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ECM formation and degradation during
fibrosis, repair, and regeneration

Check for updates
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Signe Holm Nielsen1, Quentin M. Anstee2,3, Arun J. Sanyal4, Morten A. Karsdal1 & Detlef Schuppan5,6

Imperfect attempts at organ repair after repeated injury result in aberrant formation of extracellular
matrix (ECM) and loss of tissue structure. This abnormal ECM goes from being a consequence of
cellular dysregulation to become the backbone of a persistently fibrotic cell niche that compromises
organic function and ultimately drives systemic disease. Here, we review our current understanding of
the structure of the ECM, the mechanisms behind organ-specific fibrosis, resolution, healing and
regeneration, as well as the development of anti-fibrotic strategies. We also discuss the design of
biomarkers to investigate fibrosis pathophysiology, track fibrosis progression, systemic damage, and
fibrosis resolution.

The organized complexity of the extracellular matrix
Themechano-chemical properties of the extracellularmatrix (ECM) (Fig. 1)
are necessary for cells to differentiate, specialize, locate themselves in rela-
tion to other cell populations, and build the functional units that char-
acterize multicellular anatomy. There is a reciprocity between function,
developmental stage and ECM structure that results in specialized ECMs,
where components are connected in organ- and stage-specific patterns1.
These ECMs are made of different protein combinations2 with different
turnover cycles, dependent on strictly regulated building, dismantling, and
remodeling cycles.

Pioneering work on Mass Spectrometry (MS) has cataloged ECM
components (the matrisome), divided in core-matrisome (~300) and
matrisome-associated proteins (~1000)2. The core-matrisome, or structural
ECM proteins, includes 28 collagens, elastin, fibronectin, and laminin iso-
forms, as well as proteoglycans (like perlecan) and glycoproteins (like
nidogens). Matrisome-associated proteins regulate ECM structure (e.g.,
proteolytic enzymes, matrix metalloproteinases-MMP, etc) but are also
controlled by ECM, e.g., transforming growth factor beta, (TGF-β), vascular
endothelial growth factor, (VEGF) superfamilies, other growth factors and
cytokines2,3. The emergence of spatial proteomics and 3D ECMmapping4–6

is revealing the 3D structure of the ECM, showing that healthy and diseased
tissue share ECM components, but their amount, distribution, density, and
articulation in space differs. It is likely that functional units within an organ
(e.g., nerve trunks and terminals, vessels, specialized structures like follicles,
glomeruli, alveoli, or acini) have a function-specific ECM6. This seems to be
the case of capillary follicles and skin7,8.

ECM structure is generally divided in two compartments (Fig. 1):
Basement Membrane (BM) and Interstitial Matrix (IM). BM is a cloth-like
surface, adhesive to epithelia, glandular epithelia, endothelium, myocytes,
and adipocytes, among other cells5. The BM is based on a Collagen type IV
backbone supporting a Laminin surface9. Glycoproteins, such as Nidogens
and Perlecan, bind the Laminin and Collagen type IV layers. Others, like
Netrin-4, regulate BM mechanical properties10.

IM is structured by fibrillar collagens (type I, II, III, V) and elastin. In
turn, collagen fibrils are bridged by Fibril-associated Collagens with Inter-
rupted Triple Helices (reviewed elsewhere11) and linked to the BM by non-
fibrillar collagens, like Collagen type VII12. Fibronectin (reviewed here13,14),
regulatesECMassembly, collagenfiber assembly, embryodevelopment, and
is also critical during wound healing, ECM maturation and cancer pro-
gression. Cell-secreted fibronectin is a mediator of scar tissue formation15.
Upon fibrosis progression, IM undergoes extensive remodeling, notably,
abundant cross-linking mediated by enzyme families, like transglutami-
nases and lysyl-oxidases16, and collagen glycation, a process associated to
diabetes andaging17. Theovergrowthof crosslinked collagen results in a stiff,
more viscoelastic18, linearized IMwith deleterious consequences for disease
progression19.

ECM stores and releases growth factors, cytokines, and bioactive
peptides, controlling their location, density, and activity. Fibronectin binds
VEGF, hepatocyte growth factor (HGF), platelet-derived growth factors
(PDGF), among others, and growth factor-binding domains are abundant
in matrisomal proteins3. Injury responses can, by increasing binding sites,
signaling oligopeptides, and structural domains, enhance fibrogenesis as
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well as mechanosignaling20. Pioneering experiments exposing radiolabeled
PDGF isoforms keratinocyte growth factor and HGF to collagen chains
demonstrated binding to collagens type I, III, IV, V, and VI as well as
preserved growth factor bioactivity21–23. The affinity of collagen domains
extends to inflammatory mediators and cytokines (e.g., interleukin-2,
oncostatin)24,25. Isolating cell-ECM structure interactions in an ECM
scaffold-based bioreactor shows that kinase activity (including growth-
factor activity) and cell-driven ECM remodeling follow anatomical cues,
supporting the notion of positional regulation26. Therefore, the ECM acts as
a spatial regulator of cellular activity.

By-products of ECM protein synthesis add an additional layer of
complexity to ECM dynamics. These by-products can be bioactive, para-
crine, and endocrine regulators27. Collectively, they are called matrikines28.
Notable examples of this family29 include endotrophin, a pro-peptide of
collagen type VI, linked to visceral adipose tissue (VAT) dysregulation,
including fibrosis, leading to metabolic disorders30; endostatin, a pro-
peptide of collagen type XVIII that is an endogenous inhibitor of
angiogenesis31 andpotentiallyfibrogenesis32; and tumstatin33, a collagen type
IV pro-peptide, that suppresses inflammation and angiogenesis, and
therefore has been shown to play a regulatory role inmultiple inflammatory
and oncogenic conditions.

Balance and imbalance between tissue formation and
destruction
All possible combinations of ECM proteins in presence, abundance, and
density could suggest high ECMvariability34, yet normal development35 and
adult homeostasis follow predictable patterns. The relative pathological
regularity of fibrosis serves as an indicator of disease stage36 and suggests the
existence of organ- and disease-specific (rather than patient-specific)

variations of ECM topography. This notion has important implications:
there is considerable evidencepointing to theECMasakey source of cellular
regulation, thus, fibrotic ECM has been identified as an actor, not a
bystander, of disease progression37,38. As the structure of fibrosis is largely
predictable, so should be the biological effects of that structure39,40. These
mechanisms seem to depend on context: an example is the function of the
TGF-β superfamily41. The latent form of TGF-β1 is bound by ECM struc-
ture, however, TGF-β1 signaling is swayed by its binding substrate, e.g.,
binding toFibulin 4decreasesTGF-β1 signaling42, while binding toFibulin2
enhances TGF-β143. Moreover, TGF-β1 is also bound and regulated by
Fibrillins44, Fibronectin45, among others46,47. Similarly complex interactions
are likely the norm for growth factors48.

Cumulative damage resulting from aging49, injury50,51, acute52,53,
chronic disease54,55 can interact with reparative reactions, including
inflammation56, metabolic dysregulation57 and immune response58, to
incline the ECM balance towards fibrogenesis and overgrowth59. Some
organisms respond to injury by recreating the original tissue60,mammalians
however appear to have only a very partial version of this ability, most of it
lost after birth61. With few exceptions, skewed ECM formation results in
fibrotic scars.

Fibrosis can be staged histologically by scoring it in biopsies62, or non-
invasively by using imaging techniques63, to measure organ biomechanics64

and by probing biochemical variables (or biomarkers) that track fibrosis
progression65,66. Importantly, biomarkers have helped establish a distinction
between staging disease severity and assessing the dynamics of disease
activity67. Staging describes the net result of fibrotic accumulation, while
biomarkers of fibrogenesis, a measure of disease activity, open a window on
the timing and rhythm of disease progression, revealing periods of quies-
cence as well as bouts of ECM remodeling or accumulation. In advanced
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Fig. 1 | A schematic of ECM structure. Although ECM is organ specific, there are
characteristics that are common to most tissues, like the presence of a basement
membrane and an interstitial matrix. Equally, disease may induce sui generis

remodeling, abnormal formation and degradation are shared by several conditions
(e.g., IPF, MASLD, COPD, etc.).
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disease, these boutsmay determine the prognosis of a patient. Differences in
etiology and fibrogenic activity in advanced fibrosis also reveal patient
heterogeneity, leading to further advantages of using biomarkers in a per-
sonalized approach: selecting patients according to disease (and fibrosis)
endotype and, it follows, determining whether a treatment affects fibro-
genesis or fibrous tissue degradation during periods of ECM remodeling
(Fig. 2).

Recent progress in drug development, in research and in clinical trials,
shows that it is possible to modulate the balance between ECM formation
and degradation and removal68–70, raising new questions about mammalian
and human ability to resolve fibrosis, and then initiate a program of func-
tional tissue repair and regeneration. This progress must be matched by
biomarkers designed to detect, differentiate, and quantify disparate pro-
cesses dynamically. Such biomarkers should become useful tools for
development and efficacy monitoring of antifibrotic and pro-regenerative
therapies.

Core mechanisms of fibrosis
“Core” pro-fibrotic mechanisms71 are myofibroblast-associated pathways
found in differentfibroses. A bare bonesmyofibroblast definition could be
that of an “activated” mesenchymal cell characterized by a dense α-
smooth muscle actin (αSMA) cytoskeleton, enhanced contractility, and
ECM protein overexpression. Myofibroblast progenitors can be traced to
be adipocytes72, pericytes73, smooth muscle cells74, immune cells75,
mesenchymal stem cells76, endothelium77, epithelia78, bone-marrow
derived and organ-specific fibroblasts79. This heterogeneity suggests that
more than a cell type, “myofibroblast” may denote a behavior. Myofi-
broblast activation largely depends on a signaling network that hovers
around the TGF-β superfamily41,79, beginning with the release of TGF-β1
from the TGF-β latency associated peptide (LAP) in the ECM, prompted
bymultiplemechanisms, includingmechanical stress sensing by the LAP-
binding integrins αVβ1 on myofibroblasts and αvβ6 on activated
epithelia80,81, binding to TGF-β receptors 1 and 2, canonical SMAD sig-
naling, translocation of SMAD2, SMAD3 and SMAD4 to the nucleus and
promotion of the genes encoding αSMA (ACTA2) and ECM proteins.
Other pathways also lead to activation: TGF-β282,83 and TGF-β384, and
non-canonical TGF-β signaling through mitogen-activated protein
(MAP) kinase85.

Signaling and mechanical changes are linked. Injury attracts fibro-
blasts, and they contract injured tissue, increasing stiffness. An initially soft
ECM is then substituted by scar tissue (discussed below) rich in fibronectin
and collagen crosslinked by transglutaminases86 and lysyl oxidases87,88.
Myofibroblasts transmit and perceive force through cell surface receptors,
notably integrins87, discoid domain receptors (DDR)89, vanilloid receptors90,
G-protein coupled receptors91, and hyaluronan receptor CD4492 Cell-ECM
contact induces the synthesis of cytoskeleton proteins and cell adhesion
complexes, calling for further ECM contraction. Integrins αvβ1, αvβ3, αvβ5
and αvβ6 activate latent TGF-β bymechanically pulling LAP79, thus linking
both biochemical and mechanical signaling in one positive activation loop.
The ADAMTS (A disintegrin-like and metalloproteinase with thrombos-
pondin motifs) superfamily has 19 members that remodel the ECM, partly
by cleaving latent TGF-β complexes, changing cell mechanics, and
increasing tension as well as TGF-β release93. A subgroup of ADAMTS
members bind tofibrillin andfibronectin94, belong in thefibrillinmicrofibril
niche, a mechanosensing hub, and regulate elastic fiber assembly through
TGF-β95. ADAMTS-like 2 variants produce geleophysic dysplasia, a syn-
dromeassociated to cardiac and interstitialfibrosis96, and is overexpressed in
adults with chronic liver disease97. Recessive mutations in ADAMTS10 can
cause Weill-Marchesani Syndrome, associated with cardiac fibrosis98.

TheTGF-β superfamily also includes a subgroup of cytokines, activins,
that bind to membrane receptors (activin receptors type I and II) to phos-
phorylate the activin-like kinase 4 (ALK4), which in turn phosphorylates
Smad proteins 2 and 3 to transduce activin signaling into the nucleus99.
Activin action is downregulated by follistatins, which bind to the ECM (e.g.,
to heparan sulfate proteoglycans)100 and trap activin, so it can be cleaved by

proteolysis. Activin upregulation results in follistatin overexpression and
activin attenuation. The activin-follistatin system is implicated in scarring
and regeneration across several organs. In the liver, activin is overexpressed
in models of liver fibrosis, activating hepatic stellate cells (HSCs)101, whilst
Follistatin blocks activin and inhibits TGF-β signaling as well as collagen
production102. In the kidneys, activin is overexpressed after injury and
during kidney fibrosis, mimicking TGF-β signaling and hampering
regeneration103, but follistatin blockade promotes epithelial proliferation
and repair104. In the lungs, activin promotes myofibroblast proliferation,
ECM formation, and TGF-β overexpression, which in turn induces activin,
creating a persistentfibrotic niche99. Follistatin gene therapyhas been trialed
for Becker muscular dystrophy, resulting in reduced muscle fibrosis and
muscle performance improvement105. Activin A inhibition with a mono-
clonal antibody (Garetosmab106) reduces new heterotopic bone lesion for-
mation in fibrodysplasia ossificans progressive. Sotatercept, an activin
inhibitor, reduced the risk of death in patients with pulmonary arterial
hypertension107.

The Wnt/ β-catenin pathway can also drive fibrogenesis. Wnt is a
homolog of integrase-1 and the wingless gene in Drosophila108. There
are 19 Wnt proteins, essential for development and homeostasis. The
canonical Wnt pathway involves binding to the Frizzled (FZD)
transmembrane receptors, the translocation of β-catenin into the cell
nucleus, and activation of target genes by transcription factors T-cell
factor (TCF) and Lymphoid enhancer factor (Reviewed extensively
in109). The Wnt/β-catenin pathway is activated in fibrogenic diseases.
Wnt1, Wnt7b, Wnt10b, FZD2, FZD3, β-catenin are overexpressed
during idiopathic pulmonary fibrosis (IPF), a disease marked by the
overproduction of ECM. Wnt in pulmonary fibrosis promotes fibro-
blast proliferation, recruitment and activation110. Interestingly,
chronic obstructive pulmonary disease (COPD) a disease marked by
alveolar ECM destruction, has reduced Wnt/β-catenin activity111.
Activation ofWnt/β-catenin seems to attenuate COPD progression112.
Wnt/β-catenin can be controlled by TGF-β and thus promote myofi-
broblast differentiation113. Monoclonal antibodies Vantictumab and
Ipafricept block Wnt to FZD receptors and decrease human tumor
growth114. β-catenin inhibitors, ICG-001 and PRI-724 reduce markers
of fibrogenesis and myofibroblast differentiation, collagen, and
inflammation115.

Organ-specific fibrosis, fibrosis resolution, and the
perspective of regeneration
Human regenerative capacity is limited, but there are examples of complete
regeneration in nature that serve as experimental models and point to the
mechanisms humans lack: Hofstenia miamia, an Acoel worm, can regen-
erate its whole body116, the sea slug Elysia cf. marginata self-decapitates to
grow anewbody117, the axolotl (Ambystomamexicanum) can grow an exact
replica of almost any tissue118,119, and the Zebra fish (Danio rerio) can
regenerate organs upon mutilation120. Sequencing the Acoel genome
uncovered Early Growth Response (egr), a master control gene induced by
mutilation that epigenetically regulates otherwound control response genes
(vertebrates bear homologs of egr)116. Zebrafish respond to amputationwith
the formation of a “blastema”, a mass of undifferentiated cells that pro-
liferate and specialize to regenerate tissue. Remarkably, epigenetic control
exerted by the Kdm6b.1 demethylase over zebra fish genes, associated to
embryonic patterning, switches on after injury, activating regenerative
programs121.

The discovery of scarless healing122 established that regeneration exists
in mammalians but vanishes as intrauterine development ends123. After
injury, fetal coagulation forms porous clots that are weakly crosslinked122,
followed by the deposition of an ECM with a higher collagen type III to
collagen type I ratio123. Fetal wound ECM lacks oxidative stress15. TGF-β1
and TGF-β3, regulate the injury response in mammalians but seem to play
opposite roles. TGF-β1 is central to the activation of fibroblasts41, while
TGF-β3 can be anti-fibrotic124. Both bind to multiple ECM sites125, but only
TGF-β1 becomes activated by increasing ECM stiffness126. Moreover, while
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TGF-β1 is only shortly activated after injury in fetuses, it persists in adults.
TGF-β3 is only briefly activated at the end of adult scarring. It is notable that
scarless healing disappears as the mature immune response emerges127.
Mechanosignaling plays a role in switching the repair response towards scar

formation, via activation of Engrailed 1 (En1) in fibroblasts by injury. High
stiffness produces fibrotic scars, but low stiffness and inhibition of the Yes-
associated protein favors scarless healing and recreation of specialized
structures128. ECM abnormalities in adult animals (e.g., increasing stiffness)
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Fig. 2 | The balance between ECM formation and degradation. Homeostatic
balance can be broken by repeated injury (infection, environmental exposure,
physical or chemical insult, mutations, etc.) and subsequent, insufficient,

dysregulated reparative response. How this balance tilts towards determines a dis-
tinct functional disruption (endotype). Dynamic biomarkers should identify these
endotypes and the activities driving disease as well as a potential regeneration.
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deregulate fibroblast signaling, enhancing their survival by activating RAS
(derived from rat sarcoma virus) activity129, while controlling multipotency
in epithelial lineages130. Regenerativemechanisms seem tobe absent in post-
fetal mammalians121 and are certainly lacking in humans, but our regen-
erative plasticity, while limited, is not non-existent (Fig. 3). Human regen-
eration is heterogeneous, with high variation along developmental stages
and among organs.

Liver
In mammalians, the liver stands out for its ability to regenerate completely
froma loss of up to 75%of itsmass, until it reaches at least 85%of hepatocyte
function131. This process can be completed in less than 2 weeks132. In con-
trast, injury to themyocardium frequently results in the formation of a non-
functional scar133. Livers recur to specialized repairmechanisms tomaintain
hepatic function after injury or hepatectomy134. Liver injury triggers the
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Fig. 3 | Local ECM-associated disease drives systemic dysfunction, but new
therapies can revert the course. Schematic highlighting the state-of-the-art of organ
regeneration technology (left), and the “Organ death races” that are triggered by

local, ECM-associated disease, emphasizing liver and adipose tissue as sources of
syndrome-like and ultimately lethal events (right).
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urokinase-type plasminogen (uPA) activator135 and matrix metalloprotei-
nases to start ECM degradation and remodeling136. uPA leads to the release
of HGF bound to ECM22,137,138. A subpopulation of annexin 2 (ANXA2)
positive hepatocytes139 has been shown to respond to HGF and drive the
regenerative response to injury. This seems to coincide with a coordinated
proliferation of hepatocytes, which proceeds from the portal spaces towards
the central vein140, although tracing reveals proliferating hepatocytes to be
more abundant in zone 2 of the hepatic lobule141. ECM composition seems
to run a parallel course to hepatocytes: pioneering data compiled in rat
models134,142 suggest that ECMgene expression patterns are choreographed,
successively increasing proteoglycan expression, tissue inhibitor of metal-
loproteinase 1 (TIMP-1), and then interstitial collagens type I and III.

A cohort of patients with MASLD and treated with bariatric surgery
saw fibrosis regressing in 70% of all participants after 5 years, including
resolution in 45% of patients with advanced fibrosis at baseline143. Bariatric
surgery reduces the expression of pro-fibrotic genes144 as part of a vast
impact on metabolic and endocrine physiology that includes decreased
levels of the “hunger hormone” Ghrelin, the “satiety hormone” leptin and
pro-inflammatory cytokines like Tumor Necrosis Factor Alpha (TNF-a)145.
Remarkably, patients with chronic hepatitis B virus and cirrhosis at baseline
regressed their histological fibrosis staging and were diagnosed as non-
cirrhotic after long-term treatment with tenofovir146. Similar results seem to
be mirrored in patients with hepatitis C147. Together, these results suggest
liver fibrosis to be reversible (Fig. 3). Moreover, newer therapies appear on
the immediate horizon148. Dual agonists of the glucagon receptor and the
glucagon-like peptide-1 (GLP-1) produce fibrosis regression in up to one
third of MASH patients149 and fibroblast growth factor 21 (FGF21) analogs
also improve fibrosis in MASH150. New mechanisms keep being dissected,
e.g., targeting claudin-1 a component of tight cell junctions, has been shown
to be an anti-fibrotic strategy151.

Liver biomarkers have advanced apace. The enhanced liver fibrosis test
(ELF)152, a composite biomarker synthesizing blood levels of the tissue
inhibitor of metalloproteinase-1 (TIMP-1), procollagen III amino terminal
peptide (PIIINP) and hyaluronic acid (HA), and the N-terminal of pro-
collagen type III (PRO-C3)153 are routinely used in the clinical evaluation of
chronic liver disease and in drug development, to diagnose, prognosticate,
measure disease activity and evaluate drug effect70,148,154.

Heart
Upon insult, the adult myocardium answers with fibrogenesis, not
regeneration155,156. Nonetheless, adult cardiomyocytes can re-enter the cell
cycle, and conclusive evidence emerged from an elegant study that mea-
sured carbon-14 incorporation in cardiomyocytes from individuals born
around the partial ban in nuclear testing of 1963157, when environmental
isotope levels decreased exponentially. The key finding established that
≈0.5-1% of adult human cardiomyocytes re-enter the cell cycle per year, not
enough to sustain regeneration.

The key to heart regeneration may not be in its beating cells, but in
thosemaintaining its structure (Fig. 3). Scar-building cells in the heart come
from residentfibroblasts158, recruited bonemarrowprogenitors (fibrocytes),
and endothelial cells that complete endothelial-mesenchymal transition.
They become myofibroblasts under TGF-β signaling159. These cells depose
ECM after being exposed to hypoxia or inflammatory cytokines like
interleukin-2 and tumor necrosis factor160, but in another example of the
contextual nature of fibrosis, the persistence of myofibroblasts is not
necessarily damaging.Mice engineered to producemyofibroblast-rich post-
infarction tissue showed reduced scar formation161. Still, groundbreaking
work162 in cardiac fibroblasts engineered to express ovoalbumin peptide to
mark them as targets for CAR (chimeric antigen receptor) CD8+T-cells
(i.e., anti-fibroblast immunotherapy) led to a reduction of cardiac fibrotic
injury. Tantalizingly, fibrillar collagen deposition was reduced in treated
hearts that showed histologically normal myocardium, suggesting that a
restitution of normal architecture could take place after eliminating the cells
producing abnormal ECM.The optimalwindow for such a therapy needs to
be determined.

Cardiac biomarkers are extensively reviewed elsewhere163,164. Bench-
mark biomarkers include B-type natriuretic peptide (BNP) and N-terminal
BNP (NT-proBNP) (diagnostic and prognostic in heart failure patients),
cardiac troponins (myocardial necrosis), Suppression of Tumorigenicity
(ST2), an interleukin receptor upregulated in response to injury (prognostic
for heart failure), Galectin-3, a lectin, thatmarks cardiac fibroblastic activity
and C-terminal type VIa3 pro-collagen (PRO-C6), prognostic in heart
failure with preserved ejection fraction165.

Lungs
Like the heart, the lungs are subject to constant mechanical demands ful-
filled by a highly specialized ECM (Fig. 3). Unlike the heart, the lungs are
directly exposed to a variety of environmental irritants that can trigger the
destruction of normal ECM structure and its substitution by excessive scar
tissue (e.g., interstitial lung disease- ILD) or a protracted dismantling of
pulmonary airways and alveoli (emphysema in COPD).

In ILD, functional parenchyma is gradually substitutedby anECMthat
reduces alveolar area to dysfunctional remnants, while building a fibrotic
callus. A prominent form of ILD, idiopathic pulmonary fibrosis (IPF)166 has
so far evaded mechanistic dissection. Repeated micro-injury to the alveolar
epithelium167 can work together with mutations in the surfactant protein
gene (SFTPC) expressed by Alveolar Type 2 epithelial cells (AT2), intra-
cellular accumulation of abnormal surfactant and cell senescence168,
including telomere dysfunction, to induce fibroblast-to-myofibroblast
activation. More specifically, AT2 cells lose regenerative capacity during
ILD, leading to their substitution by progenitor airway cells invading the
alveoli169. These airway cells have basal cell (basaloid) characteristics,
including keratin 17 production (KRT5-/KRT17+ cells) and expression of
ECM genes170 and locate on fibrotic lesions. Mechanochemical signaling is
also associated to fibrosis development. Loss of the cell division control
protein 42 homolog (Cdc42) in mice renders them unable to regenerate
alveoli after pneumonectomy, which increases mechanical tension and
triggers a TGF-β activation loop, driving peripheral fibrosis that advances
toward the lung hilum171.

Basic knowledge is being gradually translated to the clinic. Pirfenidone
inhibits TGFB signaling and collagen production172. In IPF patients, Pirfe-
nidone slows disease progression and respiratory decline173. Nintedanib is a
competitive inhibitor of non-receptor and receptor tyrosine kinases,
including platelet derived growth factor receptor (PDGFR), fibroblast
growth factor receptors 1, 2 and 3 and VEGF receptors 1, 2 and 3174. Nin-
tedanib slows lung function decline but is not curative175.

Functional tests are paramount in pulmonary drug development.
Forced vital capacity (FVC), forced expiratory volume in 1 s (FEV), and
6-min walk distance are used along lung imaging, arterial gases diffusion
and quality of life measurements. A non-invasive biomarker, plasma fibri-
nogen, was qualified as a drug development tool by the food and drugs
administration (FDA)153. Another biomarker, Eosinophil count, has been
instrumental in the development of new drugs to treat COPD
exacerbations176,177. Novel markers, sensitive to ECM remodeling during
lung disease are increasingly used to evaluate drug performance66.

Kidney
At homeostasis, the potential plasticity of tubular epithelium translates into
a capacity to repair the kidney parenchyma after acute injury, acting in
concert with endothelium, fibroblasts, and macrophages, and through the
activation of developmental pathways, like Notch, Wnt/B-catenin, SOX9
transcription factor, and the Sonic hedgehog pathway178. However, repeated
aggression results in a maladaptive response to damage that subverts these
pathways and ultimately results in the recruitment of pro-inflammatory
cells, and the activation of myofibroblasts (including tubular epithelial cells
that undergo mesenchymal-to-epithelial transition, resident mesenchymal
cells, and fibroblasts)179.

Once the bridge to chronic kidney disease (CKD) has been crossed
reparative ability diminishes but is not completely erased. In diabetic
patients suffering from CKD, pancreas transplantation reverted ECM
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remodeling (more specifically, BM thickening, it is unclear if this process
extends to the IM) after 10 years180 (Fig. 3). In a porcine preclinical model, a
nephrectomy followed by the implantation of a segment of decellularized
ECM results in the recellularization of the matrix with structures reminis-
cent of glomeruli, vessels, and tubules181. Unfortunately, clinical progress
toward the reversal of kidney fibrosis is still partial. Blocking TGF-β sig-
naling, themaindriver ofECMdeposition, has shownnobeneficial effect on
kidney damage182. In type 2 diabetics with CKD however, GLP-1 inhibitors
reduce the risk of death, heart and kidney outcomes183.

Biomarkers of ECM remodeling and turnover assess kidney fibrosis
progression184. Collagen type III turnover biomarkers PRO-C3 and C3M (a
segment resulting from MMP-9 collagen type III cleavage) correlate with
kidney fibrosis degree. C3M/creatinine ratio is highly discriminative for
advanced kidney fibrosis185. Lysyl oxidase (LOX) crosslinks fibrillar collagen
and is increased in patients with kidney fibrosis186. Dickkopf-related protein 3
(DKK-3) is a glycoprotein secretedupon tubular injury that promotes scarring
that significantly predicts estimated glomerular filtration rate (eGFR) decline
and identifies patients at high risk of CKD progression187. PRO-C6 is asso-
ciated with kidney fibrosis and outcomes in acute kidney injury188,189.

Gut
Inflammatory Bowel Disease (IBD, including its variants Crohn’s Disease-
(CD); and Ulcerative Colitis (UC) progression involves chronic inflam-
mation and mucosal damage leading to abnormal ECM remodeling in the
intestine190–202. This combination is called Fibro-inflammation, an emerging
concept in IBD, covering processes related to immune cell activity, mucosal
damage, intestinal fibrogenesis, and fibrosis resolution203. In late stages of
fibro-inflammation, fibrosis progresses independently of inflammation,
accompanied by visceral adipose tissue (creeping fat). Creeping fat has been
associated with intestinal fibrosis progression and luminal narrowing190

Along with fibrosis, CD produces a thickening of themuscularis layer at the
expense of submucosal layers, hypertrophic nerve trunks and vessels with
hyperplastic muscularity also leading to strictures204. Intestinal fibrosis is a
clinical feature of UC but rarely causes strictures205,206. UC and CD-
associatedfibrosis has beenassociatedwith anabsence of clinical response to
anti-inflammatory treatments such as biologics and small molecules207.

As in other organs, myofibroblasts are held responsible for ECM
overproduction, and their activation depends on the interplay between
fibroblasts, endothelium, epithelium, and immune cells. Single cell mRNA
sequencing has begun to reveal the cellular complexity of these fibrosis/
inflammation interactions: M2a macrophages are profibrotic, but reg-
ulatory M2c deactivate myofibroblasts and canonically activated M1 and
M2a macrophages208. Similarly, T helper 2 cells are fibrogenic but T helper
1 cells are antifibrotic. This intricate cell niche is underpinned by a com-
parably complexmolecular landscape, Pro-inflammatory interleukin family
members IL-1, IL-6, IL-18, IL-33, and IL-36 have been associated to IBD209,
while TGF-β1may be anti-inflammatory in IBD209 but profibrotic, ushering
myofibroblast activation and ECM formation210. An observational study
describes TGF-β2 overexpression in human biopsies of ulcerative colitis
patients211. Other factors that also stimulate myofibroblast proliferation,
platelet derived growth factor subunit A (PDGFA), platelet derived growth
factor subunit B (PDGFB), and insulin-like growth factor-1 (IGF-1)212. The
molecular drivers of gut fibrosis are partly conditioned by the intestinal
microbiota and the integrity of the gut barrier. Increased antibacterial
antibodies are common in patients with CD213 and antibiotic treatment
leading to reduced bacterial diversity and numbers is anti-inflammatory
(e.g., downregulating the expression of NF-κB, TGFβ and αSMA in the
intestinal wall)214. The nature of the immune reaction invoked also plays a
role, for example by downregulating eosinophil frequency and altering their
function, resulting in fibrogenesis and defective repair215. Neutrophils, and
their extracellular traps (NET) have been implicated in IBD216 and in
intestinal fibrogenesis. NETs enhance fibroblast differentiation into myo-
fibroblast and increase collagen production in vitro217. Escherichia coli sp.
exacerbate fibrosis and inflammation in mice, including epithelial-
myofibroblast transition218. In humans, bacterial products like outer-

membrane protein C, flagellin and Saccaromyces cerevisiae are associated
with CD progression and surgery219,220. Conversely, Lactobacillus acid-
ophilus decreases αSMA and collagen deposition in mice221. Genetically
modified Lactococcus lactis carrying Il-10 could impair colitis activity,
showing that host-microbiota interaction and a compromised gut barrier
could be leveraged to tread IBD222. The nature of the microbiome makes it
suitable for systems biology biomarker approaches that detect bacterial
species with dynamics that could be diagnostic for CD and UC223, but they
haven’t substituted established non-invasive biomarkers like calprotectin,
CRP, anti-neutrophil, and anti-S cerevisiae antibodies. Janus kinase inhi-
bitor Upadacitinib induces endoscopic remission224 and ECM
remodeling225, in a clinical trial ofCDpatients, suggesting the gut can engage
repair processes upon treatment194,226.

Adipose tissue
Fat deposits covering viscera andunderlying the skin compose an endocrine
organ that regulates metabolism, immunity, and homeostasis. Adipose
tissue (AT) dysfunction has wide-ranging, systemic consequences, and
fibrosis is both one of its sequels and drivers.

White adipose tissue (WAT) (Fig. 3) stores energy, while brown-beige
(BAT) is thermogenic (i.e., it dissipates energy as heat)227–229. BAT sits in the
paravertebral, axillary, supraclavicular, and periadrenal areas but WAT is
widespread: subcutaneous fat lies beneath the dermis and represents ~80%
of total body fat; visceral fat surrounds intrathoracic (e.g., pericardial, epi-
cardial) and intraperitoneal organs (e.g., omental, mesenteric). AT secretes
signaling polypeptides (adipokines) that regulate metabolism230, e.g., adi-
ponectin promotes insulin sensitivity231, whilst resistin and lipocain pro-
mote insulin resistance230. It produces leptin, an adipokine that signals to the
hypothalamus and other brain regions, promoting satiety and energy
expenditure. Leptin resistance is associated to obesity232. WAT regulates
immunity throughpro-inflammatory cytokines TNF-a and interleukins 1B,
6, 8, and 18230. WAT deposits have different expansion-contraction
patterns233 and transcriptomic profiles233, but expansion by hypertrophy is
associated to hypoxia234 and hypoxia-factor 1α (HIF1α) secretion, which in
WAT calls for the transcription of ECM associated genes235, fibrosis, and
collagen crosslinking. This AT fibrotic response increases the synthesis of
collagen type VI and collagen type VI C-terminal pro-collagen,
endotrophin236. Collagen type VI correlates with insulin resistance in
humans (ref), but interestingly, inCOL6−/− animals,AThypertrophy fails to
invoke a fibrotic response, leading to a soft ECM, probably due to a decrease
in circulating levels of endotrophin30.

ECM formation in distant organs, downstream of AT expansion, is
associated to ECM formation in distant organs. Approximately one third of
systemic angiotensinogen is produced by WAT237, activating angiotensin
receptors (e.g., angiotensin 1b receptor) in the kidneys that are inflamma-
tory in mice238 and humans239. Overstimulation of leptin receptors in the
kidney is associated to progressing renal disease240 and overexpression of
TGF-β1, collagen type IV, and fibronectin241,242.

Another example of AT driving disease is gut creeping fat, which
surrounds the exterior of the intestineswrapping the intestines. Creeping fat
is linked to the release of pro-inflammatory cytokines andfibroticmediators
which enhance ECM remodeling and collagen deposition of the affected
intestinal tissue and is highly associated with the development of intestinal
fibrosis and strictures226,243.

Skin
During homeostasis, adult epidermis regenerates continuously, turning
over every 4–6 weeks244,245 under the control of epidermal stem cells in the
basal layer of the skin246, however, upon injury, post-natal skin forms scar
tissue, while fetal skin heals faster and regenerates completely247. Hyper-
trophic scars resulting from trauma (e.g., surgery, physical injury or loss of
tissue integrity), are filled with parallelized collagen fibers in the upper skin,
while another form of abnormal repair, keloids, proliferate beyond
wound limits, accumulating disorganized collagen fibers sustained by
angiogenesis248–250. Hypertrophic scars are amenable to surgical, laser,
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physical or anti-inflammatory therapies. The same treatments are less
effective in keloids. Both hypertrophic scars and keloids form exaggerated
ECM structures, but different collagen organization, composition and
proliferation dynamics suggest different cross-linking and pro-fibrotic
mechanisms. Keloids are driven by persistent VEGF and TGF- β1 signaling
accompanied by dysregulated syndecan and integrin signaling along with
inflammation, but inflammation and fibrosis in hypertrophic scars are self-
limiting247,251,252.

Excessive collagen deposition and cross-linking are also characteristic
of skin fibrosis during systemic sclerosis (SSc)253. SSc produces a thick
dermis with remodeled hair follicles, sweat glands, and cutaneous blood
vessels, accompanying systemic manifestations like adipose fibrosis254,255.
The complex systemic progression of SSc, with multi-organ involvement
and diffuse fibrosis, highlight the importance of biomarkers that predict
disease evolution. SSc is an autoimmune disease, autoantibodies like Anti-
topoisomerase I (ATAs) and anticentromere antibodies (ACAs) are found
in around 95% of all SSc patients upon diagnosis256–258. ATAs (Anti-Scl-70
antibodies) havebeenassociatedwithpoorerprognosis, increasedmortality,
pulmonary fibrosis, and cardiac involvement259–263. However, auto-
antibodies do not evaluate disease activity or its correlation to progressing
fibrosis. Composite biomarkers like ELF152, correlated with modified Rod-
nanSkinScore, ameasureof skinfibrosis and thickness264. BloodMMP-12 is
an indicator of skin fibrosis severity and blood IL-6 has been associatedwith
pulmonary fibrosis, FVC decline, and increased mortality265–267.

Biomarkers quantifying degraded collagens (C3M, C4M, C6M, and
C7M), and Chemokine (C-C-motif) ligand 18 (CCL18), are lower in SSC
patients treated with the autotaxin inhibitor Ziritazestat, showing impaired
disease activity and fibrosis improvement268. Similarly, C3M, C4M and
collagen synthesis biomarkers PRO-C4 and PRO-C3 were prognostic for
worsening skin thickness in patients treated with an anti-IL-6 Ab
(Tocilizumab)269.

In contrast to SSc, Stiff skin syndrome (SSS) is non-inflammatory. SSS
is characterizedby thickened, indurated skin, and limited jointmovement in
the absence of systemic symptoms (such as Raynaud’s phenomenon, peri-
ungual changes, or visceral involvement)270. SSS also suffer persistent TGF-
β1 signaling, leading to increased expression of COL1A1 and COL3A1271.
SSS is extremely rare and no established guidelines for patient care exist,
most patients are treated with immunosuppressive agents, with a high
variation in treatment results.

Designing biomarkers for fibrosis, fibrosis-driven
organ death races, and fibrosis resolution
Thedysfunction that producesand sustainsECMstructural alterations in an
organ reverberates in the body, damaging distant tissues and triggering
adverse events (Figs. 3, 4). Fibrotic disease in an organ can drive end-stage
disease in distant organs, characterized by simultaneous ECM remodeling,
albeit at different rates, andwith considerable individual variation. Consider
how Metabolic dysfunction-associated steatotic liver disease (MASLD,
Fig. 4), closely linked to metabolic syndrome, and characterized by excess
accumulation of lipids in the liver, inflammation/hepatocyte ballooning
degeneration, and hepatic fibrosis272,273 impacts multiple systems. Before
developing cirrhosis, MASLD patients die of cardiovascular disease and
extrahepatic cancer with more frequency than from a liver-related
event274,275 (Fig. 4).

Liver disease is by no means unique. Fibrotic progression in WAT is
correlated with higher risks of infection276, cancer (including breast, uterus,
ovaries, colon, stomach, esophagus, rectum, liver, pancreas, kidney,
meninges, and blood), metabolic, kidney, cardiovascular, and psychiatric
disease.

Detecting, predicting, and tracking ECM formation or degradation is
challenging. There are multiple molecular mechanisms and proteins
involved, affecting tissues with different shape, function, resilience, and
regenerative potential. Conceptually, a pharmacodynamic biomarker
should either measure fibrogenic activity, i.e., determine the de novo for-
mationofECMproteins, orfibrolysis, i.e., ECMdegradation and removal.A

combination of such biomarkers could mirror the balance between fibro-
genesis and fibrolysis. ECM biomarkers measure ECM component synth-
esis dynamically, reflecting how active fibrosis progression pathways are
during measurement. They can discriminate between cumulative damage
(which is the parameter assessed by a biopsy) and an actual snapshot of the
biological status of the disease. Dynamic biomarkers would reflect distinct
patient endotypes, characterized by different formation-degradation bal-
ances represented by different ECM parameters (Fig. 2).

There are different technological paths to build a biomarker strategy.
One passes by combining large-scale biological data and data mining.
Omics-based biomarker research have been gaining momentum with the
establishment of national biobanks (including the UK Biobank277, and
Biobank Japan278) and disease specific international patient registries
(including the European MASLD Registry279). These large databases have
increased the depth, quality, and availability of Omics data as the cost of
large-scale data generation has decreased, creating a conducive background
for biomarker discovery. Mapping the human proteome280,281 was a sig-
nificant step towards assessing multiple molecular pathways simulta-
neously, opening a conceptual window into complex biological processes.
Recently, leveraging RNA-seq and plasma proteomics resulted in organ-
specific protein profiles that reveal tissue aging, thus building a proteomics-
based biomarker strategy282. Plasma proteomics, used in Alcohol-related
LiverDisease (ALD), detected circulating proteins associated to fibrosis and
metabolic dysfunction, predictive of future liver-related events and all-cause
mortality283. Complementary approaches in MASLD utilizing a proteo-
transcriptomic strategy to characterize the liver-derived circulating pro-
teome across the full disease spectrum284. However, there is evidence to
suggest that different technologies (i.e., based on aptamers or antibodies)
may affect protein quantification and comparability285,286. Epigenetics and
metabolomics can also perform to a similar level: mapping DNA methy-
lation in whole blood has found associations between disease, age, ancestry
and all-causemortality and specific cytosine-phosphate-guanine sequences,
with substantial prognostic improvement for neoplasia-associated death287.
A metabolomic platform found prognosticators all-cause mortality in a
diverse population288, identifying a panel of 14 metabolic biomarkers that
could perform as well as conventional risk factors of mortality.

These panoramic approaches stand in contrast to individual and
composite biomarkers supported by mechanistic research. Sensing post
translational changes in a fundamental disease pathway is an effective
biomarker strategy, with direct clinical impact. This is made evident by the
FDA list of approved companion diagnostic devices, where single genetic
biomarkers underpin decisions that have reduced disease burden and
mortality for millions of cancer patients (e.g., BRCA1, BRCA2, HER1,
HER2,KRAS, PD-L1, etc.289). A central feature offibrosis is the formation of
ECM, therefore, detecting fibrogenesis and ECM remodeling should be an
obvious goal to assess disease activity. In particular, the intracellular
synthesis of fibrillar procollagens is often followed by the cleavage of pro-
peptides that are then released into the bloodstream. These procollagens
have been proven to be a surrogate of several complex pathophysiological
events involving increased ECM synthesis and turnover. PRO-C3290, pro-
duced by fibroblasts as they deposit collagen type III, predicts fibrosis
progression153, reflects fibrosis stage291, and can predict future lethal
events292, disease outcome293, and importantly, monitors disease activity
during and after therapeutic intervention154 across cohorts subject to dif-
ferent diseases or treatments. Another example of a composite biomarker
centered on ECM biology is the Enhanced Liver Fibrosis (ELF) score152,294.
ELF measures the tissue inhibitor of metalloproteinases 1 (TIMP-1), hya-
luronic acid (HA), and the N-terminal propeptide of procollagen type III
(PIIINP). ELF predicts clinical outcome and event-free survival295,296.

By-products of ECM remodeling can act as signaling messengers,
driving fibrosis andmetabolic dysfunction. Collagen type VI is a minor but
ubiquitous, microfilamentous interstitial collagen ofmost organs, including
the cardiovascular systemandWAT,where it plays a role in the regulationof
tissue expansion andWAT fibrosis297. In mice, a collagen V1(α1) knockout
protects against WAT fibrosis235 and myocardial infarction298, suggesting a
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mechanistic role for collagen type VI remodeling in the chain of events
during systemic disease. Endotrophin, a cleavage product of the C-terminal
propeptide of the α) chain of procollagen type VI(α3) chain297,299, is a potent
adipokine, activating fibroblasts and recruiting immune and endothelial
cells to trigger and promote fibrosis progression. Increased expression of
collagen type VI(α3) chain has also been demonstrated to enhance the
adhesion of T-cells in tissues fromUC andCD299, indicating a potential link
to sustaining chronic inflammation in IBD. It also reduces energy expen-
diture, increases triglycerides, leads to hepatic steatosis, and ultimately
metabolic disease30. Endotrophin, lying at the center of fundamental disease
pathways, opens a window into organ death races driven by ECM dysre-
gulation. An endotrophin-derived biomarker, PRO-C6, is associated to

outcome in COPD300,301, chronic liver disease302, acute kidney disease189,
kidney transplant303, heart failure with preserved ejection fraction165, mul-
tiple solid neoplasias304–306, and metabolic disease307–309. Although more
research is required, the mechanisms of collagen type VI synthesis are a
bellwether of disease activity and a potential drug target310.

The deepening knowledge about, and emergence of successful drugs
against, fibrosis311–314 announce a new challenge: how to measure the dis-
mantling of scarred, defective ECM that would determine fibrosis resolu-
tion, and healing. Collagen degradation fragments (e.g., by matrix
metalloproteinases) released into the bloodstream could indicate the turn-
ing of the tide, the tipping of the ECM balance towards fibrotic scar reso-
lution.Developing biomarkers of ECMdegradation is a complex task, as the

F4 Cirrhosis

F3 Severe

F0-F2 
No or mild

Hepatocellular
Carcinoma

Liver-related
event

Cardiac and 
vascular events 

eGFR < 60ml/
min/1.73m2

Non-hepatic 
cancer

Death any cause

Fig. 4 | Outcomes in adults withMASLD.According to Sanyal AJ et al.160, patients with chronic steatohepatitis are at higher risk of cardiovascular and renal adverse events
than liver-related events. This schematic illustrates the organ death race driven by MASLD progression. (Line thickness represent probability of event per 100 patients).
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progression of fibrotic and inflammatory diseases (including rheumatoid315

andneoplastic diseases316) involves the destruction of normal ECM, and so a
degradation-inclined ECM balance could rather be interpreted as high
disease activity associated with enhanced ECM turnover. However, during
fibrosis, fibrillar collagen is abnormally and abundantly crosslinked317, thus,
fibrosis resolution would imply the degradation of crosslinked fibrillar
collagen. Biomarkers of degraded, crosslinked collagen could therefore be a
successful surrogate of beneficial ECM degradation and repair. The recent
development of an ELISA to detect a crosslinked fragment of collagen type
III cleaved byMMPs318 suggests that noninvasivemeasurement of release of
a fragment of a “bad” collagen into the bloodstream is possible and could
provide a valid surrogate for scar resolution, thus complementing the
armamentarium to assess the balance betweenfibrogenesis, e.g., represented
by PRO-C3, and fibrolysis.

The FDA biomarker qualification program (reviewed in319) sets the
path for analytes to be considered drug development tools. It includes, at
this point, eight biomarkers, three of them non-clinical. Apart from
scientific obstacles (e.g., an insufficient knowledge of the mechanistic
bases of a particular disease process), one of themain barriers for a sound
validation of novel biomarkers of disease is methodological: the devel-
opment of standardized, replicable measurement methods. Systems
biology-based biomarkers often suffer from a lack of comparability285

that hampers the transition from being research platforms to clinical
tools. Single and composite biomarkers aremaking inroads, and ELFwas
given a marketing authorization for enriching MASLD patients with
advanced fibrosis by the FDA, while markers like PRO-C3 and PRO-C6
have received FDA letters of support or intent, to continue research
towards full qualification.

Conclusions
More than three decades of fibrosis research have established that fibro-
genesis and scar-formation are not the only possible paths towards
advanced disease after a loss of tissue structure. It is increasingly clear that
fibrosis resolution, and possibly regeneration, can be coaxed out of mam-
malian tissues by disrupting profibrotic mechanosignaling, and by elim-
inating, inhibiting, or manipulating myofibroblast activity directly or by
several ‘upstream’ interventions311,313. The arrival of treatments like anti-
myofibroblast immunotherapy, GLP-1 agonists, FGF21 analogs and
integrin inhibitors, among others, may be a harbinger of a wave of anti-
fibrotic therapies and the beginning of the end for the “death races” that are
spurred by organ-specific fibroses. To support this progress, powerful drug
development tools will be increasingly necessary, to evaluate therapeutic
effect and effectivity, and more specifically to measure the balance of ECM
remodeling, inflammation, and reparative response in early and late clinical
developments. Two approaches, one guided by big data-driven scanning of
biological products, the other based on probing critical pathways active in
disease progression, are opening windows into fibrosis activity, regression,
and systemic damage. In conclusion, accelerated translationalmedicine and
advanced non-invasive diagnosis may be gradually bringing fibrosis, a
condition associated with a heavy healthcare burden, poor prognosis and
systemic disease, into the realm of manageable diseases.
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