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Imperfect attempts at organ repair after repeated injury result in aberrant formation of extracellular
matrix (ECM) and loss of tissue structure. This abnormal ECM goes from being a consequence of
cellular dysregulation to become the backbone of a persistently fibrotic cell niche that compromises
organic function and ultimately drives systemic disease. Here, we review our current understanding of
the structure of the ECM, the mechanisms behind organ-specific fibrosis, resolution, healing and
regeneration, as well as the development of anti-fibrotic strategies. We also discuss the design of
biomarkers to investigate fibrosis pathophysiology, track fibrosis progression, systemic damage, and

fibrosis resolution.

The organized complexity of the extracellular matrix
The mechano-chemical properties of the extracellular matrix (ECM) (Fig. 1)
are necessary for cells to differentiate, specialize, locate themselves in rela-
tion to other cell populations, and build the functional units that char-
acterize multicellular anatomy. There is a reciprocity between function,
developmental stage and ECM structure that results in specialized ECMs,
where components are connected in organ- and stage-specific patterns'.
These ECMs are made of different protein combinations” with different
turnover cycles, dependent on strictly regulated building, dismantling, and
remodeling cycles.

Pioneering work on Mass Spectrometry (MS) has cataloged ECM
components (the matrisome), divided in core-matrisome (~300) and
matrisome-associated proteins (~1000)’. The core-matrisome, or structural
ECM proteins, includes 28 collagens, elastin, fibronectin, and laminin iso-
forms, as well as proteoglycans (like perlecan) and glycoproteins (like
nidogens). Matrisome-associated proteins regulate ECM structure (e.g.,
proteolytic enzymes, matrix metalloproteinases-MMP, etc) but are also
controlled by ECM, e.g., transforming growth factor beta, (TGF-f), vascular
endothelial growth factor, (VEGF) superfamilies, other growth factors and
cytokines™. The emergence of spatial proteomics and 3D ECM mapping**
is revealing the 3D structure of the ECM, showing that healthy and diseased
tissue share ECM components, but their amount, distribution, density, and
articulation in space differs. It is likely that functional units within an organ
(e.g., nerve trunks and terminals, vessels, specialized structures like follicles,
glomeruli, alveoli, or acini) have a function-specific ECM’. This seems to be
the case of capillary follicles and skin™*.

ECM structure is generally divided in two compartments (Fig. 1):
Basement Membrane (BM) and Interstitial Matrix (IM). BM is a cloth-like
surface, adhesive to epithelia, glandular epithelia, endothelium, myocytes,
and adipocytes, among other cells’. The BM is based on a Collagen type IV
backbone supporting a Laminin surface’. Glycoproteins, such as Nidogens
and Perlecan, bind the Laminin and Collagen type IV layers. Others, like
Netrin-4, regulate BM mechanical properties'.

IM is structured by fibrillar collagens (type I, II, III, V) and elastin. In
turn, collagen fibrils are bridged by Fibril-associated Collagens with Inter-
rupted Triple Helices (reviewed elsewhere'') and linked to the BM by non-
fibrillar collagens, like Collagen type VII'"”. Fibronectin (reviewed here'*'*),
regulates ECM assembly, collagen fiber assembly, embryo development, and
is also critical during wound healing, ECM maturation and cancer pro-
gression. Cell-secreted fibronectin is a mediator of scar tissue formation".
Upon fibrosis progression, IM undergoes extensive remodeling, notably,
abundant cross-linking mediated by enzyme families, like transglutami-
nases and lysyl-oxidases', and collagen glycation, a process associated to
diabetes and aging"’. The overgrowth of crosslinked collagen results in a stiff,
more viscoelastic'®, linearized IM with deleterious consequences for disease
progression”.

ECM stores and releases growth factors, cytokines, and bioactive
peptides, controlling their location, density, and activity. Fibronectin binds
VEGF, hepatocyte growth factor (HGF), platelet-derived growth factors
(PDGF), among others, and growth factor-binding domains are abundant
in matrisomal proteins’. Injury responses can, by increasing binding sites,
signaling oligopeptides, and structural domains, enhance fibrogenesis as
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PARENCHYMAL CELLS
Synthesize and maintain the basement
membrane. in turn, basement membranes
organize functional units (e.g., pancreatic
islets)

ECM-CELL INTERACTION
ECM concentrates, and in many cases
mediates, growth factor activity. On the other
hand, mechanical properties of ECM are
transmited through ECM cell receptors (such
as integrins) linked to the cytoskeleton and then
to the nucleus to regulate cell behavior

BASEMENT RANE
A cell-adhesive layer. It is generally formed
by a network and a

network linked by PERLECAN and NIDOGEN.
NETRIN-4 interrupts laminin
regularity, decreasing basement
membrane stiffness

INTERSTITIAL MATRIX
FIBRILLAR COLLAGEN provides physical support
to tissues. Elasticity and recoil are produced by
elastic fibres made of fibres
linked to FIBULINS and FIBRILLINS. FIBRONECTIN
fibrils are essential for fibre assembly. In the skin,
the link between interstitial ECM and basement
membrane is ensured by COLLAGEN ViI; in other
tissues, the link is less clear

Fig. 1 | A schematic of ECM structure. Although ECM is organ specific, there are
characteristics that are common to most tissues, like the presence of a basement
membrane and an interstitial matrix. Equally, disease may induce sui generis

DISRUPTING THE BASEMENT
MEMBRANE

Invading cells (e.g., undergoing ETM
transition) are able to degrade the base-
ment membrane and squeeze through it
to join the fibrotic cell niche

BASEMENT MEMBRANE
MECHANICS

Denser laminin and excessive,
disorganized deposition of
collagen IV during disease
increase basement membrane
stiffness and favour abnormal cell
behaviour

THE MYOFIBROBLAST

Mesenchymal and epithelial cells can transition into an
aSMA-rich, ECM-producing phenotype usually found in
fibrotic disease. Targeting myofibroblasts (e.g., with
immunotherapy) suggests that this cell type is central to
fibrosis progression and its treatment

LINEARIZED FIBRILLAR COLLAGEN
Diseases, like fibrosis, induce an exaggerated

of fibrillar collagen, increasing
its stiffness and dysregulating cell behavior

remodeling, abnormal formation and degradation are shared by several conditions
(e.g., IPF, MASLD, COPD, etc.).

well as mechanosignaling”. Pioneering experiments exposing radiolabeled
PDGEF isoforms keratinocyte growth factor and HGF to collagen chains
demonstrated binding to collagens type L, III, IV, V, and VI as well as
preserved growth factor bioactivity” ™. The affinity of collagen domains
extends to inflammatory mediators and cytokines (e.g., interleukin-2,
oncostatin)****. Isolating cell-lECM structure interactions in an ECM
scaffold-based bioreactor shows that kinase activity (including growth-
factor activity) and cell-driven ECM remodeling follow anatomical cues,
supporting the notion of positional regulation®. Therefore, the ECM acts as
a spatial regulator of cellular activity.

By-products of ECM protein synthesis add an additional layer of
complexity to ECM dynamics. These by-products can be bioactive, para-
crine, and endocrine regulators”. Collectively, they are called matrikines™.
Notable examples of this family”’ include endotrophin, a pro-peptide of
collagen type VI, linked to visceral adipose tissue (VAT) dysregulation,
including fibrosis, leading to metabolic disorders™; endostatin, a pro-
peptide of collagen type XVIII that is an endogenous inhibitor of
angiogenesis’' and potentially fibrogenesis*’; and tumstatin™, a collagen type
IV pro-peptide, that suppresses inflammation and angiogenesis, and
therefore has been shown to play a regulatory role in multiple inflammatory
and oncogenic conditions.

Balance and imbalance between tissue formation and
destruction

All possible combinations of ECM proteins in presence, abundance, and
density could suggest high ECM variability”, yet normal development™ and
adult homeostasis follow predictable patterns. The relative pathological
regularity of fibrosis serves as an indicator of disease stage™ and suggests the
existence of organ- and disease-specific (rather than patient-specific)

variations of ECM topography. This notion has important implications:
there is considerable evidence pointing to the ECM as a key source of cellular
regulation, thus, fibrotic ECM has been identified as an actor, not a
bystander, of disease progression”**. As the structure of fibrosis is largely
predictable, so should be the biological effects of that structure’". These
mechanisms seem to depend on context: an example is the function of the
TGF-P superfamily*'. The latent form of TGF-B1 is bound by ECM struc-
ture, however, TGF-P1 signaling is swayed by its binding substrate, e.g,
binding to Fibulin 4 decreases TGF-p1 signaling*, while binding to Fibulin 2
enhances TGF-1”. Moreover, TGF-B1 is also bound and regulated by
Fibrillins", Fibronectin®, among others*”". Similarly complex interactions
are likely the norm for growth factors®.

Cumulative damage resulting from aging®, injury”™”, acute’™”,
chronic disease®™” can interact with reparative reactions, including
inflammation™, metabolic dysregulation” and immune response™, to
incline the ECM balance towards fibrogenesis and overgrowth™. Some
organisms respond to injury by recreating the original tissue*’, mammalians
however appear to have only a very partial version of this ability, most of it
lost after birth®'. With few exceptions, skewed ECM formation results in
fibrotic scars.

Fibrosis can be staged histologically by scoring it in biopsies™, or non-
invasively by using imaging techniques™, to measure organ biomechanics™
and by probing biochemical variables (or biomarkers) that track fibrosis
progression®>”. Importantly, biomarkers have helped establish a distinction
between staging disease severity and assessing the dynamics of disease
activity”. Staging describes the net result of fibrotic accumulation, while
biomarkers of fibrogenesis, a measure of disease activity, open a window on
the timing and rhythm of disease progression, revealing periods of quies-
cence as well as bouts of ECM remodeling or accumulation. In advanced
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disease, these bouts may determine the prognosis of a patient. Differences in
etiology and fibrogenic activity in advanced fibrosis also reveal patient
heterogeneity, leading to further advantages of using biomarkers in a per-
sonalized approach: selecting patients according to disease (and fibrosis)
endotype and, it follows, determining whether a treatment affects fibro-
genesis or fibrous tissue degradation during periods of ECM remodeling
(Fig. 2).

Recent progress in drug development, in research and in clinical trials,
shows that it is possible to modulate the balance between ECM formation
and degradation and removal®*”", raising new questions about mammalian
and human ability to resolve fibrosis, and then initiate a program of func-
tional tissue repair and regeneration. This progress must be matched by
biomarkers designed to detect, differentiate, and quantify disparate pro-
cesses dynamically. Such biomarkers should become useful tools for
development and efficacy monitoring of antifibrotic and pro-regenerative
therapies.

Core mechanisms of fibrosis

“Core” pro-fibrotic mechanisms’ are myofibroblast-associated pathways
found in different fibroses. A bare bones myofibroblast definition could be
that of an “activated” mesenchymal cell characterized by a dense a-
smooth muscle actin (aSMA) cytoskeleton, enhanced contractility, and
ECM protein overexpression. Myofibroblast progenitors can be traced to
be adipocytes”, pericytes”, smooth muscle cells”’, immune cells”,
mesenchymal stem cells’, endothelium’”’, epithelia”, bone-marrow
derived and organ-specific fibroblasts”. This heterogeneity suggests that
more than a cell type, “myofibroblast” may denote a behavior. Myofi-
broblast activation largely depends on a signaling network that hovers
around the TGF-p superfamily*"”’, beginning with the release of TGF-p1
from the TGF-p latency associated peptide (LAP) in the ECM, prompted
by multiple mechanisms, including mechanical stress sensing by the LAP-
binding integrins aVP1l on myofibroblasts and avPp6 on activated
epithelia**”, binding to TGF-p receptors 1 and 2, canonical SMAD sig-
naling, translocation of SMAD2, SMAD3 and SMADA4 to the nucleus and
promotion of the genes encoding aSMA (ACTA2) and ECM proteins.
Other pathways also lead to activation: TGF-p2*** and TGF-B3", and
non-canonical TGF-B signaling through mitogen-activated protein
(MAP) kinase®.

Signaling and mechanical changes are linked. Injury attracts fibro-
blasts, and they contract injured tissue, increasing stiffness. An initially soft
ECM is then substituted by scar tissue (discussed below) rich in fibronectin
and collagen crosslinked by transglutaminases® and lysyl oxidases”*".
Myofibroblasts transmit and perceive force through cell surface receptors,
notably integrins®’, discoid domain receptors (DDR)*, vanilloid receptors™,
G-protein coupled receptors’, and hyaluronan receptor CD44” Cell-ECM
contact induces the synthesis of cytoskeleton proteins and cell adhesion
complexes, calling for further ECM contraction. Integrins avpl, avB3, avf5
and avp6 activate latent TGF-B by mechanically pulling LAP”, thus linking
both biochemical and mechanical signaling in one positive activation loop.
The ADAMTS (A disintegrin-like and metalloproteinase with thrombos-
pondin motifs) superfamily has 19 members that remodel the ECM, partly
by cleaving latent TGF-p complexes, changing cell mechanics, and
increasing tension as well as TGF-f release™. A subgroup of ADAMTS
members bind to fibrillin and fibronectin™, belong in the fibrillin microfibril
niche, a mechanosensing hub, and regulate elastic fiber assembly through
TGF-B”. ADAMTS-like 2 variants produce geleophysic dysplasia, a syn-
drome associated to cardiac and interstitial fibrosis™’, and is overexpressed in
adults with chronic liver disease”. Recessive mutations in ADAMTS10 can
cause Weill-Marchesani Syndrome, associated with cardiac fibrosis™.

The TGF-p superfamily also includes a subgroup of cytokines, activins,
that bind to membrane receptors (activin receptors type I and II) to phos-
phorylate the activin-like kinase 4 (ALK4), which in turn phosphorylates
Smad proteins 2 and 3 to transduce activin signaling into the nucleus™.
Activin action is downregulated by follistatins, which bind to the ECM (e.g.,
to heparan sulfate proteoglycans)'” and trap activin, so it can be cleaved by

proteolysis. Activin upregulation results in follistatin overexpression and
activin attenuation. The activin-follistatin system is implicated in scarring
and regeneration across several organs. In the liver, activin is overexpressed
in models of liver fibrosis, activating hepatic stellate cells (HSCs)""', whilst
Follistatin blocks activin and inhibits TGF-p signaling as well as collagen
production'”. In the kidneys, activin is overexpressed after injury and
during kidney fibrosis, mimicking TGF-p signaling and hampering
regeneration'”, but follistatin blockade promotes epithelial proliferation
and repair'”. In the lungs, activin promotes myofibroblast proliferation,
ECM formation, and TGF-p overexpression, which in turn induces activin,
creating a persistent fibrotic niche”. Follistatin gene therapy has been trialed
for Becker muscular dystrophy, resulting in reduced muscle fibrosis and
muscle performance improvement'”. Activin A inhibition with a mono-
clonal antibody (Garetosmab'®) reduces new heterotopic bone lesion for-
mation in fibrodysplasia ossificans progressive. Sotatercept, an activin
inhibitor, reduced the risk of death in patients with pulmonary arterial
hypertension'”.

The Wnt/ B-catenin pathway can also drive fibrogenesis. Wnt is a
homolog of integrase-1 and the wingless gene in Drosophila'®. There
are 19 Wnt proteins, essential for development and homeostasis. The
canonical Wnt pathway involves binding to the Frizzled (FZD)
transmembrane receptors, the translocation of -catenin into the cell
nucleus, and activation of target genes by transcription factors T-cell
factor (TCF) and Lymphoid enhancer factor (Reviewed extensively
in'”). The Wnt/-catenin pathway is activated in fibrogenic diseases.
Wntl, Wnt7b, Wntl10b, FZD2, FZD3, B-catenin are overexpressed
during idiopathic pulmonary fibrosis (IPF), a disease marked by the
overproduction of ECM. Wnt in pulmonary fibrosis promotes fibro-
blast proliferation, recruitment and activation'’. Interestingly,
chronic obstructive pulmonary disease (COPD) a disease marked by
alveolar ECM destruction, has reduced Wnt/p-catenin activity''.
Activation of Wnt/B-catenin seems to attenuate COPD progression'"’.
Wnt/B-catenin can be controlled by TGF-P and thus promote myofi-
broblast differentiation'"’. Monoclonal antibodies Vantictumab and
Ipafricept block Wnt to FZD receptors and decrease human tumor
growth'". B-catenin inhibitors, ICG-001 and PRI-724 reduce markers
of fibrogenesis and myofibroblast differentiation, collagen, and

inflammation'".

Organ-specific fibrosis, fibrosis resolution, and the
perspective of regeneration

Human regenerative capacity is limited, but there are examples of complete
regeneration in nature that serve as experimental models and point to the
mechanisms humans lack: Hofstenia miamia, an Acoel worm, can regen-
erate its whole body'', the sea slug Elysia cf. marginata self-decapitates to
grow a new body' ", the axolotl (Ambystoma mexicanum) can grow an exact
replica of almost any tissue'®'"”, and the Zebra fish (Danio rerio) can
regenerate organs upon mutilation'”. Sequencing the Acoel genome
uncovered Early Growth Response (egr), a master control gene induced by
mutilation that epigenetically regulates other wound control response genes
(vertebrates bear homologs of egr)'"'°. Zebra fish respond to amputation with
the formation of a “blastema”, a mass of undifferentiated cells that pro-
liferate and specialize to regenerate tissue. Remarkably, epigenetic control
exerted by the Kdm6b.1 demethylase over zebra fish genes, associated to
embryonic patterning, switches on after injury, activating regenerative
programs'*'.

The discovery of scarless healing'* established that regeneration exists
in mammalians but vanishes as intrauterine development ends'”. After
injury, fetal coagulation forms porous clots that are weakly crosslinked'*,
followed by the deposition of an ECM with a higher collagen type III to
collagen type I ratio'*. Fetal wound ECM lacks oxidative stress”’. TGF-p1
and TGF-P3, regulate the injury response in mammalians but seem to play
opposite roles. TGF-B1 is central to the activation of fibroblasts', while
TGF-P3 can be anti-fibrotic'**. Both bind to multiple ECM sites'*’, but only
TGF-P1 becomes activated by increasing ECM stiffness'*. Moreover, while
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Endotype 1

Normal ECM turnover rate, aging
and environmental exposure impose
a constant, ECM

remodeling characterized by
homeostatic balance

Repeated injury, inflammation,
dysregulated repair
and chronification

Endotype 2
Increased profibrotic
activity, even with
normal degradation,
results in abnormal
ECM deposition

Endotype 3
Decreasing ability to
degrade ECM can
also result in
abnormal deposition
and fibrosis

Endotype 4
Exaggerated ECM
degradation
destroys organ
structure and
function

Endotype 5
Depressed ECM
deposition and high
ECM degradation
could mark a
cachectic state

Therapeutic intervention

Endotype 6
Regeneration is an
active process that
could involve both
intense deposition
and degradation

Fig. 2 | The balance between ECM formation and degradation. Homeostatic
balance can be broken by repeated injury (infection, environmental exposure,
physical or chemical insult, mutations, etc.) and subsequent, insufficient,

Dynamic biomarker performance
ECM degradation ECM formation

Formation
biomarkers detect
pro-fibrotic disease
activity

Degradation

biomarkers detect

ECM destruction Systems
biology-based
biomarkers aim to

overview all disease
meghanisms

dysregulated reparative response. How this balance tilts towards determines a dis-
tinct functional disruption (endotype). Dynamic biomarkers should identify these
endotypes and the activities driving disease as well as a potential regeneration.

TGEF-B1 is only shortly activated after injury in fetuses, it persists in adults.
TGEF-B3 is only briefly activated at the end of adult scarring. It is notable that
scarless healing disappears as the mature immune response emerges'”.

Mechanosignaling plays a role in switching the repair response towards scar

formation, via activation of Engrailed 1 (EnI) in fibroblasts by injury. High
stiffness produces fibrotic scars, but low stiffness and inhibition of the Yes-
associated protein favors scarless healing and recreation of specialized
structures'”’. ECM abnormalities in adult animals (e.g., increasing stiffness)
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HEPATIC ENCEPHALOPATHY
Liver dysfunction results in
accumulating neurotoxins that end in
neuropsychiatric abnormalities for up
to 80% cirrhotic patients

Re-alveolization post-ablation suggest
regenerative capability, but stem cell
and organ engineering approaches
remain experimental

HEART REGENERATION
Experimental Immunotherapy against
cardiac fibroblasts spurs fibrosis
regression

LIVER REGENERATION

New drugs targeting MASLD through
THR-B, FGF-21, GLP-1RA or claudin-1
could hamper fibrosis progression
and induce normal tissue restitution

KIDNEY REGENERATION
Pancreas transplants and segmental
kidney engineering using ECM scaf-
folds suggest potential regenerative

mechanisms.

GUT REGENERATION
Inhibitors of JAK kinase induce
remission in IBD patients,
suggesting gut fibrosis can be
delayed

New, GLP-1R agonists regulate lipid
uptake and storage, probably
reducing the risks

associated to AT misadaptation and
expansion

Fig. 3 | Local ECM-associated disease drives systemic dysfunction, but new
therapies can revert the course. Schematic highlighting the state-of-the-art of organ
regeneration technology (left), and the “Organ death races” that are triggered by

ADIPOSE MISADAPTATION
DRIVES RISK UP

For stroke, cranial hypertension,
and clinical depression.

Chronic lung disease causes wasting,
nutritional abnormalities and skeletal
muscle dysfunction, arthralgia, and
fatigue. It is also linked to adverse car-
diovascular events and clinical
depression

CARDIOVASCULAR DISEASE
Degrading heart function affects all as-
pects of energy and nutrient
distribution and use. CVD leads to
bioenergetic starvation, renal failure,
fatigue and ultimately cachexia.

ORGAN DEATH RACE DRIVEN
BY LIVER DISEASE

Frequent death causes for MASLD
patients are cardiac events and
extrahepatic malignancy, underlining
the impact of liver dysfunction in
distant organs

CHRONIC KIDNEY DISEASE
Declining renal function is linked to
heart failure, systemic vascular
rarefaction, neuropathology and
dysregulated energy expenditure
leading to chronic inflammation

ORGAN DEATH RACE DRIVEN
BY ADIPOSE TISSUE

Abnormal AT expansion is linked to
hypoxia, fibrosis and inflammation.
This systemic inflammation

impacts every organ system, raising
the risk of metabolic syndrome,
cardiovascular events, hepatic
disease, neuropsychiatric disease,
stroke and cancer

local, ECM-associated disease, emphasizing liver and adipose tissue as sources of
syndrome-like and ultimately lethal events (right).

deregulate fibroblast signaling, enhancing their survival by activating RAS
(derived from rat sarcoma virus) activity'*’, while controlling multipotency
in epithelial lineages'*. Regenerative mechanisms seem to be absent in post-
fetal mammalians'*' and are certainly lacking in humans, but our regen-
erative plasticity, while limited, is not non-existent (Fig. 3). Human regen-
eration is heterogeneous, with high variation along developmental stages
and among organs.

Liver

In mammalians, the liver stands out for its ability to regenerate completely
fromaloss of up to 75% of its mass, until it reaches at least 85% of hepatocyte
function'”". This process can be completed in less than 2 weeks'*. In con-
trast, injury to the myocardium frequently results in the formation of a non-
functional scar'”’. Livers recur to specialized repair mechanisms to maintain
hepatic function after injury or hepatectomy'*. Liver injury triggers the
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urokinase-type plasminogen (uPA) activator'” and matrix metalloprotei-
nases to start ECM degradation and remodeling'*’. uPA leads to the release
of HGF bound to ECM™"¥"* A subpopulation of annexin 2 (ANXA2)
positive hepatocytes' has been shown to respond to HGF and drive the
regenerative response to injury. This seems to coincide with a coordinated
proliferation of hepatocytes, which proceeds from the portal spaces towards
the central vein'*’, although tracing reveals proliferating hepatocytes to be
more abundant in zone 2 of the hepatic lobule''. ECM composition seems
to run a parallel course to hepatocytes: pioneering data compiled in rat
models"**'** suggest that ECM gene expression patterns are choreographed,
successively increasing proteoglycan expression, tissue inhibitor of metal-
loproteinase 1 (TIMP-1), and then interstitial collagens type I and IIL

A cohort of patients with MASLD and treated with bariatric surgery
saw fibrosis regressing in 70% of all participants after 5 years, including
resolution in 45% of patients with advanced fibrosis at baseline'*. Bariatric
surgery reduces the expression of pro-fibrotic genes'* as part of a vast
impact on metabolic and endocrine physiology that includes decreased
levels of the “hunger hormone” Ghrelin, the “satiety hormone” leptin and
pro-inflammatory cytokines like Tumor Necrosis Factor Alpha (TNF-a)'*.
Remarkably, patients with chronic hepatitis B virus and cirrhosis at baseline
regressed their histological fibrosis staging and were diagnosed as non-
cirrhotic after long-term treatment with tenofovir'*’. Similar results seem to
be mirrored in patients with hepatitis C'". Together, these results suggest
liver fibrosis to be reversible (Fig. 3). Moreover, newer therapies appear on
the immediate horizon'*". Dual agonists of the glucagon receptor and the
glucagon-like peptide-1 (GLP-1) produce fibrosis regression in up to one
third of MASH patients'” and fibroblast growth factor 21 (FGF21) analogs
also improve fibrosis in MASH'”. New mechanisms keep being dissected,
e.g., targeting claudin-1 a component of tight cell junctions, has been shown
to be an anti-fibrotic strategy'".

Liver biomarkers have advanced apace. The enhanced liver fibrosis test
(ELF)", a composite biomarker synthesizing blood levels of the tissue
inhibitor of metalloproteinase-1 (TIMP-1), procollagen IIT amino terminal
peptide (PIIINP) and hyaluronic acid (HA), and the N-terminal of pro-
collagen type I1I (PRO-C3)'* are routinely used in the clinical evaluation of
chronic liver disease and in drug development, to diagnose, prognosticate,
measure disease activity and evaluate drug effect’"**'**,

Heart

Upon insult, the adult myocardium answers with fibrogenesis, not
regeneration'”*'*. Nonetheless, adult cardiomyocytes can re-enter the cell
cycle, and conclusive evidence emerged from an elegant study that mea-
sured carbon-14 incorporation in cardiomyocytes from individuals born
around the partial ban in nuclear testing of 1963'”, when environmental
isotope levels decreased exponentially. The key finding established that
~0.5-1% of adult human cardiomyocytes re-enter the cell cycle per year, not
enough to sustain regeneration.

The key to heart regeneration may not be in its beating cells, but in
those maintaining its structure (Fig. 3). Scar-building cells in the heart come
from resident fibroblasts'*, recruited bone marrow progenitors (fibrocytes),
and endothelial cells that complete endothelial-mesenchymal transition.
They become myofibroblasts under TGF-p signaling'”’. These cells depose
ECM after being exposed to hypoxia or inflammatory cytokines like
interleukin-2 and tumor necrosis factor'®, but in another example of the
contextual nature of fibrosis, the persistence of myofibroblasts is not
necessarily damaging. Mice engineered to produce myofibroblast-rich post-
infarction tissue showed reduced scar formation'®. Still, groundbreaking
work'® in cardiac fibroblasts engineered to express ovoalbumin peptide to
mark them as targets for CAR (chimeric antigen receptor) CD8+ T-cells
(i.e., anti-fibroblast immunotherapy) led to a reduction of cardiac fibrotic
injury. Tantalizingly, fibrillar collagen deposition was reduced in treated
hearts that showed histologically normal myocardium, suggesting that a
restitution of normal architecture could take place after eliminating the cells
producing abnormal ECM. The optimal window for such a therapy needs to
be determined.

Cardiac biomarkers are extensively reviewed elsewhere'**'*". Bench-
mark biomarkers include B-type natriuretic peptide (BNP) and N-terminal
BNP (NT-proBNP) (diagnostic and prognostic in heart failure patients),
cardiac troponins (myocardial necrosis), Suppression of Tumorigenicity
(ST2), an interleukin receptor upregulated in response to injury (prognostic
for heart failure), Galectin-3, a lectin, that marks cardiac fibroblastic activity
and C-terminal type VIa3 pro-collagen (PRO-C6), prognostic in heart

failure with preserved ejection fraction'®.

Lungs

Like the heart, the lungs are subject to constant mechanical demands ful-
filled by a highly specialized ECM (Fig. 3). Unlike the heart, the lungs are
directly exposed to a variety of environmental irritants that can trigger the
destruction of normal ECM structure and its substitution by excessive scar
tissue (e.g., interstitial lung disease- ILD) or a protracted dismantling of
pulmonary airways and alveoli (emphysema in COPD).

InILD, functional parenchyma is gradually substituted by an ECM that
reduces alveolar area to dysfunctional remnants, while building a fibrotic
callus. A prominent form of ILD, idiopathic pulmonary fibrosis (IPF)'* has
so far evaded mechanistic dissection. Repeated micro-injury to the alveolar
epithelium'®” can work together with mutations in the surfactant protein
gene (SFTPC) expressed by Alveolar Type 2 epithelial cells (AT2), intra-
cellular accumulation of abnormal surfactant and cell senescence'®,
including telomere dysfunction, to induce fibroblast-to-myofibroblast
activation. More specifically, AT2 cells lose regenerative capacity during
ILD, leading to their substitution by progenitor airway cells invading the
alveoli'”. These airway cells have basal cell (basaloid) characteristics,
including keratin 17 production (KRT5-/KRT17+ cells) and expression of
ECM genes'”’ and locate on fibrotic lesions. Mechanochemical signaling is
also associated to fibrosis development. Loss of the cell division control
protein 42 homolog (Cdc42) in mice renders them unable to regenerate
alveoli after pneumonectomy, which increases mechanical tension and
triggers a TGF-f activation loop, driving peripheral fibrosis that advances
toward the lung hilum'”".

Basic knowledge is being gradually translated to the clinic. Pirfenidone
inhibits TGFB signaling and collagen production'”. In IPF patients, Pirfe-
nidone slows disease progression and respiratory decline'”’. Nintedanib is a
competitive inhibitor of non-receptor and receptor tyrosine kinases,
including platelet derived growth factor receptor (PDGFR), fibroblast
growth factor receptors 1, 2 and 3 and VEGF receptors 1, 2 and 3" Nin-
tedanib slows lung function decline but is not curative'”.

Functional tests are paramount in pulmonary drug development.
Forced vital capacity (FVC), forced expiratory volume in 1s (FEV), and
6-min walk distance are used along lung imaging, arterial gases diffusion
and quality of life measurements. A non-invasive biomarker, plasma fibri-
nogen, was qualified as a drug development tool by the food and drugs
administration (FDA)"”. Another biomarker, Eosinophil count, has been
instrumental in the development of new drugs to treat COPD
exacerbations'"*"”’. Novel markers, sensitive to ECM remodeling during

lung disease are increasingly used to evaluate drug performance®.

Kidney
At homeostasis, the potential plasticity of tubular epithelium translates into
a capacity to repair the kidney parenchyma after acute injury, acting in
concert with endothelium, fibroblasts, and macrophages, and through the
activation of developmental pathways, like Notch, Wnt/B-catenin, SOX9
transcription factor, and the Sonic hedgehog pathway'”*. However, repeated
aggression results in a maladaptive response to damage that subverts these
pathways and ultimately results in the recruitment of pro-inflammatory
cells, and the activation of myofibroblasts (including tubular epithelial cells
that undergo mesenchymal-to-epithelial transition, resident mesenchymal
cells, and fibroblasts)'”.

Once the bridge to chronic kidney disease (CKD) has been crossed
reparative ability diminishes but is not completely erased. In diabetic
patients suffering from CKD, pancreas transplantation reverted ECM
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remodeling (more specifically, BM thickening, it is unclear if this process
extends to the IM) after 10 years'® (Fig. 3). In a porcine preclinical model, a
nephrectomy followed by the implantation of a segment of decellularized
ECM results in the recellularization of the matrix with structures reminis-
cent of glomeruli, vessels, and tubules'. Unfortunately, clinical progress
toward the reversal of kidney fibrosis is still partial. Blocking TGF-f sig-
naling, the main driver of ECM deposition, has shown no beneficial effect on
kidney damage'*’. In type 2 diabetics with CKD however, GLP-1 inhibitors
reduce the risk of death, heart and kidney outcomes'®’.

Biomarkers of ECM remodeling and turnover assess kidney fibrosis
progression'*". Collagen type III turnover biomarkers PRO-C3 and C3M (a
segment resulting from MMP-9 collagen type III cleavage) correlate with
kidney fibrosis degree. C3M/creatinine ratio is highly discriminative for
advanced kidney fibrosis'®”. Lysyl oxidase (LOX) crosslinks fibrillar collagen
and is increased in patients with kidney fibrosis'®. Dickkopf-related protein 3
(DKK-3) is a glycoprotein secreted upon tubular injury that promotes scarring
that significantly predicts estimated glomerular filtration rate (eGFR) decline
and identifies patients at high risk of CKD progression'”’. PRO-C6 is asso-
ciated with kidney fibrosis and outcomes in acute kidney injury"*'*.

Gut

Inflammatory Bowel Disease (IBD, including its variants Crohn’s Disease-
(CD); and Ulcerative Colitis (UC) progression involves chronic inflam-
mation and mucosal damage leading to abnormal ECM remodeling in the
intestine'**””. This combination is called Fibro-inflammation, an emerging
concept in IBD, covering processes related to immune cell activity, mucosal
damage, intestinal fibrogenesis, and fibrosis resolution”. In late stages of
fibro-inflammation, fibrosis progresses independently of inflammation,
accompanied by visceral adipose tissue (creeping fat). Creeping fat has been
associated with intestinal fibrosis progression and luminal narrowing'”
Along with fibrosis, CD produces a thickening of the muscularis layer at the
expense of submucosal layers, hypertrophic nerve trunks and vessels with
hyperplastic muscularity also leading to strictures™". Intestinal fibrosis is a
clinical feature of UC but rarely causes strictures””. UC and CD-
associated fibrosis has been associated with an absence of clinical response to
anti-inflammatory treatments such as biologics and small molecules™”.

As in other organs, myofibroblasts are held responsible for ECM
overproduction, and their activation depends on the interplay between
fibroblasts, endothelium, epithelium, and immune cells. Single cell nRNA
sequencing has begun to reveal the cellular complexity of these fibrosis/
inflammation interactions: M2a macrophages are profibrotic, but reg-
ulatory M2c deactivate myofibroblasts and canonically activated M1 and
M2a macrophages”®. Similarly, T helper 2 cells are fibrogenic but T helper
1 cells are antifibrotic. This intricate cell niche is underpinned by a com-
parably complex molecular landscape, Pro-inflammatory interleukin family
members IL-1, IL-6, IL-18, IL-33, and IL-36 have been associated to IBD*”,
while TGF-B1 may be anti-inflammatory in IBD*” but profibrotic, ushering
myofibroblast activation and ECM formation®’. An observational study
describes TGF-p2 overexpression in human biopsies of ulcerative colitis
patients’"'. Other factors that also stimulate myofibroblast proliferation,
platelet derived growth factor subunit A (PDGFA), platelet derived growth
factor subunit B (PDGFB), and insulin-like growth factor-1 (IGF-1)""*. The
molecular drivers of gut fibrosis are partly conditioned by the intestinal
microbiota and the integrity of the gut barrier. Increased antibacterial
antibodies are common in patients with CD*" and antibiotic treatment
leading to reduced bacterial diversity and numbers is anti-inflammatory
(e.g., downregulating the expression of NF-kB, TGFp and aSMA in the
intestinal wall)*"*. The nature of the immune reaction invoked also plays a
role, for example by downregulating eosinophil frequency and altering their
function, resulting in fibrogenesis and defective repair’"®. Neutrophils, and
their extracellular traps (NET) have been implicated in IBD**® and in
intestinal fibrogenesis. NET's enhance fibroblast differentiation into myo-
fibroblast and increase collagen production in vitro®". Escherichia coli sp.
exacerbate fibrosis and inflammation in mice, including epithelial-
myofibroblast transition’*. In humans, bacterial products like outer-

membrane protein C, flagellin and Saccaromyces cerevisiae are associated
with CD progression and surgery’***. Conversely, Lactobacillus acid-
ophilus decreases aSMA and collagen deposition in mice™'. Genetically
modified Lactococcus lactis carrying 11-10 could impair colitis activity,
showing that host-microbiota interaction and a compromised gut barrier
could be leveraged to tread IBD**. The nature of the microbiome makes it
suitable for systems biology biomarker approaches that detect bacterial
species with dynamics that could be diagnostic for CD and UC**, but they
haven’t substituted established non-invasive biomarkers like calprotectin,
CRP, anti-neutrophil, and anti-S cerevisiae antibodies. Janus kinase inhi-
bitor Upadacitinib induces endoscopic remission”* and ECM
remodeling™, in a clinical trial of CD patients, suggesting the gut can engage
repair processes upon treatment'”***°.

Adipose tissue

Fat deposits covering viscera and underlying the skin compose an endocrine
organ that regulates metabolism, immunity, and homeostasis. Adipose
tissue (AT) dysfunction has wide-ranging, systemic consequences, and
fibrosis is both one of its sequels and drivers.

White adipose tissue (WAT) (Fig. 3) stores energy, while brown-beige
(BAT) is thermogenic (i.e., it dissipates energy as heat)*”~**’. BAT sits in the
paravertebral, axillary, supraclavicular, and periadrenal areas but WAT is
widespread: subcutaneous fat lies beneath the dermis and represents ~80%
of total body fat; visceral fat surrounds intrathoracic (e.g., pericardial, epi-
cardial) and intraperitoneal organs (e.g., omental, mesenteric). AT secretes
signaling polypeptides (adipokines) that regulate metabolism™”, e.g,, adi-
ponectin promotes insulin sensitivity””', whilst resistin and lipocain pro-
mote insulin resistance™’. It produces leptin, an adipokine that signals to the
hypothalamus and other brain regions, promoting satiety and energy
expenditure. Leptin resistance is associated to obesity’””. WAT regulates
immunity through pro-inflammatory cytokines TNF-a and interleukins 1B,
6, 8, and 18°. WAT deposits have different expansion-contraction
patterns™ and transcriptomic profiles™”, but expansion by hypertrophy is
associated to hypoxia™* and hypoxia-factor 1a (HIF1a) secretion, which in
WAT calls for the transcription of ECM associated genes™, fibrosis, and
collagen crosslinking. This AT fibrotic response increases the synthesis of
collagen type VI and collagen type VI C-terminal pro-collagen,
endotrophin®®. Collagen type VI correlates with insulin resistance in
humans (ref), but interestingly, in COL6 '~ animals, AT hypertrophy fails to
invoke a fibrotic response, leading to a soft ECM, probably due to a decrease
in circulating levels of endotrophin™.

ECM formation in distant organs, downstream of AT expansion, is
associated to ECM formation in distant organs. Approximately one third of
systemic angiotensinogen is produced by WAT"”, activating angiotensin
receptors (e.g., angiotensin 1b receptor) in the kidneys that are inflamma-
tory in mice’” and humans™”. Overstimulation of leptin receptors in the
kidney is associated to progressing renal disease”’ and overexpression of
TGF-B1, collagen type IV, and fibronectin®"**.

Another example of AT driving disease is gut creeping fat, which
surrounds the exterior of the intestines wrapping the intestines. Creeping fat
islinked to the release of pro-inflammatory cytokines and fibrotic mediators
which enhance ECM remodeling and collagen deposition of the affected
intestinal tissue and is highly associated with the development of intestinal
fibrosis and strictures™***.

Skin

During homeostasis, adult epidermis regenerates continuously, turning
over every 4-6 weeks™***** under the control of epidermal stem cells in the
basal layer of the skin™, however, upon injury, post-natal skin forms scar
tissue, while fetal skin heals faster and regenerates completely’”’. Hyper-
trophic scars resulting from trauma (e.g., surgery, physical injury or loss of
tissue integrity), are filled with parallelized collagen fibers in the upper skin,
while another form of abnormal repair, keloids, proliferate beyond
wound limits, accumulating disorganized collagen fibers sustained by
angiogenesis™* . Hypertrophic scars are amenable to surgical, laser,
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physical or anti-inflammatory therapies. The same treatments are less
effective in keloids. Both hypertrophic scars and keloids form exaggerated
ECM structures, but different collagen organization, composition and
proliferation dynamics suggest different cross-linking and pro-fibrotic
mechanisms. Keloids are driven by persistent VEGF and TGF- p1 signaling
accompanied by dysregulated syndecan and integrin signaling along with
inflammation, but inflammation and fibrosis in hypertrophic scars are self-
limiting247,251,252'

Excessive collagen deposition and cross-linking are also characteristic
of skin fibrosis during systemic sclerosis (SSc)*’. SSc produces a thick
dermis with remodeled hair follicles, sweat glands, and cutaneous blood
vessels, accompanying systemic manifestations like adipose fibrosis™***".
The complex systemic progression of SSc, with multi-organ involvement
and diffuse fibrosis, highlight the importance of biomarkers that predict
disease evolution. SSc is an autoimmune disease, autoantibodies like Anti-
topoisomerase I (ATAs) and anticentromere antibodies (ACAs) are found
in around 95% of all SSc patients upon diagnosis™****. ATAs (Anti-Scl-70
antibodies) have been associated with poorer prognosis, increased mortality,
pulmonary fibrosis, and cardiac involvement™”®. However, auto-
antibodies do not evaluate disease activity or its correlation to progressing
fibrosis. Composite biomarkers like ELF'®, correlated with modified Rod-
nan Skin Score, a measure of skin fibrosis and thickness™*. Blood MMP-12 is
an indicator of skin fibrosis severity and blood IL-6 has been associated with
pulmonary fibrosis, FVC decline, and increased mortality”**".

Biomarkers quantifying degraded collagens (C3M, C4M, C6M, and
C7M), and Chemokine (C-C-motif) ligand 18 (CCL18), are lower in SSC
patients treated with the autotaxin inhibitor Ziritazestat, showing impaired
disease activity and fibrosis improvement™”. Similarly, C3M, C4M and
collagen synthesis biomarkers PRO-C4 and PRO-C3 were prognostic for
worsening skin thickness in patients treated with an anti-IL-6 Ab
(Tocilizumab)*’.

In contrast to SSc, Stiff skin syndrome (SSS) is non-inflammatory. SSS
is characterized by thickened, indurated skin, and limited joint movement in
the absence of systemic symptoms (such as Raynaud’s phenomenon, peri-
ungual changes, or visceral involvement)*”’. SSS also suffer persistent TGF-
B1 signaling, leading to increased expression of COL1A1 and COL3A1”".
SSS is extremely rare and no established guidelines for patient care exist,
most patients are treated with immunosuppressive agents, with a high
variation in treatment results.

Designing biomarkers for fibrosis, fibrosis-driven
organ death races, and fibrosis resolution

The dysfunction that produces and sustains ECM structural alterations in an
organ reverberates in the body, damaging distant tissues and triggering
adverse events (Figs. 3, 4). Fibrotic disease in an organ can drive end-stage
disease in distant organs, characterized by simultaneous ECM remodeling,
albeit at different rates, and with considerable individual variation. Consider
how Metabolic dysfunction-associated steatotic liver disease (MASLD,
Fig. 4), closely linked to metabolic syndrome, and characterized by excess
accumulation of lipids in the liver, inflammation/hepatocyte ballooning
degeneration, and hepatic fibrosis”*”* impacts multiple systems. Before
developing cirrhosis, MASLD patients die of cardiovascular disease and
extrahepatic cancer with more frequency than from a liver-related
event”**” (Fig. 4).

Liver disease is by no means unique. Fibrotic progression in WAT is
correlated with higher risks of infection”’®, cancer (including breast, uterus,
ovaries, colon, stomach, esophagus, rectum, liver, pancreas, kidney,
meninges, and blood), metabolic, kidney, cardiovascular, and psychiatric
disease.

Detecting, predicting, and tracking ECM formation or degradation is
challenging. There are multiple molecular mechanisms and proteins
involved, affecting tissues with different shape, function, resilience, and
regenerative potential. Conceptually, a pharmacodynamic biomarker
should either measure fibrogenic activity, i.e., determine the de novo for-
mation of ECM proteins, or fibrolysis, i.e., ECM degradation and removal. A

combination of such biomarkers could mirror the balance between fibro-
genesis and fibrolysis. ECM biomarkers measure ECM component synth-
esis dynamically, reflecting how active fibrosis progression pathways are
during measurement. They can discriminate between cumulative damage
(which is the parameter assessed by a biopsy) and an actual snapshot of the
biological status of the disease. Dynamic biomarkers would reflect distinct
patient endotypes, characterized by different formation-degradation bal-
ances represented by different ECM parameters (Fig. 2).

There are different technological paths to build a biomarker strategy.
One passes by combining large-scale biological data and data mining.
Omics-based biomarker research have been gaining momentum with the
establishment of national biobanks (including the UK Biobank’”, and
Biobank Japan®®) and disease specific international patient registries
(including the European MASLD Registry’”). These large databases have
increased the depth, quality, and availability of Omics data as the cost of
large-scale data generation has decreased, creating a conducive background
for biomarker discovery. Mapping the human proteome™***' was a sig-
nificant step towards assessing multiple molecular pathways simulta-
neously, opening a conceptual window into complex biological processes.
Recently, leveraging RNA-seq and plasma proteomics resulted in organ-
specific protein profiles that reveal tissue aging, thus building a proteomics-
based biomarker strategy’®’. Plasma proteomics, used in Alcohol-related
Liver Disease (ALD), detected circulating proteins associated to fibrosis and
metabolic dysfunction, predictive of future liver-related events and all-cause
mortality’””. Complementary approaches in MASLD utilizing a proteo-
transcriptomic strategy to characterize the liver-derived circulating pro-
teome across the full disease spectrum®™. However, there is evidence to
suggest that different technologies (i.e., based on aptamers or antibodies)
may affect protein quantification and comparability*****. Epigenetics and
metabolomics can also perform to a similar level: mapping DNA methy-
lation in whole blood has found associations between disease, age, ancestry
and all-cause mortality and specific cytosine-phosphate-guanine sequences,
with substantial prognostic improvement for neoplasia-associated death™’.
A metabolomic platform found prognosticators all-cause mortality in a
diverse population’®, identifying a panel of 14 metabolic biomarkers that
could perform as well as conventional risk factors of mortality.

These panoramic approaches stand in contrast to individual and
composite biomarkers supported by mechanistic research. Sensing post
translational changes in a fundamental disease pathway is an effective
biomarker strategy, with direct clinical impact. This is made evident by the
FDA list of approved companion diagnostic devices, where single genetic
biomarkers underpin decisions that have reduced disease burden and
mortality for millions of cancer patients (e.g., BRCA1, BRCA2, HERI,
HER2, KRAS, PD-L1, etc.”*). A central feature of fibrosis is the formation of
ECM, therefore, detecting fibrogenesis and ECM remodeling should be an
obvious goal to assess disease activity. In particular, the intracellular
synthesis of fibrillar procollagens is often followed by the cleavage of pro-
peptides that are then released into the bloodstream. These procollagens
have been proven to be a surrogate of several complex pathophysiological
events involving increased ECM synthesis and turnover. PRO-C3*”, pro-
duced by fibroblasts as they deposit collagen type III, predicts fibrosis
progression'”, reflects fibrosis stage’’, and can predict future lethal
events’”, disease outcome™”, and importantly, monitors disease activity
during and after therapeutic intervention'** across cohorts subject to dif-
ferent diseases or treatments. Another example of a composite biomarker
centered on ECM biology is the Enhanced Liver Fibrosis (ELF) score'****.
ELF measures the tissue inhibitor of metalloproteinases 1 (TIMP-1), hya-
luronic acid (HA), and the N-terminal propeptide of procollagen type III
(PIIINP). ELF predicts clinical outcome and event-free survival”***.

By-products of ECM remodeling can act as signaling messengers,
driving fibrosis and metabolic dysfunction. Collagen type VI is a minor but
ubiquitous, microfilamentous interstitial collagen of most organs, including
the cardiovascular system and WAT, where it plays a role in the regulation of
tissue expansion and WAT fibrosis™”. In mice, a collagen V1(al) knockout
protects against WAT fibrosis™ and myocardial infarction’”, suggesting a
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Fig. 4| Outcomes in adults with MASLD. According to Sanyal AJ et al.'®’, patients with chronic steatohepatitis are at higher risk of cardiovascular and renal adverse events
than liver-related events. This schematic illustrates the organ death race driven by MASLD progression. (Line thickness represent probability of event per 100 patients).

mechanistic role for collagen type VI remodeling in the chain of events
during systemic disease. Endotrophin, a cleavage product of the C-terminal
propeptide of the a) chain of procollagen type VI(a3) chain®™’*”, is a potent
adipokine, activating fibroblasts and recruiting immune and endothelial
cells to trigger and promote fibrosis progression. Increased expression of
collagen type VI(a3) chain has also been demonstrated to enhance the
adhesion of T-cells in tissues from UC and CD*”, indicating a potential link
to sustaining chronic inflammation in IBD. It also reduces energy expen-
diture, increases triglycerides, leads to hepatic steatosis, and ultimately
metabolic disease™. Endotrophin, lying at the center of fundamental disease
pathways, opens a window into organ death races driven by ECM dysre-
gulation. An endotrophin-derived biomarker, PRO-C6, is associated to

outcome in COPD™™, chronic liver disease’”, acute kidney disease'”,

kidney transplant™, heart failure with preserved ejection fraction'®, mul-
tiple solid neoplasias’ ™", and metabolic disease’”™”. Although more
research is required, the mechanisms of collagen type VI synthesis are a
bellwether of disease activity and a potential drug target™".

The deepening knowledge about, and emergence of successful drugs
against, fibrosis’' " announce a new challenge: how to measure the dis-
mantling of scarred, defective ECM that would determine fibrosis resolu-
tion, and healing. Collagen degradation fragments (e.g., by matrix
metalloproteinases) released into the bloodstream could indicate the turn-
ing of the tide, the tipping of the ECM balance towards fibrotic scar reso-
lution. Developing biomarkers of ECM degradation is a complex task, as the
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progression of fibrotic and inflammatory diseases (including rheumatoid’”
and neoplastic diseases’'®) involves the destruction of normal ECM, and so a
degradation-inclined ECM balance could rather be interpreted as high
disease activity associated with enhanced ECM turnover. However, during
fibrosis, fibrillar collagen is abnormally and abundantly crosslinked’”, thus,
fibrosis resolution would imply the degradation of crosslinked fibrillar
collagen. Biomarkers of degraded, crosslinked collagen could therefore be a
successful surrogate of beneficial ECM degradation and repair. The recent
development of an ELISA to detect a crosslinked fragment of collagen type
I cleaved by MMPs™'* suggests that noninvasive measurement of release of
a fragment of a “bad” collagen into the bloodstream is possible and could
provide a valid surrogate for scar resolution, thus complementing the
armamentarium to assess the balance between fibrogenesis, e.g., represented
by PRO-C3, and fibrolysis.

The FDA biomarker qualification program (reviewed in’") sets the
path for analytes to be considered drug development tools. It includes, at
this point, eight biomarkers, three of them non-clinical. Apart from
scientific obstacles (e.g., an insufficient knowledge of the mechanistic
bases of a particular disease process), one of the main barriers for a sound
validation of novel biomarkers of disease is methodological: the devel-
opment of standardized, replicable measurement methods. Systems
biology-based biomarkers often suffer from a lack of comparability*”
that hampers the transition from being research platforms to clinical
tools. Single and composite biomarkers are making inroads, and ELF was
given a marketing authorization for enriching MASLD patients with
advanced fibrosis by the FDA, while markers like PRO-C3 and PRO-C6
have received FDA letters of support or intent, to continue research
towards full qualification.

Conclusions

More than three decades of fibrosis research have established that fibro-
genesis and scar-formation are not the only possible paths towards
advanced disease after a loss of tissue structure. It is increasingly clear that
fibrosis resolution, and possibly regeneration, can be coaxed out of mam-
malian tissues by disrupting profibrotic mechanosignaling, and by elim-
inating, inhibiting, or manipulating myofibroblast activity directly or by
several ‘upstream’ interventions’*". The arrival of treatments like anti-
myofibroblast immunotherapy, GLP-1 agonists, FGF21 analogs and
integrin inhibitors, among others, may be a harbinger of a wave of anti-
fibrotic therapies and the beginning of the end for the “death races” that are
spurred by organ-specific fibroses. To support this progress, powerful drug
development tools will be increasingly necessary, to evaluate therapeutic
effect and effectivity, and more specifically to measure the balance of ECM
remodeling, inflammation, and reparative response in early and late clinical
developments. Two approaches, one guided by big data-driven scanning of
biological products, the other based on probing critical pathways active in
disease progression, are opening windows into fibrosis activity, regression,
and systemic damage. In conclusion, accelerated translational medicine and
advanced non-invasive diagnosis may be gradually bringing fibrosis, a
condition associated with a heavy healthcare burden, poor prognosis and
systemic disease, into the realm of manageable diseases.
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