival compared to the MM
control. However, the combination of Bcl-xL AS oligonucleotides
and IR at doses of 2 and 6 Gy significantly reduced colony
formation in a dose-dependent manner by at least two-thrids
compared to MM or saline pretreated cells (Figure 5; Po0.05).
Again, MM oligonucleotide treatment combined with both IR
doses did not differ statistically significantly from corresponding
saline groups. At the highest radiation dose of 12 Gy, we observed
no reliable colony formation in any treatment group.

We furthermore examined the chemosensitising effect obtained
by the combination of Bcl-xL AS oligonucleotides and cisplatin.
Caco-2 cells treated with ISIS 16009 and cisplatin (50mM) revealed
more than a 75% reduction in cell viability after 96 h compared to
cisplatin-treated controls (78% ASþCis vs SalþCis, s.d. 75%;
77% ASþCis vs MMþCis, s.d. 75%; both Po0.001; data not
shown). Similar, clonogenic survival of Bcl-xL AS oligonucleotide

and cisplatin treated Caco-2 cells was significantly reduced by
about 70% compared to the respective MM and saline controls
(Po0.001; data not shown).

DISCUSSION

Failure of cells to undergo apoptosis or programmed cell death
may contribute to the treatment resistance of colon cancer (Kim
et al, 1999). Decreasing the apoptotic threshold, mediated at least
in part by the antiapoptotic Bcl-2 family member Bcl-xL, should
lead to higher response rates of apoptosis-inducing treatment
modalities (Maurer et al, 1998). In this study, we demonstrated a
sensitisation of colorectal cancer cells to IR by specific down-
regulation of the long splicing variant of Bcl-x protein with Bcl-xL
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Figure 4 Bcl-xL AS oligonucleotides radiosensitise human colon cancer
cells. Time course of Caco-2 cells incubated with saline (Sal), antisense-
(AS), or eight-base mismatch (MM) oligonucleotides at a concentration of
200 nM (A) alone, (B) in combination with IR (12 Gy 48 h after
oligonucleotides). (C) Dose– response experiment of Caco-2 pretreated
with saline (Sal), antisense (AS), or mismatch (MM) oligonucleotides at
200 nM and exposed to increasing IR doses (0–12 Gy). Cell viability was
measured 96 h after oligonucleotide treatment by WST-1 assay. Repre-
sentative data from four independent experiments are presented;
bars¼ s.d.
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AS oligonucleotides. This regulation lowered the apoptotic thresh-
old and resulted in a pronounced inhibition of cell viability and
clonogenic survival with a significant increase in IR-mediated
apoptosis. In accordance with previous reports, the clonogenic
survival assay was more sensitive than the tetrazolium-based
proliferation assay, especially at higher radiation doses (Banasiak
et al, 1999). This may be explained by the differences in the end
points of both assays. The WST-1 tetrazolium assay (used for the
time course experiments) scores the number of metabolically
active cells, whereas the clonogenic assay is dependent on colony
formation and therefore relies on cells that maintain their
reproductive integrity (Banasiak et al, 1999). Thus, cells that have
lost their reproductive potential immediately following treatment
with ASO/irradiation or after a few cell divisions but which are still
viable will still be scored by the WST-1 test, but not be recorded in
the clonogenic assay.

High levels of antiapoptotic Bcl-2 family members are frequently
found in tumours. Bcl-xL and Bcl-2 both have the potential to
block the process of apoptosis induced by the same stimuli (Huang
et al, 1997). However, they may play nonredundant and distinct
biological roles in cell survival and drug resistance depending on
the type of tissue. There is growing evidence that among the
antiapoptotic members of the Bcl-2 family, Bcl-xL rather than Bcl-2
is a crucial factor responsible for the regulation of apoptotic cell
death in colon cancer (Maurer et al, 1998). In more than 60% of all
colon cancer, Bcl-xL staining is more pronounced than in normal
colon epithelium, whereas Bcl-2 expression was reported to be too
low for detection by Northern blotting (Krajewska et al, 1996;
Maurer et al, 1998). There is a significant correlation between the
chemosensitivity of this malignancy and the Bcl-xL to Bax ratio,
which is not observed to the same extent in the Bcl-2 to Bax ratio
(Nita et al, 1998).

A screening approach using micromolar concentrations of four
different Bcl-xL AS oligonucleotides led us to select ISIS 16009 as
the AS oligonucleotide reducing Bcl-xL expression most potently.
Using lipofectin as a cationic uptake enhancer allowed us to reduce
ISIS 16009 AS oligonucleotides concentrations to the nanomolar
range that minimises nonantisense oligonucleotide effects reported
to occur at micromolar concentrations (Stein, 1995). Notably, ISIS
16009 Bcl-xL AS oligonucleotides did not reduce the alternative,
short splicing proapoptotic variant of the Bcl-x gene nor did they
shift the splicing pattern of Bcl-x pre-mRNA from Bcl-xL to Bcl-xS

(Mercatante et al, 2002). This finding further supports a specific
antisense mechanism of action for the Bcl-xL AS oligonucleotide
used in this study.

Cellular susceptibility to apoptosis is thought to be determined
by the ratio of pro- and antiapoptotic Bcl-2 family members rather
than the total amounts present in a given cell (Tsujimoto and
Shimizu, 2000). In this study, downregulation of the Bcl-xL protein
product by about 50% compared to MM- or saline control-
sensitised Caco-2 colorectal cancer cells to IR or cisplatin. Since it
was not necessary to block completely Bcl-xL expression to observe
the effects demonstrated, our findings support the hypothesis of a
critical balance between pro- and antiapoptotic factors in the
tightly regulated process of apoptosis. This is of special interest
since it is known that proapoptotic Bax mRNA is overexpressed in
75% of colorectal cancer specimen (Maurer et al, 1998). In the
relative absence of its heterodimer partner Bcl-xL due to AS
oligonucleotide treatment, Bax should preferentially form homo-
dimers resulting in facilitated programmed cell death upon
apoptotic stimulation.

The development of antisense technology represents a promis-
ing strategy to improve conventional therapy outcomes. For colon
cancer, several apoptosis-related targets for AS oligonucleotide
approaches have already been tested. Treatment with EGFR AS
oligonucleotides showed an inhibition of human colon cancer cell
growth with potentiation of inhibitory cell growth effects in
combination with cytotoxic drugs (Ciardiello et al, 2001). p21 AS
oligonucleotides sensitised colon cancer cells in vivo by down-
regulation of IR induced p21 expression and increased apoptotic
cell death (Tian et al, 2000). Bispecific AS oligonucleotides
targeting Bcl-xL and Bcl-2 have been shown to reduce colon
cancer cell growth in vitro and in vivo (Gautschi et al, 2001).
Combination strategies with chemotherapy, a concept even more
attractive in theory, have not been addressed in this study.

Bcl-xL AS oligonucleotides in combination with the cytostatic
agent 5-fluorouracil have been reported recently to increase
apoptosis and reduce cell growth by 40% in colon cancer cells
(Nita et al, 2000). In our study, using a different Bcl-xL AS
oligonucleotide sequence in a different colon cancer cell line, the
chemosensitisation approach was successfully extended to a more
than 70% reduction of cell viability in combination with the
cytotoxic chemotherapeutic agent cisplatin. Single-agent Bcl-xL AS
oligonucleotide treatment had effects similar to those reported in
the study mentioned above. However, considering possible
therapeutic applications, systemic administration of myelosup-
pressive chemotherapy in combination with Bcl-xL AS oligonu-
cleotides may lead to harmful side effects. Among the
antiapoptotic Bcl-2 family members, Bcl-xL rather than Bcl-2 is
presumed to be a key player in the survival of haematopoietic cell
lineages, developing megakaryocytes and for the lifespan of mature
platelets (Sanz et al, 2001). Even though clinical data for Bcl-xL AS
oligonucleotides are not yet available, it will be prudent to monitor
closely the patients treated with combinations of myelosuppressive
chemotherapeutics such as 5-fluorouracil or cisplatin for haema-
tological side effects. As an indirect line of support for this
concern, thrombocytopenia as dose-limiting toxicity as well as
transient leucopenia have been observed in the first clinical trial
combining a mild myelosuppressive standard chemotherapeutic
regimen with Bcl-2 AS oligonucleotides in melanoma (Jansen et al,
2000).

It appears reasonable to speculate that combining the systemic
administration of Bcl-xL AS oligonucleotides with a localised
treatment approach such as IR restricted to the tumour site could
circumvent or at least minimise anticipated dose-limiting haema-
tological side effects without negative impact on its sensitisation
effect on tumor cells.

In this study, we report that Bcl-xL AS oligonucleotides are
capable of sensitising colon cancer cells to IR, one of the most
commonly used treatment strategies for localised colorectal cancer
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Figure 5 Bcl-xL AS oligonucleotides decrease clonogenic survival of
human colon cancer cells after ionising irradiation. Caco-2 cells were
incubated with saline (Sal), antisense (AS), or eight-base mismatch (MM)
oligonucleotides at a concentration of 200 nM in the presence of 10 mg ml�1

lipofectin and irradiated 48 h later. Survival was assessed by colony-forming
assay and expressed relative to solvent-treated cells. Columns represent
mean percentages from three independent experiments; bars¼ s.d.
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in an adjuvant setting. Cell viability and clonogenic survival in Bcl-
xL AS oligonucleotides pretreated colon cancer cells was blocked
by about 60% compared to irradiated control cells. These findings
underline the role of Bcl-xL protein as a resistance factor in colon
cancer and as an attractive target for therapeutic concepts capable
of specifically modulating protein expression such as in AS
oligonucleotides strategies. Certainly, these promising first data
deserve further evaluation and need to be confirmed in preclinical
animal models. However, given the feasibility of AS oligonucleo-
tide administration reported from first clinical trials (Jansen and
Zangemeister-Wittke, 2002), the results reported here may provide

the basis for the use of Bcl-xL AS oligonucleotides as a rational
radiosensitising strategy to help improve treatment outcome in
colon cancer patients.
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