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Simple Summary: Climate change influences the distribution of species. The tropical fire ant
Solenopsis geminata (Hymenoptera: Formicidae) is a serious invasive species that damages the native
ecosystem. In this study, we evaluated the current and future distribution of S. geminata under
climate change using the ecological niche model. The model results showed that the favorable habitat
area of S. geminata will expand to higher latitudes on a global scale due to future global warming.
Some countries located in America and East Asia, such as Brazil, China, South Korea, the USA, and
Uruguay, can be threatened by S. geminata due to climate change.

Abstract: The tropical fire ant Solenopsis geminata (Hymenoptera: Formicidae) is a serious invasive
species that causes a decline in agricultural production, damages infrastructure, and harms human
health. This study was aimed to develop a model using the maximum entropy (MaxEnt) algorithm
to predict the current and future distribution of S. geminata on a global scale for effective monitoring
and management. In total, 669 occurrence sites of S. geminata and six bioclimatic variables of current
and future climate change scenarios for 2050 and 2100 were used for the modeling. The annual mean
temperature, annual precipitation, and precipitation in the driest quarter were the key influential
factors for determining the distribution of S. geminata. Although the potential global distribution area
of S. geminata is predicted to decrease slightly under global warming, the distribution of favorable
habitats is predicted to expand to high latitudes under climate scenarios. In addition, some countries
in America and East Asia, such as Brazil, China, South Korea, the USA, and Uruguay, are predicted to
be threatened by S. geminata invasion under future climate change. These findings can facilitate the
proactive management of S. geminata through monitoring, surveillance, and quarantine measures.

Keywords: invasive species; tropical fire ant (Solenopsis geminata); climate change impacts; prediction
model; potential distribution; global warming

1. Introduction

Invasive species have markedly influenced native species, communities, and ecosys-
tems and caused extensive damage to human health and the economy around the world [1,2].
Moreover, invasive species are widely accepted as one of the leading threats to biodiver-
sity and ecosystem services through predation, competition, and disease transmission [3].
Doherty et al. [4] reported that invasive species are related to 58% of modern species
extinctions included on the Red List of Threatened Species by the International Union for
Conservation of Nature.

Ants are a particularly conspicuous invasive species, with more than 200 species
having spread outside their native range [5,6]. Among them, Solenopsis geminata, the
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tropical fire ant, is one of the worst invasive species, which causes damage to human
health, plants, animals, and artificial equipment [7–9]. S. geminata is native to tropical and
temperate regions of the American continent [10]; however, this ant has spread around the
world, to Africa, south and southeast Asia, and Australia [9,11,12], through international
trade and human activities. It is now unclear whether some populations are native or
introduced [10]. Therefore, effective measures are required to prevent and control the
dispersal of S. geminata.

Climate change affects the natural range, abundance, and dispersal of invasive
species [13–15]. Species distribution is strongly influenced by various environmental
factors [16,17]; therefore, changes in factors such as temperature, precipitation, and hu-
midity due to climate change will further affect the distribution of invasive species [14,18].
However, there is relatively little information on invasive species management related to
the potential impacts of climate change.

Ecological niche models (ENMs) are commonly used to predict the environmental
suitability and distribution of species [19]. The ecological niche is a fundamental bio-
logical factor determining species distribution [20]. Various ENMs have exhibited good
performance for diverse species; for example, generalized linear models have been used to
evaluate habitat conditions for lynx restoration [21], machine learning methods such as
random forest and support vector machine have been used to predict the occurrence of in-
sects and plants [20,22], and a boosted regression tree has been used for the potential global
distribution of red imported fire ant [23]. Furthermore, CLIMEX, which is a mechanistic
niche model [24], has been used to predict the distribution of various species according
to the organism’s physiological tolerance parameters [7,25]. Among the many available
ENM methods, the maximum entropy (MaxEnt) algorithm is considered an excellent tool
with high prediction performance that has been widely used for various species [18,26,27].
It has the advantage of avoiding potential errors when the physiological information of a
species is uncertain [28].

This study aimed to identify the key environmental variables that correlate with the
distribution of S. geminata on a global scale and predict the current and future potential
distribution of S. geminata in response to climate change scenarios using the MaxEnt model.

2. Materials and Methods
2.1. Species Occurrence Data

Global distribution data of S. geminata were assembled from previous literature [9,29]
and the databases of the Global Biodiversity Information Facility (GBIF) [12] and the Centre
for Agriculture and Bioscience International (CABI) [30]. If only the localities were given,
Google Earth (https://www.google.com/earth/) was used to collect the coordinates of
the records. Records with obvious geocoding errors were discarded, and duplicate records
were removed manually. Finally, 8194 sites of global S. geminata distribution were obtained
for different periods (Figure 1).

2.2. Explanatory Variables

Bioclimate data of the CliMond climate dataset [31] were used as explanatory vari-
ables for both current and future climate conditions with a spatial resolution of 10 arc
minutes. The CliMond climate data, consisting of 40 variables, have been widely used for
predicting the current and future distributions of target species [7,25]. Among them, 19
core variables (Bio 1 to Bio 19) were used in this study. Some explanatory variables showing
high collinearity between variables were excluded by using hierarchical cluster analysis
with the complete linkage method based on the Spearman correlation distance [32]. From
each cluster with relatively low correlation coefficients (<0.5), ecologically meaningful
variables were selected empirically based on expert knowledge. This selection procedure
led to a final set of six environmental variables: Annual mean temperature (Bio 1), maxi-
mum temperature of the warmest week (Bio 5), annual temperature range (Bio 7), annual
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Insects 2021, 12, 229 3 of 13

precipitation (Bio 12), precipitation seasonality (Bio 15), and precipitation in the driest
quarter (Bio 17).

The future climate of the CliMond dataset was based on a special report on emission
scenarios (SRES) A1B and A2, developed by the CSIRO Mark 3.0 model [33]. The A1B
scenario describes a balance between the use of fossil and non-fossil resources, whereas the
A2 scenario describes a heterogeneous world with high population growth, slow economic
development, and technological change [33]. This study used the future climate scenarios
of SRES A1B and A2 for 2050 and 2100.
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Figure 1. Global distribution of Solenopsis geminata based on databases of the Centre for Agriculture and Bioscience
International and Global Biodiversity Information Facility. Different symbols and colors represent the different recorded
years and origin of S. geminata, respectively, at each site. The data are available online [12,30].

2.3. Modeling

The distribution of S. geminata was predicted by the MaxEnt model using the MaxEnt
program (version 3.4.1) [26]. The MaxEnt model combines species presence data with ran-
domly selected background data points from spatial environmental variables that represent
different environmental gradients. The model then generates relative habitat suitability for
a target species [26]. The MaxEnt model outperforms the majority of existing correlative
modeling approaches and has been widely used to predict the potential distribution of
insect pests [7,25,27].

Most species distribution models require spatially independent occurrence data for
better performance. The spatially rarefy occurrence data tool in the SDMToolbox [34],
which is a Python-based GIS toolkit for the spatial filtering of occurrence data to 1 km2,
was used to reduce the sampling bias. Sites of indoor observations were excluded to ensure
the reliability of the input data. Finally, the occurrence data were reduced to 669 sites using
this procedure. Then, using the current and future bioclimate variables, the MaxEnt model
predicted the climatic suitability of S. geminata.

The performance of the MaxEnt model is influenced by the choice of feature types
and regularization constants in the model [35]. This feature presents a simple function of
environmental variables and provides a set of constraints in MaxEnt modeling, whereas
the regularization multiplier (constants) restricts excessive model complexity and mitigates
model overfitting [26,35]. The MaxEnt program offers six features: Linear (L), quadratic
(Q), product (P), threshold (T), hinge (H), and category indicator (C). Using the ENMeval
package [36] in R software [37], the parameter setting was adjusted and 24 candidate models
with different feature combinations (LQ, LQH, LQHP, and LQHPT) and regularization
multipliers (1, 2, 5, 10, 15, and 20) were developed to select the best model for S. geminata
distribution. The difference between the training and test area under the receiver operating
characteristic curve (AUCdiff) and Akaike’s information criterion (AICc) were used to select
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optimal parameter combinations [19]. Through these processes, an optimal model was built
with 5000 maximum iterations and 10,000 pseudo-absence points (i.e., model parameters).

2.4. Model Evaluation and Analysis

The performance of the MaxEnt model can be evaluated based on threshold-dependent
and threshold-independent metrics. The MaxEnt model generates the AUC as a threshold-
independent measure of model performance [26]. The higher the AUC value (closer
to 1), the better the performance of the model, with good discrimination between the
presence and absence of species [38]. The MaxEnt model was evaluated with a 10-fold
cross-validation procedure. Averaged training and test AUC values were calculated across
10 replicates. The logistic output of the MaxEnt model represents the climatic suitability of
the species on a scale from 0 to 1, with higher values representing more favorable conditions
for the presence of the species [26]. In addition, a fixed cumulative value of 1 as a threshold-
dependent metric was applied as a cutoff value to determine the suitable and unsuitable
area of species distributions based on the omission rate. By contrast, other thresholds
(such as the minimum training presence, 10 percentile training presence, and maximum
test sensitivity plus specificity) had unacceptable omission rates or their predicted areas
were believed to be ecologically inaccurate [26,39]. Finally, five classes of climatic suit-
ability were determined as follows: Unsuitable (<0.0293), marginal (0.0293–0.2), moderate
(0.2–0.4), favorable (0.4–0.6), and highly favorable (>0.6). The importance of each variable
in predicting the species distribution was estimated by its contribution and permutation
importance. Partial dependence plots were used to show the partial relationship (marginal
effect) between each environmental variable and climatic suitability [40].

To compare the changes in distribution of S. geminata due to climate change, the
surface area per class of climatic suitability was calculated, and the distribution of climatic
suitability was analyzed by latitude and country. Local polynomial regression was used to
fit the distribution of the habitat area of S. geminata according to latitude.

3. Results

S. geminata has a global distribution, but predominantly occurs in South and Central
America, on the continents of Africa and Asia, and in the Pacific area (Figure 1). Based
on records, the worldwide dispersal of S. geminata had already occurred prior to 1980.
More recently, S. geminata has been observed in new areas such as Madagascar, Reunion,
Cameroon, and Cambodia (Figure 1). The combination of feature types L, Q, and H and
the regularization multiplier 5 (LQH5) was selected as the best model, as it exhibited the
lowest sum of both AUCdiff and AICc ranks in the MaxEnt model (Figure 2). This model
showed high levels of predictive performance with an AUC value of 0.923 ± 0.001 after
model training and 0.907 ± 0.017 after model testing (average ± standard deviation).
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models with different combinations of features (LQ, LQH, LHP, and LQHPT) and regularization
multipliers (1, 2, 5, 10, 15, 20). Asterisk (*) represents the selected model (LQH5) showing the lowest
sum of AUCdiff and AICc ranks.
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Among the explanatory variables, the most important variables showing high contri-
butions and importance were the annual mean temperature (Bio 1), annual precipitation
(Bio 12), and precipitation in the driest quarter (Bio 17, Table 1). Partial dependence
plots revealed the response curves of six explanatory variables to the climatic suitability
of S. geminata (Figure 3). The annual mean temperature range (Bio 1) was 9.3–36.3 ◦C,
showing high response values at approximately 19–24 ◦C, and the maximum temperature
of the warmest week (Bio 5) ranged from 18.4 to 54.0 ◦C, with a high response value at
approximately 28–33 ◦C. The annual temperature range (Bio 7) had a negative impact on
the occurrence of S. geminata, displaying a consistent decrease in its response when the
annual temperature was increased, whereas the annual precipitation (Bio 12) had a positive
impact on the occurrence of S. geminata. Furthermore, the precipitation seasonality (Bio 15)
had the highest values at approximately 0.4–0.6. The peak precipitation range in the driest
quarter (Bio 17) was approximately 197–238 mm, indicating a positive relationship with
the occurrence of S. geminata for precipitation below 200 mm but a negative response for
precipitation above 200 mm.
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Figure 3. Response curves of MaxEnt model to changes in the six explanatory variables. Red lines
and blue areas show the average and standard deviation of 10-fold cross-validation. (A) Bio 1:
Annual mean temperature, (B) Bio 5: Maximum temperature of the warmest week, (C) Bio 7: Annual
temperature range, (D) Bio 12: Annual precipitation, (E) Bio 15: Precipitation seasonality, (F) Bio 17:
Precipitation in the driest quarter.
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Table 1. Contribution (%) and permutation importance of environmental variables in predicting the
occurrence of S. geminata in the MaxEnt model.

Variable Contribution (%) Permutation Importance

Bio 1 44.5 60.5
Bio 5 0.7 1.5
Bio 7 7.0 1.6

Bio 12 28.2 2.4
Bio 15 2.8 6.0
Bio 17 17.0 28.1

The MaxEnt model predicted that the potential habitats of S. geminata will be widely
distributed on a global scale (Figure 4). Under the current climate, 54.4% of the land
area on Earth was deemed unsuitable (climatic suitability < 0.0293) for the distribution
of S. geminata. The remaining area was divided into 16.9% of potentially marginal land
(0.0293–0.2), 14.0% of potentially moderate land (0.2–0.4), 11.4% of potentially favorable
land (0.4–0.6), and only 3.3% of potentially highly favorable land (>0.6) for S. geminata.
The potentially favorable areas of S. geminata (>0.4) were predominantly located in some
countries of Central and South America (USA, Brazil, and Colombia), Central Africa
(Congo), South East Asia (Indonesia and China), and Australia. According to the MaxEnt
model, global warming will induce a progressive change in the extent of suitable areas for
S. geminata compared with the potential current distribution (Figure 4B–E). The suitable
area of S. geminata (excluding unsuitable areas) was predicted to decrease slightly due to
global warming. Under SRES scenarios A1B and A2, the proportion of suitable areas for
S. geminata on Earth was predicted to change from 45.6% to 45.6% and 45.7% in 2050, and to
44.5% and 44.7% in 2100, respectively. In addition, the total favorable and highly favorable
areas of S. geminata were also predicted to decrease due to global warming, from 14.7% to
11.9% and 12.1% in 2050 and from 14.7% to 9.6% and 8.2% in 2100 under SRES scenarios
A1B and A2, respectively.

Predicted changes in climatic suitability due to global warming were large in Central
and South America, East Asia, and Australia (Figure 5). Under SRES scenarios A1B and
A2 for 2050, the climatic suitability of S. geminata was greatly decreased in some parts of
Brazil and Australia. By contrast, it was greatly increased in other parts of Brazil, China,
South Korea, and South Africa. In addition, the potential area of S. geminata was more
widely distributed beyond the existing natural boundary under global warming (Figure 6).
The future favorable habitat for S. geminata (climatic suitability > 0.4) was expanded to
higher latitudes than the current favorable habitat. Above S27◦ and N24◦ latitude (to
polar regions), the favorable habitat area for S. geminata increased from 2,491,249 km2 to
3,702,992 km2 and 3,604,058 km2 under SRES scenarios A1B and A2 in 2050, respectively.

Thus, global warming was predicted to expand the threat of S. geminata to several
countries (Figure 7). The areas of increased climatic suitability for S. geminata (>0.2) due to
global warming were predominantly in China, Brazil, the USA, Colombia, and Uruguay
(Figure 7A). In addition, some countries such as Uruguay, South Korea, and Brunei Darus-
salam exhibited increased climatic suitability for S. geminata (>0.2) in more than 10% of
their total areas under the SRES scenario A1B (Figure 7B).



Insects 2021, 12, 229 7 of 13
Insects 2021, 12, x FOR PEER REVIEW 7 of 13 
 

 

 
Figure 4. Climatic suitability for S. geminata on a global scale: (A) Under current climate conditions, (B) in 2050 under scenario A1B and (C) scenario A2, and (D) in 2100 
under scenario A1B and (E) scenario A2. 

 

Figure 4. Climatic suitability for S. geminata on a global scale: (A) Under current climate conditions, (B) in 2050 under scenario A1B and (C) scenario A2, and (D) in 2100 under scenario
A1B and (E) scenario A2.



Insects 2021, 12, 229 8 of 13Insects 2021, 12, x FOR PEER REVIEW 8 of 13 
 

 

 
Figure 5. Changes in climatic suitability for S. geminata under global warming between current conditions and 2050 based 
on (A) scenario A1B and (B) scenario A2. 

 
Figure 6. Distribution of favorable habitat areas of S. geminata (climatic suitability > 0.4) according to latitude under current 
climate and global warming scenarios (A) A1B and (B) A2 in 2050. Points indicate the total area per latitude and the lines 
represent smoothing performed by local polynomial regression. Vertical dotted lines show the boundary latitude at which 
the favorable habitat area of S. geminata is increased by global warming. 

 
Figure 7. Top five countries for (A) increased area and (B) increased rate of climatic suitability (>0.2) for S. geminata in the 
future (2050) compared to current conditions according to global warming scenarios A1B and A2. BRA: Brazil, BRN: Bru-
nei Darussalam, CHN: China, COL: Colombia, ECU: Ecuador, KOR: Republic of Korea, MNE: Montenegro, URY: Uru-
guay, and USA: United States of America. 

Figure 5. Changes in climatic suitability for S. geminata under global warming between current conditions and 2050 based
on (A) scenario A1B and (B) scenario A2.

Insects 2021, 12, x FOR PEER REVIEW 8 of 13 
 

 

 
Figure 5. Changes in climatic suitability for S. geminata under global warming between current conditions and 2050 based 
on (A) scenario A1B and (B) scenario A2. 

 
Figure 6. Distribution of favorable habitat areas of S. geminata (climatic suitability > 0.4) according to latitude under current 
climate and global warming scenarios (A) A1B and (B) A2 in 2050. Points indicate the total area per latitude and the lines 
represent smoothing performed by local polynomial regression. Vertical dotted lines show the boundary latitude at which 
the favorable habitat area of S. geminata is increased by global warming. 

 
Figure 7. Top five countries for (A) increased area and (B) increased rate of climatic suitability (>0.2) for S. geminata in the 
future (2050) compared to current conditions according to global warming scenarios A1B and A2. BRA: Brazil, BRN: Bru-
nei Darussalam, CHN: China, COL: Colombia, ECU: Ecuador, KOR: Republic of Korea, MNE: Montenegro, URY: Uru-
guay, and USA: United States of America. 

Figure 6. Distribution of favorable habitat areas of S. geminata (climatic suitability > 0.4) according to latitude under current
climate and global warming scenarios (A) A1B and (B) A2 in 2050. Points indicate the total area per latitude and the lines
represent smoothing performed by local polynomial regression. Vertical dotted lines show the boundary latitude at which
the favorable habitat area of S. geminata is increased by global warming.

Insects 2021, 12, x FOR PEER REVIEW 8 of 13 
 

 

 
Figure 5. Changes in climatic suitability for S. geminata under global warming between current conditions and 2050 based 
on (A) scenario A1B and (B) scenario A2. 

 
Figure 6. Distribution of favorable habitat areas of S. geminata (climatic suitability > 0.4) according to latitude under current 
climate and global warming scenarios (A) A1B and (B) A2 in 2050. Points indicate the total area per latitude and the lines 
represent smoothing performed by local polynomial regression. Vertical dotted lines show the boundary latitude at which 
the favorable habitat area of S. geminata is increased by global warming. 

 
Figure 7. Top five countries for (A) increased area and (B) increased rate of climatic suitability (>0.2) for S. geminata in the 
future (2050) compared to current conditions according to global warming scenarios A1B and A2. BRA: Brazil, BRN: Bru-
nei Darussalam, CHN: China, COL: Colombia, ECU: Ecuador, KOR: Republic of Korea, MNE: Montenegro, URY: Uru-
guay, and USA: United States of America. 

Figure 7. Top five countries for (A) increased area and (B) increased rate of climatic suitability (>0.2) for S. geminata in the
future (2050) compared to current conditions according to global warming scenarios A1B and A2. BRA: Brazil, BRN: Brunei
Darussalam, CHN: China, COL: Colombia, ECU: Ecuador, KOR: Republic of Korea, MNE: Montenegro, URY: Uruguay, and
USA: United States of America.



Insects 2021, 12, 229 9 of 13

4. Discussion

S. geminata already boasts a wide global distribution and is currently becoming more
dispersed. Furthermore, it causes substantial ecological damage to invaded areas [9,41].
S. geminata is native to the area from south Texas in the USA to Central America and Brazil
in northern South America [10,11]. However, it has since spread almost around the world
to Europe, Africa, Asia, and Australia [7–9,11]. In particular, habitats of S. geminata have
been observed all over Australia [42], although these sites were not updated in the GBIF
and CABI databases. The distribution of S. geminata is influenced by various environmental
factors, and climate factors are critical for determining its distribution on a large scale.
Therefore, this study predicted the potential distribution of S. geminata, which can facilitate
proactive management such as monitoring, surveillance, and quarantine measures.

The impacts of climate change on the geographical range and climatic suitability
of areas for S. geminata were explored using the MaxEnt model in this study. Among
the environmental variables used in the model, the annual mean temperature was most
important as it strongly affected the distribution of S. geminata. The climate suitability for
S. geminata responded positively to annual mean temperature in the temperature range of
19–24 ◦C and exhibited a negative relationship at temperatures higher than 25 ◦C. Annual
precipitation and the range of precipitation in the driest quarter were also important
variables in the model. Environmental factors, including temperature and humidity, affect
the activity of ant colonies [43]. S. geminata is native to tropical areas, indicating that the
species is adapted to warm climates, although it is predominantly active at night to avoid
the highest ground temperature in the day [44,45]. Therefore, the behavioral activity of
this species, i.e., avoiding high temperatures during the daytime, might be reflected in the
results of the model.

The current potential global distribution of S. geminata predicted by the MaxEnt model
indicated high performance of the model, as it included the current actual distribution
areas for this species. For example, potential marginal and/or moderate areas were found
in England, Italy, Portugal, Spain, France, and Eastern Europe, which is consistent with the
known distribution of S. geminata in Italy, England, Greece, Cyprus, and the Netherlands.
Although previous records of these countries mainly involved indoor observations [9],
S. geminata can survive in the natural conditions of these areas. Furthermore, the current
potential distribution predicted by the model involved some parts of North and Central
Africa, Australia, and East Asia, where S. geminata has not yet been recorded. This indicates
that the current potential distribution area might be broader than the actual observed area.

According to the MaxEnt model, habitat changes of S. geminata were more substantial
under the high-concentration scenario (A2) in 2100 than under the low-concentration sce-
nario (A1B). In some areas such as central Brazil, potentially favorable and highly favorable
areas were predicted to decrease, suggesting that the natural range of S. geminata might
decline under the impact of climate change. Meanwhile, the distribution of S. geminata
was predicted to expand substantially to high latitudes under future global warming on
the global scale, indicating that the distribution of S. geminata would be shifted to areas
located at high latitudes. The MaxEnt model also predicted that many countries would be
influenced by S. geminata in the future. Among them, countries located in America and
East Asia, such as Brazil, Brunei Darussalam, China, Colombia, Ecuador, South Korea,
Uruguay, and the USA, were considered high-risk areas of S. geminata invasion.

The spread of S. geminata is increasing due to anthropogenic causes. Among the
countries at risk of S. geminata invasion predicted in this study, S. geminata has not been
introduced to Montenegro or South Korea. However, in South Korea, reports of S. geminata
detection during plant quarantine have been steadily increasing [46] from one case in 1990
to seven cases in 2006; it is now listed as a regulated pest in the Plant Quarantine Act
of Korea. In addition to the predicted at-risk countries, many other countries are also in
danger of S. geminata invasion. The MaxEnt model predicted that S. geminata can live in
almost all countries except microthermal and arid climate zones. Therefore, the results of
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the MaxEnt model show that these countries should establish an intensive plant quarantine
program and control strategy to protect their ecosystems from the spread of S. geminata.

ENMs have previously supported the development of strategies for invasive species
and ecosystem management [47,48]. In addition, ecological modeling plays an important
role in eradication programs of invasive species, particularly when limited resources are
available [48,49]. However, there have been limited studies on S. geminata using modeling
approaches. For example, Baker et al. [49] developed two models (a population model and
a detection model) to propose an efficient framework for S. geminata control projects on
the islands of Ashmore Reef in the Timor Sea. Byeon et al. [7] used a CLIMEX model to
predict the potential distribution of S. geminata according to climatic suitability on a global
scale. Our MaxEnt model results predicted a smaller potential distribution of suitable
areas under current and global warming scenarios for 2050 and 2100 than the CLIMEX
model by Byeon et al. [7]. In particular, there was a large difference between the percentage
of favorable areas for S. geminata in our study (area of climatic suitability > 0.4) and in
the CLIMEX model (area of ecoclimatic index ≥30 in Byeon et al. [7]) under all climate
conditions. This might be a result of the properties of each model. The MaxEnt model is
closer to the realized niche than the fundamental (physiological) niche because the model
was not built using the physiological traits of S. geminata [50]. In addition, the MaxEnt
model showed more conservative results than the CLIMEX model in the prediction of
an agricultural insect pest with global climatic suitability [25]. Furthermore, the study of
Byeon et al. [7] lacked information related to the influence of environmental variables on the
prediction of S. geminata, whereas our model showed that the annual mean temperature,
annual precipitation, and precipitation in the driest quarter were the key factors influencing
the distribution of S. geminata.

The dispersal and distribution of species are affected by physical environmental
factors, as well as biological factors [16,17]. In this study, the effects of climatic factors
were explored, which affect the biology and ecology of the species. Among them, the
annual mean temperature, annual precipitation, and precipitation in the driest quarter
were most influential on the global distribution of S. geminata. These factors affect the
shift in species distribution under natural conditions through active movement of the
species themselves, resulting in a short-range dispersal and low dispersal speed. The
dispersal speed is positively dependent on the population density of the species [51].
However, many invasive species display a high dispersal speed and long-distance dispersal,
which are highly related to human activities [51–53], indicating that human-mediated
dispersal accelerates the dispersal speed of invasive species, such as the emerald ash borer
(Agrilus planipennis) in the USA [54] and the citrus flatid planthopper (Metcalfa pruinosa)
in Korea [22]. In particular, an increase in international trade and travel accelerates the
dispersal of various invasive species on a global scale [55,56]. Meanwhile, human factors
such as nighttime light and urban accessibility can make considerable contributions to
the dispersal of species [23], and habitat disturbance caused by anthropogenic, as well as
natural, factors can trigger the local expansion of species [57].

In this study, the model was not developed to predict the dispersal of S. geminata but to
predict its potential distribution in the future considering bioclimatic factors. These model
results may also be influenced by other variables, such as physical habitat conditions and
the adaptation ability of invasive species [56,58], which were not included in this study. In
general, invasive species easily adapt to new environmental conditions and rapidly spread
to new regions [59,60]. Therefore, further studies are required to evaluate the distribution
of species considering the influence of biological adaptation, as well as physical habitat
conditions. A dispersal model of invasive species is also required to predict the dispersal
patterns and distribution areas over time on both global and regional scales.

5. Conclusions

In this study, we predicted the potential distribution of S. geminata on a global scale
using the MaxEnt model, which was based on bioclimatic factors. The model exhibited
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high prediction performance. The annual mean temperature, annual precipitation, and
precipitation in the driest quarter were the key factors influencing the potential distribution
of S. geminata. Although the potential distribution areas of S. geminata were predicted
to decrease slightly on a global scale due to future global warming, the distribution of
favorable habitats for S. geminata was predicted to expand and shift to high latitudes. In
addition, some countries located in America and East Asia, such as Brazil, China, South
Korea, the USA, and Uruguay, were considered high-risk areas of S. geminata invasion.
The results of this study provide baseline data to facilitate the proactive management of
S. geminata through monitoring, surveillance, and quarantine measures.
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