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Abstract
Neural interfaces, emerging at the intersection of neurotechnology and urban plan-
ning, promise to transform how we interact with our surroundings and communicate.
By recording and decoding neural signals, these interfaces facilitate direct connec-
tions between the brain and external devices, enabling seamless information exchange
and shared experiences. Nevertheless, their development is challenged by complexi-
ties in materials science, electrochemistry, and algorithmic design. Electrophysiological
crosstalk and the mismatch between electrode rigidity and tissue flexibility further
complicate signal fidelity and biocompatibility. Recent closed-loop brain-computer
interfaces, while promising for mood regulation and cognitive enhancement, are lim-
ited by decoding accuracy and the adaptability of user interfaces. This perspective
outlines these challenges and discusses the progress in neural interfaces, contrasting
non-invasive and invasive approaches, and explores the dynamics between stimulation
and direct interfacing. Emphasis is placed on applications beyond healthcare, highlight-
ing the need for implantable interfaces with high-resolution recording and stimulation
capabilities.
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 INTRODUCTION

With over 86 billion neurons and trillions of connections, the
human brain is a complex organ, characterized by its remark-
able capacity for processing, learning, and adapting.[1–7] This
has led to significant interest in brain-machine interfaces
(BMIs) and brain-computer interfaces (BCIs),[8–11] which are
transforming how we interact with our surroundings and
communicate.[12] By interpreting brain activity, these tech-
nologies enable intuitive and natural manipulation of external
devices.[13,14] High-resolution and reliable neural interfaces
are paving the way for direct brain-to-device and brain-to-
computer connection, heralding a new era of information
exchange and thought communication.[11,15]
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Historically, neural interfaces have played a pivotal role
in healthcare. Serving as an intermediary between external
electronic devices and biological tissue, these interfaces, par-
ticularly neural microelectrodes, have been crucial in both
recording bioelectrical signals for sensory information and
motility mapping and in electrically stimulating neural tis-
sues for biological function regulation, such as altering ion
concentrations inside and outside the cell membrane and
improving neural signal transmission.[16–20] This advance-
ment has deepened our insight into the workings of the
nervous system and improved the treatment of neurological
conditions like Parkinson’s disease and epilepsy, as well as
sensory impairments like hearing and vision loss.[21]
Early multi-channel silicon-based neural electrodes, like

the Utah array and the Michigan probe, caused cell tis-
sue death and inflammatory reactions, hampering sig-
nal stability.[22,23] The evolution towards flexible polymer
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microelectrode arrays has been a significant step forward,
yet challenges remain in electrocorticography (ECoG) sig-
nal clarity due to tissue-electrode interface mismatches.[24,25]
Neural interfaces have undergone significant evolution, tran-
scending their traditional medical applications to pioneer
groundbreaking uses across various sectors. Central to these
advancements is the ability to decode brain patterns, enabling
control over external devices like prosthetics.[10,26] These
interfaces offer an intuitive control, akin to the natural use
of limbs, representing a breakthrough in assistive technol-
ogy. The development of these interfaces involves direct
measurement of brain activity with diverse temporal and
spatial resolutions, combined with advanced mathematical
modeling. Nevertheless, these technological advances face
significant challenges. Precise control requires sophisticated
algorithms capable of decoding complex neural signals.[9]
Additionally, ensuring long-term biocompatibility and min-
imizing adverse biological responses, such as inflammation,
fibrosis, infection, and neurodegeneration, is crucial for their
safe and effective deployment.[10,27] Recent advancements in
fully internalized microelectrodes for deep brain stimulation
(DBS), cochlear implants, and retinal prostheses have been
driven by designs that enhance safety and enable long-term
stimulation and recording.[17,28,29]
Beyond healthcare, these neural interfaces have the poten-

tial to transform fields such as virtual reality, smart home
technology, and urban planning.[30–37] These interfaces offer
immersive interactions with virtual worlds, improved Inter-
net of Things (IoT) control,[38] and the potential for emotion
sharing and mind connectivity.[39] Envision a future where
self-driving cars,[40] smart homes,[41] and other urban util-
ities are not just automated, but also directly controlled by
brain signals,[42,43] resulting in an efficient and interconnected
landscape.[44]
This perspective delves into the progress and challenges

of neural interfaces, which are changing how we interact
with our environment. These interfaces work by recording
and decoding neural signals, thus enabling direct connec-
tions between the brain and devices for seamless information
sharing and collective experiences. However, significant chal-
lenges also remain. These include the complexity of the
algorithms required, the interference of electrophysiological
signals, and the incompatibility between the hardness of the
electrodes and the softness of neural tissue. This perspec-
tive also highlights the differences between non-invasive and
invasive neural interfaces. While non-invasive methods are
less risky and easier to use, invasive interfaces offer higher
resolution and are more effective for specific applications.
Advancements in high-density biocompatible implantable
interfaces are increasingly essential beyond healthcare appli-
cations like human-machine interactions. The potential of
neural interfaces in these areas is vast, but realizing this poten-
tial requires addressing the technical limitations and ethical
concerns.

 BRAIN NEURAL INTERFACE

Brain neural interfaces, such as electroencephalography
(EEG), ECoG, subcortical microelectrode arrays (MEA), and
DBS, offer unprecedented opportunities for healthcare and
human-machine interactions.

. Brain regions and neural interfaces

The brain is an intricate organ with various regions in charge
of thoughts, emotions, and behaviors.[45–49] The prefrontal
cortex, often considered the “thinking brain”, is primarily
accountable for executive functions like decision-making and
planning[50] (Figure 1A). Regions like the cingulate gyrus and
ventral striatum are commonly referred to as the “emotional
brain”, as they are critical in shaping our emotional experi-
ences and responses.[51] The amygdala, hypothalamus, and
hippocampus are often described as the “doing brain”, with
functions that include sleep regulation, autonomic control,
and motor activities.[52,53] Techniques like DBS are powerful
tools that target these specific regions, presenting potential
treatments for mood disorders and other neural conditions.
The field of neural interfaces is witnessing significant growth,
especially in the areas of artificial intelligence (AI)-driven
neural decoding and neural stimulation therapies (Figure 1B).
This expansion is marked by a diverse set of international col-
laborations, as indicated by various color-coded clusters in
research output (Figure 2). The United States leads in schol-
arly output on “neural interface”, followed by China, Germany,
and the United Kingdom. Among the top 20 contributing
nations, approximately 30% of their published work involves
international cooperation. This trend underscores a global,
interdisciplinary effort in advancing neural interface science.
The burgeoning neural interfaces hold promise not only for
medical applications but also for broad societal impacts, espe-
cially as these technologies increasingly integrate into daily
life.

. Historical evolution in different neural
interfaces

Starting in the 1960s, EEG advancements enabled brain source
localization, such as identifying epilepsy foci,[54] marking
a significant leap in understanding and treating neurolog-
ical conditions (Figure 3). The 1970s saw further progress
with the development of methods for topographic analyses
of EEG data, enhancing visualization of the spatial distri-
bution of brain activity.[55–57] Additionally, improvements in
computational methods enabled single-trial EEG data anal-
yses, enhancing temporal resolution and precision.[58] The
1980s were marked by directional tuning research, focusing
on how a neuron firing rate changes with the movement
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F IGURE  (A) Representation of selected brain regions and their associated clinical symptoms. A, created by Biorender.com. (B) Top keywords in the
neural interface publications.

direction,[59,60] which significantly enhanced our under-
standing of motor control and brain-coordinated movement.
The 1990s introduced deep learning algorithms in EEG data
analysis[61,62] and saw the first clinical demonstrations of BCIs
in humans, especially for individuals with amyotrophic lateral
sclerosis (ALS), showcasing the potential of BCIs in augment-
ing communication and control.[63] The 2000s brought about
the development in sensory haptic devices[64] and research
into how stimulation affects sensation and perception,[65,66]
providing insights into sensory processing. In the 2010s, the
integration of brain-controlled therapies and AI with BCIs
for clinical diagnosis opened new pathways in treating neu-
rological disorders.[67] The emergence of the metaverse in
2021, integrating BCIs with virtual and augmented reality, fol-
lowed by the development of the brain-AI closed-loop system
(BACLoS) in 2022,[68] has marked recent progress. ECoG
has evolved significantly, with the development of foldable
and flexible ECoG in 2011,[69] and high-density Neurogrid
in 2015.[70] The evolution of MEAs traces back to the early
development of the Michigan silicon electrode which laid
the groundwork for precise neural recording and stimula-
tion. By 1983, tetrodes allowed for simultaneous recording
from multiple neurons,[71] and the 1990s saw the devel-
opment of the Utah array, notable for its detailed brain
mapping capabilities.[72] In 2005, advancements in tetrode
technology improved single-neuron representations, allow-
ing for precise studies of individual neural activities.[73]
The development of a transparent intracortical microprobe
array in 2015 enabled simultaneous electrical recording
and optical stimulation, further advancing neuroscience
research.[74]

DBS has evolved from stereotactic frames in 1947 for pre-
cise brain targeting[75] to the first silver-based DBS in 1948[76]
and Leksell’s arc-based design in 1949[77] (Figure 3). The
1970s introduced DBS for pain treatment[78] and external

DBS systems with handheld radio frequency transmitters.[79]
The 1980s saw the first fully internalized DBS systems,[80]
and by the late 1980s, DBS was successfully used for tremor
treatment.[81] The late 1990s and early 2000s saw the develop-
ment of dual-channel implantable pulse generators (IPGs)[82]
and commercialized Quadripolar electrodes, allowing for
precise controlled stimulation.[83] In 2009, rechargeable bat-
teries were introduced,[84] followed by advancements in
2013 with stimulation-recording adaptive DBS in Parkinson’s
disease treatment,[85] closed-loop systems for epilepsy,[86]
and micro-DBS probes.[87,88] The introduction of directional
Quadripolar DBS electrodes in 2016, with their ability to
shape the electric field through directional electrodes, offered
targeted stimulation to enhance therapeutic efficacy.[89] The
year 2019 saw developments, with the introduction of closed-
loop DBS enabling control over external devices[90] and the
advent of wireless 3 Tesla-compatible DBS systems with imag-
ing techniques to enhance targeted precision and treatment
efficacy.[91]

. Neural interfaces: Current advances and
challenges

DBS, primarily recognized for its role in treating neurologi-
cal conditions, is now being explored in applications beyond
healthcare, particularly to mitigate movement disorder symp-
toms like tremors and rigidity.[92,93] However, its invasive
nature poses risks and challenges. ECoG, another invasive
method, involves direct electrode placement on the brain sur-
face to detect electrical signals. It shows promise in controlling
prosthetic limbs and monitoring epileptic seizures.[11,94] Cur-
rent endeavors aim to develop more flexible and chronic elec-
trodes to broaden their applicability.[95,96] MEA has the capa-
bility to precisely monitor neural activity, capturing signals
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F IGURE  Publications with the subject of “neural interface” in different countries. A bibliometric approach and network analysis were employed to
visualize the collaboration patterns. The size of the circles on the map corresponds to the total number of publications from each country, while different colors
indicate collaborative publications.

from neuron clusters. As with other invasive methods, con-
cerns about their long-term integration and potential health
impacts persist. EEG stands apart as a non-invasive technique
for monitoring neural activity by placing electrodes on the
scalp.[97] It has been effectively used in various applications
including navigating virtual environments and monitoring
neural responses in situations like fatigued driving. Neverthe-
less, its relatively low signal-to-noise ratio can be a limitation.
Advanced signal processing techniques like time-frequency
analysis and independent component analysis (ICA) are
utilized to improve EEG data accuracy.[98,99] Despite the
potential of various neural interfaces, challenges in ensuring
their accuracy, reliability, and long-term safety, particularly
when integrated into daily urban life, remain critical concerns.

2.3.1 Biocompatibility, durability, and
efficiency

When foreign electrodes are implanted in the brain, they
typically trigger a foreign body response, including inflam-
mation and scarring, which can reduce the effectiveness of
the interface over time.[24,100,101] To enhance biocompatibility,
recent advancements have focused on utilizing nanomateri-
als and coatings to reduce inflammation and scarring.[24,101]
As electrodes are miniaturized to enhance spatial resolu-

tion and reduce tissue damage, they face challenges such as
a decreased signal-to-noise ratio and increased impedance,
which hinders efficient signal transmission.[102] To improve
the durability and mechanical adhesion of electrodes to tis-
sue, various treatments, including microwave treatment[103]
and tough interfacial covalent bonding,[104–106] have been
employed. Furthermore, the development of 3D nanostruc-
tures and the use of durable materials like nanostructured
platinum (Pt)[107] and iridium oxide (IrOx)[108] have proven
effective in improving long-term stability. Over time, elec-
trodes also suffer from degradation due to mechanical strain
and continual cyclic loads, leading to cracking, delamination,
and potential failure.[17] To address these challenges, efforts
have been made to optimize efficiency by balancing minia-
turization with efficient signal transmission. This includes
advancements in material engineering and electrode design,
aiming to resolve issues related to decreased signal-to-noise
ratio and increased impedance.[109]

2.3.2 Crosstalk in high-density electrode
arrays

Crosstalk in high-density electrode arrays presents a signifi-
cant challenge in neural recordings and stimulation.[24,110–112]
This issue arises from the proximity of electrodes within the
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F IGURE  Evolution of different neural interface techniques. ALS, amyotrophic lateral sclerosis; Ag, silver; stim, stimulation; IPG, implantable pulse
generator; BACLoS, brain-AI closed-loop system. Micro-DBS, reproduced under the terms of the CC-BY Creative Commons Attribution International license
(https://creativecommons.org/licenses).[87] Copyright 2019, The Authors, published by Frontiersin.org. Partially created by Biorender.com.

array, causing their electric fields to overlap in time and space
at the electrode and tissue interface. Crosstalk can signifi-
cantly interfere with signal clarity and may lead to complex
and adverse neural interactions. Crosstalk exceeding 1% is not
negligible in neural signal recording,[24,110] as it can induce
neural interactions and even inhibit neural activation if the
extracellular potential exceeds the inhibition threshold. This
limits the spatial-temporal resolution and can adversely affect
nearby sites in high-density electrode arrays.[24] Addition-
ally, crosstalk issues may be exacerbated in flexible polymer
arrays due to insulation limitations of polymer substrate and
encapsulation layers.[111]
To overcome this, the design of electrode arrays is being

refined by adjusting both electrode spacing and diameter.[113]
Increasing the distance between electrodes could reduce
the overlap of their electric fields, thereby minimizing
crosstalk.[113] This spacing is fine-tuned based on applica-
tion needs and the specific neural tissue targeted, balancing
the need for high spatial resolution with reduced inter-
ference. Additionally, reducing the diameter of electrodes
limits the spatial extent of electric fields, further reducing
crosstalk potential.[113] However, smaller electrodes could
result in increased impedance, thereby necessitating a balance
to minimize crosstalk while simultaneously maintaining
signal quality. Furthermore, the development of multi-

channel sites on electrode arrays represents a significant
step forward.[114,115] These arrays could uniformly distribute
electric fields across the surface, thereby reducing edge effects
where electric field density tends to concentrate at the edge of
the electrode.[18,114] This uniformity to address the crosstalk
in high-density electrode arrays leads to a more consistent
modified coating, improving both the accuracy of electrode
recordings and the efficacy of stimulation.

2.3.3 Stability

The enduring functionality and effectiveness of neural inter-
faces are closely associated with the interface stability between
electrodes and neural tissues. Challenges such as corrosion,
dissolution, andmaterial swelling at these electrode interfaces
significantly impact the durability and operational perfor-
mance of implants.[22,116] It is crucial to maintain interface
stability and high-quality electrochemical properties for long-
lasting and effective signal recording and neural stimulation.
In response, material engineering has been a focal point. Con-
ductive polymers like polypyrrole (PPy), polyaniline (PANI),
poly(3,4-ethylenedioxythiophene) (PEDOT), and poly(3-
hexylthiophene) (P3HT), renowned for their enhanced
electrochemical properties and structural stability are utilized

https://creativecommons.org/licenses
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to prolong the life and reliability of neural interfaces by
mitigating interface degradation.[19,117] Polydopamine (PDA)
could enhance neural interfaces with its biocompatibility
and adhesion, which promotes electrode–tissue integration,
functionalization for neuron growth, reducing inflamma-
tion, and can be synergized with conductive polymers for a
robust and biocompatible interface.[19,117] Moreover, the use
of biomolecules, such as zwitterionic polymers for antifouling
coatings,[118] has significantly improved interface stability by
effectively minimizing interface degradation. Additionally,
electrochemical copolymerization could be also employed
to create coatings that enhance electrode performance and
durability.[119] Furthermore, the development of biodegrad-
able and flexible electrodematerials like polylactic acid (PLA),
polyglycolic acid (PGA), and polycaprolactone (PCL) offers
adaptability to tissue deformation.[120] Their biodegradability
also contributes to minimizing adverse reactions, further
enhancing interface functionality.

. Monitoring EEG signals in real-world
applications beyond healthcare

EEG, which captures brain electrical activity using scalp-
placed electrodes, is becoming central to brain-to-device
interactions, providing insights into the brain electrical activ-
ity and connectivity. EEG analyses are multi-step processes
including recording and preprocessing brain signals[121,122]
(Figure 4A), identifying the power and specific frequency
bands of these signals by band-power estimation[121]
(Figure 4B), and delving into connectivity across distinct
brain regions[123,124] (Figure 4C). The preprocessing of raw
EEG data typically involves the use of EEGLAB, along with
functions like “eegfilt”, to filter out noise and artifacts. In this
process, “eegfilt” is specifically used for band-pass filtering,
which helps in reducing edge artifacts and in obtaining more
accurate EEG readings. Following the preprocess, Loreta
source localization is generally applied to identify the origins
of the electrical activity within the brain, which helps in
pinpointing the specific brain regions associated with the
recorded electrical signals (Figure 4B). Additionally, the
Hilbert transform could extract features from the EEG data,
such as the characteristic frequencies of brain waves, instan-
taneous amplitudes, and phases. The outcomes obtained from
EEG data analysis typically include power spectral density
plots and topographical maps. The power spectral density
plots demonstrate the distribution of signal power across
various frequencies, while the topographical maps visually
represent the spatial distribution of this power across the
scalp. These steps are crucial for analyzing task-state EEG in
the time domain, particularly for identifying event-related
potentials (ERPs), which are distinct waveforms in EEG data
that respond to specific stimuli. Conversely, the analysis of
resting-state EEG is predominantly centered on power spec-
trum analysis to identify variations in power across different
frequency bands. Synchronymeasures, which utilize coupling
functions and simulated histograms, elucidate the regularity

and synchronization of neuronal firing, providing a deep
understanding of the brain oscillatory dynamics.
Connectivity matrices illustrate the strength and pat-

tern of connections between various brain regions, and
phase-difference estimation highlights the phase relationships
between EEG signals, offering insights into the timing of
information transfer across these regions (Figure 4C). Con-
nectivity analysis in EEG typically includes both undirected
and directed connections. For undirected connectivity, mea-
sures such as coherence, phase lock value (PLV), and mutual
information are utilized. These assess the degree of syn-
chronization or shared information between different brain
regions without specifying the direction of information flow.
Directed connections, which provide insights into the direc-
tionality of information flow within the brain neural network,
are analyzed using methods like the phase slope index and
Granger causality-based indicators. The Mean Vector Length
Modulation Index (MVL-MI) is noteworthy within the broad
connectivity framework for understanding complex neural
interactions. It quantifies the coupling between the phase
of low-frequency oscillations and the amplitude of high-
frequency activity, thus offering a metric for amplitude-phase
coupling. Similarly, the PLV is used for measuring phase
synchronization between EEG signals from different brain
regions, revealing the coherence of neuronal oscillatory activ-
ities. Furthermore, classification recognition is utilized to
interpret these data patterns and classify different brain states
or responses, which is vital for applying EEG in diagnostic and
monitoring scenarios, where accurate interpretation of brain
activity is essential.
Status X condition represents an EEG analytical frame-

work, where interactions or combinations of various statuses
such as different conditions, groups, or states of subjects,
are mapped against specific conditions including experimen-
tal manipulations, environmental factors, or task conditions.
This framework usually arises from statistical analysis or com-
putational modeling and aims to elucidate how different brain
states are modulated under varying conditions. In this pro-
cess, matrices are formed that might display the strength
of EEG signals, connectivity measures, or statistical outputs
from regression analyses. Analyzing these matrix patterns is
crucial for understanding how different conditions differen-
tially impact various statuses, thereby offering insights into
the complex correlations between brain activity and behavior.
In contrast, phase-difference connectivity (PDC) is employed
to assess the directional flow of information between different
brain regions. It plays a key role in unraveling the pathways of
communication within the brain during various tasks, states,
or in response to stimuli. PDC, therefore, is instrumental in
providing a comprehensive view of brain dynamics by com-
bining the effects of specific stimuli or conditions with the
intricate network of neural interactions in the brain.
Diverse wave patterns detected by EEG are key to uncov-

ering the nuances of neural dynamics. For instance, the
alpha band (7−14 Hz), prevalent during relaxation with
closed eyes, plays a pivotal role in treatments like vagus
nerve stimulation (VNS). Shifts in alpha rhythms during
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F IGURE  Neural interfaces monitoring and modulation. (A–C) EEG processing for neural signal monitoring. (A) Raw data collection. Reproduced with
permission.[121] Copyright 2013, Society for Neuroscience. (B) Band-power estimation including Loreta localization, spectral power, and further calculation for
the theta/alpha/beta bands. Reproduced with permission.[121,123] Copyright 2013, Society for Neuroscience; and permission.[48] Copyright 2023, Elsevier. (C)
Connectivity analyses. (I) Synchrony measures including connectivity matrices, phase-difference estimation, and classification recognition. (II) EEG network
analysis including group network connectivity and partial directed coherence (PDC) interactions. Reproduced with permission.[123,124,134] Copyright 2022,
Springer; 2023, Elsevier; and 2018, PLoS. (D) ECoG for neural signal monitoring. Reproduced under the terms of the CC-BY Creative Commons Attribution
4.0 International license (https://creativecommons.org/licenses/by/4.0).[145,148] Copyright 2023, The Authors, published by Springer Nature; and reproduced
with permission.[69] Copyright 2011, IEEE. (I) ECoG grid and self-driving application; (II) Gamma activity modulation of ECoG rhythms in local cortical
processing. (III) Sleep fMRI: ECoG and BOLD signals. SWR: sharp wave ripples; NREM: non-rapid eye movement; AW: awake. (E) MEA electrode. (F) DBS
electrophysiological mechanism (calcium waves formation and gliotransmitters release with arteriole dilation and increased blood flow). (G) Closed-loop DBS
control. Reproduced with permission.[90,170] Copyright 2021 and 2019, Springer Nature. (I) Closed-loop close model. (II) Sensing and stimulation through the
same DBS electrodes. (III) Utilizing exterior sensing devices and stimulating.

VNS can reflect the effectiveness of epilepsy and depression
treatments.[123,125–129] On the other hand, the beta frequen-
cies (15−30 Hz) represent alert cognitive states and intersect
with attention-requiring tasks. ERPs, notably the P300 signal
that emerges approximately 300ms post-visual stimulus, hold
significant BMI implications.[130,131] Furthermore, theta waves
(4−7 Hz) often indicate drowsiness or meditation and corre-
late with learning and memory, while gamma (30−100 Hz)
resonates with high-order cognitive tasks and information
solidification.[132,133]

Within the sprawling blueprint of applications beyond
healthcare, EEG has the potential to improve traffic safety
by detecting driver fatigue and issuing timely alerts for
rest breaks, thus preventing accidents and reducing traf-
fic congestion.[97,134,135] Urban zones could be tailored to
promote relaxation by analyzing alpha activity, while areas
designated for alert interactions could utilize beta frequencies.
Analyzing collective neural responseswith different frequency
band activities can refine urban design.[136] Within this
framework, time-frequency spectra, event-related spectral

https://creativecommons.org/licenses/by/4.0
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perturbations, and scalpmaps[137–140] serve as powerfulmeth-
ods to decode intricate brain dynamics. The prevailing appeal
of EEG is its non-invasive nature, whose potential spans
from aiding paralyzed individuals to control wheelchairs to
enabling computer interactions. Furthermore, advances in
wearable EEG, such as dry and capacitive in-ear electrodes
with integrated circuits,[141,142] herald a future where BCI is
accessible and portable.

. ECoG: Monitoring and modulation in
practical implementations

ECoG, with its high-resolution and high-density electrode
arrays spaced mere hundreds of microns apart, offers
enhanced signal detection and a broad frequency spectrum,
significantly reducing noise compared to EEG (Table 1). This
precision enables applications like speech prosthetics,[143]
which convert ECoG signals from speech articulation into
reproduced speech. Unlike EEG, ECoG requires surgical
implantation of electrodes either above or beneath the dura
mater, directly under the skull, capturing localized and high-
quality signals[144–147] (Figure 4D). This subdural placement
is effective in detecting high-frequency oscillations, especially
within the gamma-band range of 30−150 Hz. Addition-
ally, the modulation by rhythm phase in these activities is
promising for applications such as intraoperative cortical
mapping[148] (Figure 4D). The intricacies of ECoG sig-
nals are highlighted by the contrast between high-frequency
(>40 Hz) and low-frequency oscillations (<40 Hz). Low-
frequency oscillations are notable for their large amplitude
and long propagation distance. Their phase could reflect
brain connections and is instrumental in the mechanism of
information communication across brain regions. These low-
frequency oscillations, associated with states of consciousness
and relaxation, can be adjusted by external interventions.
In contrast, high-frequency oscillations, while characterized
by low amplitude and short propagation distance, represent
different brain activities. These oscillations, particularly in
the high-frequency gamma range, are associated with the
activation of local brain areas. The power of these high-
frequency waves is inversely related to their amplitude and
is crucial in understanding local brain dynamics. High-
frequency oscillations are typically linked to complex cogni-
tive functions like attention,memory, sensory perception, and
inter-brain region connectivity. Generally, high-frequency
brain signals, unlike low-frequency oscillations, are inher-
ently generated internally and are less susceptible to external
modulation, serving mainly as indicators of various cognitive
states.
In future intelligent cities or smart homes,monitoring high-

frequency gamma activity, linked to cognitive functions like
attention and memory, could indicate when residents are
deeply engaged inmental tasks, prompting the system to opti-
mize the environment for concentration by adjusting lighting,
temperature, and reducing distractions. Low-frequency oscil-
lations, associated with relaxation or consciousness, could be

utilized by smart home systems to induce relaxation or alert-
ness. For instance, in the evenings, the system could enhance
relaxation through environmental adjustments like dimming
lights, and playing soothing music, thereby enhancing sleep
quality. During mornings or when increased alertness is nec-
essary, the environment could be adjusted to energize the
residents, perhaps through changes in lighting or ambient
sound. This integration of ECoG in smart homes goes beyond
simple task automation and energy efficiency,[149] aiming to
develop living environments that align with the mental and
emotional states of residents, potentially transforming howwe
interact with our surroundings. Additionally, ECoG is crucial
in sleep monitoring, enabling a deep understanding of sleep
disorders.[145,150] By analyzing functional connectivity matri-
ces across frequency bands, such as 1−4 and 140−165 Hz, pre-
dictivemodels for sleep state transitions can be developed.[151]
Advanced prediction models, such as long short-term mem-
ory (LSTM) units, exhibited high precision, particularly in
brain regions affecting sleep like the medial mammillary
nucleus and the ventral thalamus.[145,152] Complementing this,
blood oxygen level-dependent (BOLD) signals in functional
magnetic resonance imaging (fMRI) provide holistic brain
dynamics during sleep transitions[145,153,154] (Figure 4D). Fur-
thermore, integrating ECoG into autonomous driving tech-
nologies could facilitate transitions betweenmanual and auto-
mated driving modes (Figure 4D), ultimately reducing traffic
congestion.
Leveraging technologies like fMRI and ECoG gamma

activity markers can usher in a new era of applications
in healthcare, emotion detection, urban safety, and smart
home automation. Short-term ECoG applications, particu-
larly those focused on diagnosing and managing seizures,
have been approved. However, the long-term safety of
ECoG for BMI applications remains under investigation.
The transition of ECoG from research to real-world appli-
cations requires cooperation involving industrial produc-
tion, comprehensive clinical trials, and rigorous regulatory
oversight.

. MEA: Recording and neural modulation
in practical implementations

Originating from a single-electrode system akin to the patch
clamp for monitoring bioelectric activity in neurons, MEA
has evolved into devices capable of simultaneous recordings
from multiple electrode arrays[155,156] (Figure 4E). Tradi-
tional silicon-based MEA, notably the Utah and Michigan
electrodes, have impacted neurophysiology in the past few
decades owing to their high spatial and temporal resolu-
tions. Utah arrays excel in their compactness, while the
Michigan electrodes stand out with their adjustable fea-
tures, adept at capturing signals across varying depths and
ranges (Figure 4E). Due to their invasive nature, these
tools are essential for capturing detailed electrophysiolog-
ical signals, including local field potential (LFP) typically
below 200 Hz, reflecting collective synaptic potential from
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neuron groups, and neuronal spikes (0.1−7 kHz), offering
insights into individual neuronal activities.[157] The inte-
gration of both spiking activity and LFP into future BMI
promises the creation of dexterous prostheses, paving the
way for complex tasks like reach, grasp, and intricate fin-
ger movements to become commonplace. By leveraging
data from MEA, urban spaces can potentially evolve to be
adaptive to inhabitants. This transformative potential opens
pathways for groundbreaking enhancements in healthcare,
notably in precisely targeted drug delivery systems, person-
alized neural rehabilitation programs, and the development
of neural interfaces that make prosthetic limbs natural and
intuitive.[158,159]

. DBS: Stimulation and neural
modulation in practical implementations

DBS which targets specific neurons, is generally used for
the treatment of neurological conditions like Parkinson’s
disease.[160–163] Assisted by neuroimaging and targeting tech-
niques, DBS is refining its spatial precision and increas-
ingly focusing on temporal sequencing to enhance treat-
ment efficacy.[164,165] Additionally, emerging DBS technolo-
gies align with IoT and virtual reality trends by employing
encrypted telemetry forwireless data transfer and cloud-based
controls, which extend their uses in real-world applications
beyond healthcare.[166]

2.7.1 DBS therapy

DBS, employing high-frequency stimulation typically over
70 Hz, is precisely targeted to specific brain regions like the
subthalamic nucleus, commonly associated with Parkinson’s
disease treatment.[165] DBS operates on multiple scales to
modulate neural activity, spanning from molecular interac-
tions to broad neuronal network dynamics. On a molecular
level, the implanted DBS electrode generates an electri-
cal field that influences voltage-sensitive sodium channels
in neuronal membranes[167] (Figure 4F). This stimulation
leads to the opening of these channels and the propagation
of action potentials along axons. Despite facing challenges
such as limited synaptic transmission with high-frequency
signals, DBS effectively serves as a synaptic filter, prevent-
ing the spread of abnormal or pathological neural activ-
ity, particularly within sensory and motor regions. At the
broad neuronal network level, the efficacy of DBS emerges
in its modulation of specific neural circuits. For instance,
while the thalamus receives inputs from the basal gan-
glia, it preferentially transmits only those that synchronize
with the high-frequency signals produced by DBS.[167,168]
This selectivity allows DBS to suppress low-frequency oscil-
lations without causing widespread network disruption,
thereby minimizing its impact on neural plasticity and alle-
viating symptoms such as akinesia, rigidity, tremor, and
dystonia.[169]

2.7.2 Closed-loop DBS control

An open-loop DBS system delivers electrical stimulation
without feedback or adjustments based on the outcome.
In contrast, a closed-loop system continuously moni-
tors outcomes to adaptively modify the control action
(Figure 4G), thereby enhancing effectiveness and reducing
side effects.[170–173] The closed-loop approach initially focuses
on passive sensing and identifying specific neural biomarkers.
For instance, upon identifying the gamma biomarker in the
amygdala, which is marked by neural activities within the
gamma frequency range—often measured via EEG or LFP
and indicative of conditions such as anxiety and depression,
the closed-loop system activates stimulation. Within the
realm of neural signals, LFP in the beta range (13−30 Hz)
stands as an emblem of rigidity and bradykinesia. Conversely,
gamma-band oscillations, particularly from cortical strip
electrodes are indicative of dyskinesia. In closed-loop DBS,
two control approaches are prominent[90] (Figure 4G). The
first utilizes the DBS electrodes for both sensing and stimula-
tion, relying on rhythmic neural signals in either the gamma
or beta range to guide stimulation intensity. The second
employs external sensors to monitor disease symptoms,
which are then fed back to the implanted stimulator to adjust
the stimulation timing.
The efficacy of DBS is influenced by several factors, includ-

ing the frequency and intensity of stimulation as well as the
inherent physiological and anatomical characteristics of the
targeted region.[174] For instance, utilizing low-frequencyDBS
below 30 Hz can increase beta oscillations in the subthala-
mic nucleus. In contrast, beta oscillations, especially within
the 13−30 Hz range,[175] can disrupt normal neural commu-
nication, resulting in behavioral anomalies. These oscillations
have gained significant attention as a metric for assessing the
clinical condition of patients. Through closed-loop control
typically in the beta range, adjusting the amplitude of the
LFP signal can enhance the effectiveness of DBS treatments
compared to conventionalmethods.Moreover, the integration
of DBS with IoT technologies heralds a new era in real-
timemonitoring, allowing for fine-tuning treatments based on
extensive sensor data. Such a data-centric approach not only
improves DBS efficacy but also paves the way for more timely
and adaptive care tailored to individual needs and the diverse
applications of closed-loop controls. The capacity of DBS
to precisely modulate neural dynamics—the temporal pat-
terns of neural signaling and connections—opens intriguing
possibilities for practical implementations, including adaptive
public services and personalized urban experiences that can
potentially respond in real time to individual cognitive and
emotional states.

2.7.3 DBS frequency modulation and MRI
imaging

DBS is primarily used for its therapeutic effects on move-
ment disorders, requiring accurate targeting of specific
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F IGURE  DBS frequency modulation and MRI imaging. (A) DBS electrodes into the striatum (red). Reproduced under the terms of the Creative
Commons’ Attribution-Share 4.0 International License. Copyright, The Authors. (B) DBS connectivity. Reproduced with permission.[179] Copyright 2017,
Wiley-VCH. (C) Time-frequency representation of LFP during high-frequency DBS of ipsilateral subthalamic nucleus. Reproduced with permission.[174]
Copyright 2007, Springer Nature. (D) DBS connectomic targeting of the ventral nucleus (pink) and beta oscillations. Reproduced with permission.[175,176]
Copyright 2022, Frontiers; and Copyright 2020, IOP Publishing. (E) Low-frequency DBS (<30 Hz) enhancing LFP power. Reproduced with permission.[62]
Copyright 2019, Springer Nature. (F) DBS reducing beta-band activity in the subthalamic nucleus. Reproduced with permission.[68] Copyright 2007, Springer
Nature. (G) Ultra-high-field MRI for pain sensations imaging: Scans of amputees revealed activation of neurons associated with the movement of missing digits;
and sensorimotor plasticity by BMI training for pre- and post-BMI comparison. Reproduced under the terms of the CC-BY Creative Commons Attribution 4.0
International license (https://creativecommons.org/licenses/by/4.0).[181,183] Copyright 2016, The Authors, published by Elife and Springer Nature.

brain areas. In its initial phases, structural MRI is critical
for identifying neuroanatomical landmarks. This targeting
is further refined through fMRI, essential for ensuring
precise and effective modulation of DBS frequencies.
Figure 5A illustrates the integration of neural activation
models with neuroimaging methods like diffusion ten-
sor imaging, fMRI, and connectomic targeting imaging to
optimize DBS-induced signal variations,[176–178] thereby
facilitating predictions of treatment responses in movement
disorders.
Despite its promise, this method faces challenges such as

extended durations of fMRI scans and a need for specialized
analytical skills, which currently limit its prevalence in cur-
rent clinical settings. Topographical visualization of neural

activity in the brain, which highlights regions involved in spe-
cific functions[179] (Figure 5B), is crucial for precise electrode
placement in DBS. This spatial mapping, correlating brain
functions with exact anatomical locations, ensures targeted
electrical stimulation of neural areas, essential for effectively
treating movement disorders by modulating dysfunctional
neural circuits. Figure 5C illustrates the variations in neural
oscillations within the beta frequency band over time and
frequency.[174] These beta oscillations, closely associated
with motor control, can be altered through DBS to improve
motor function in conditions like Parkinson’s disease. Spec-
trograms serve as crucial tools for clinicians to visualize these
oscillations and make informed decisions about the most
effective DBS settings for individual patients. By adjusting the

https://creativecommons.org/licenses/by/4.0
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stimulation parameters in response to the unique patterns of
neural activity observed in the spectrogram, the treatment
can be personalized to optimize therapeutic outcomes for
individual patients.
Connectomic targeting imaging combines neural acti-

vation with neuroimaging, improving electrode placement
precision[176,178] (Figure 5D). Notably, DBS at 3 V shows sig-
nificant shifts in beta oscillations[175] (Figure 5D),which could
offer insights into Parkinson’s disease management. Modu-
lating the power of LFPs across different DBS frequencies
reveals complex neural response patterns, providing a detailed
view of brain electrical activity[174] (Figure 5E). LFP modu-
lation indicates the brain immediate response to stimulation
and sheds light on the mechanisms by which DBS exerts its
effects. By adjusting DBS frequencies and observing the resul-
tant LFP power changes, clinicians can more accurately target
therapeutic interventions to the neural basis ofmovement dis-
orders. Reversible beta oscillation shifts in response to DBS
further highlight its potential to tailor neural activities[167]
(Figure 5F).

High-field MRI, particularly at 3 Tesla, is the standard
in clinical imaging for its high-resolution capabilities, while
ultra-high-field MRI at 7 Tesla is primarily a research tool
that offers detailed brain structure and function images.[180]
These imaging modalities, especially when combined with
fMRI, provide invaluable insights into brain regions acti-
vated byDBS, enhancing our understanding andmanagement
of movement disorders and sensory deficits. For instance,
ultra-high-field MRI imaging captures the activation pat-
terns in amputees, such as the movement of missing digits,
shedding light on the neuronal basis of phantom limb pain
and the potential for sensorimotor plasticity through BMI
training[181,182] (Figure 5G). Furthermore, the digit topog-
raphy revealed by this imaging, characterized by inter-digit
overlaps and digit selectivity, influences tactile interface
design for practical applications beyond healthcare,[183,184]
particularly in developing sensory applications in smart cities.

 NEURAL DECODING

Neural decoding acts as a computational link between the
human brain and external devices, employing algorithms
and high-density electrodes to interpret neural signals.[185,186]
Beyond command recognition, neural decoding has the
potential to adapt urban environments according to the emo-
tional and cognitive states of their inhabitants. Envision public
information kiosks translating brain signals directly into text
or voice, facilitating immediate, hands-free access to vital
information.

. Optimized neural decoding algorithms

Advancements in neuroscience andmachine learning have led
to optimized neural decoding, facilitating efficient commu-
nication between devices and the brain.[187] For individuals

suffering from degenerative motor diseases, the decoding of
brain neural signals is essential, as it transforms neural signals
into understandable outputs.[185,188] The Filter BandCommon
Spatial Pattern (FBCSP) method, an enhancement over the
standard CSP employs a filter bank to obtain features across
multiple frequency bands[189,190] (Figure 6A). This leads to
improved BCI accuracy and has applications ranging from
neurorehabilitation to immersive gaming and virtual real-
ity experiences.[191] ICA is another technique that enhances
EEG or ECoG signal decoding by separating pure signals
from noise[192,193] (Figure 6B). It increases the signal-to-noise
ratio, preserving valuable data while excluding disturbances.
By isolating statistically independent cortical processes, ICA
finds applications in neurology, cognitive neuroscience, and
neuroengineering.[194] BCI systems that use classifiers such as
artificial neural networks (ANN) or linear discriminant anal-
ysis (LDA)[195,196] can control humanoid robots through brain
signals (Figure 6C). Integration with inputs from multiple
sensors opens possibilities in rehabilitation, communication,
and device control. Support vector machine (SVM) algo-
rithms, known for their noise resilience and efficient data
handling,[195,197,198] are instrumental in directing prosthetic
devices and aiding individuals with motor and communica-
tion difficulties (Figure 6D). Furthermore, deep learning algo-
rithms, including LSTM, deep neural networks (DNN), deep
belief networks (DBN), and convolutional neural networks
(CNN), are valuable in BCI applications[199–203] (Figure 6E,F)
due to their role in feature identification and signal decod-
ing, but require careful optimization to prevent overfitting
and simplify their complex learning procedures. The evolu-
tion of these algorithms not only empowers individuals with
enhanced capabilities but also reshapes urban experiences
toward inclusivity and cutting-edge technological integration.

. Text, voice, and movement decoding

Algorithms such as recurrent neural networks (RNN) and
LSTM have significantly enhanced our ability to decode
neural signals.[200,201] These computational tools are instru-
mental in translating brain signals into actionable data,
extending their applications beyond the traditional medi-
cal domain. One pivotal study demonstrated the capability
of RNN decoding to transform ECoG signals into tex-
tual representations[204] (Figure 6G). Upon comprehensive
model training, this approach has applications not just in
medical devices like speech aids but also within the broad
IoT framework of smart city infrastructures, facilitating an
environment where citizens can seamlessly interact with
integrated intelligent systems. Moreover, recent advance-
ments have enabled the conversion of brain activity directly
into audible speech[205] (Figure 6G). This holds promise for
individuals who are speech-impaired due to neurological
conditions, and it opens the door for voice-activated func-
tionalities. Reflecting on the history of BCIs, these interfaces
were originally developed to reinstate communication abili-
ties in individuals with significant disabilities.[206] A notable
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F IGURE  Optimized neural decoding. (A) Sparse FBCSP algorithm for motor-related action recognition. Reproduced with permission.[190] Copyright
2015, Elsevier. (B) ICA of unmixing EEG channels to identify independent components. Reproduced with permission.[192] Copyright 2011, Oxford University
Press. (C, D) Typical optimized decision boundaries to differentiate between the various classifiers. (C) LDA, and (D) SVM. Reproduced with permission.[195]
Copyright 2020, MDPI. (E, F) Typical machine learning. (E) DNN and (F) DBN. Reproduced with permission.[199] Copyright 2020, Elsevier. (G)
Representative ECoG decoding of text (I), reproduced with permission.[204] Copyright 2020, Springer Nature; and voice (II), reproduced with permission.[205]
Copyright 2019, Springer Nature. (H) Representative MEA decoding for movement prediction. LSTM, long short-term memory layer. Reproduced with
permission.[209] Copyright 2018, Springer Nature.

example is the P300 speller, developed to enable patients to
type text on a computer screen utilizing brain activities.[207]
Paired with speech synthesizers, these technologies have
evolved to potentially decode full sentences from minimally
invasive brain recordings, suggesting a future of prostheses
for speech restoration and privacy-respectful communication
forms like silent-speech interfaces.[208]

In addition, strides have beenmade in developing anMEA-
based system specifically for movement decoding[209,210]
(Figure 6H). This system can translate neural signals into
accurate movement predictions. Offering benefits ranging
from assisting people with motor disabilities to enhanc-
ing interactions with robotic assistive systems in urban
settings. Various machine learning algorithms, such as
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regression models, linear classifiers, DNN, and SVM, have
been utilized to achieve high-accuracy discrimination of
movement intentions. This includes both broad and precise
motor movements, as demonstrated in able-bodied and para-
lyzed participants using ECoG electrodes andUtah arrays.[211]

. Cognitive therapies and treatments

In recent years, BCIs have gained prominence as potential
therapeutic tools for neuropsychiatric conditions like depres-
sion and anxiety.[212] A major challenge lies in accurately
decoding mood states, which is crucial for both diagnosis
and treatment. Recent strides in closed-loop DBS treatments
have been pivotal in addressing this challenge. Further, the
integration of wirelessly transmitted BCIs into smart city
infrastructures offers promising avenues for mood decoding,
stress reduction through mindfulness, and cognitive learning
and training.

3.3.1 Mood decoding

Accurate mood decoding is crucial for the effective treat-
ment of mood disorders, but real-time tracking of emotional
states remains a significant challenge due to the complex
interactions within neural systems.[213,214] Advances in neu-
roimaging provide insights into the neural basis of emotional
responses, yet the intricate dynamics within the cortical
and limbic systems require further exploration. Closed-loop
DBS offers a solution by enabling real-time mood state
decoding and facilitating targeted electrical therapies[212,215]
(Figure 7A).Unlikemotor-functionBCIs, which often employ
algorithms like FBCSP and SVM, mood BCIs use closed-
loop systems with both control and stimulation compo-
nents, leveraging machine learning algorithms, such as DNN
or LSTM (Table S1), to analyze neural activity in vari-
ous brain regions and identify specific mood states[39,216,217]
(Figure 7A). Combining feedback controllers for mood-based
stimulation adjustment with neural decoders for mood iden-
tification enables the potential for personalized treatments.
Key neural regions like the limbic system and the orbitofrontal
cortex play crucial roles in this decoding process. Integrating
advances in mood research with urban planning, mood BCIs
can reshape city designs to be attuned to residents’ emotional
states, elevating both individual well-being and the overall
urban experience.

3.3.2 BCI-enhanced mindfulness

Mindfulness practice, known for reducing stress and improv-
ing cognitive function, could be further enhanced by inte-
grating BCIs that provide real-time neural feedback.[218,219]
Cutting-edge methods such as implanting electrodes to mon-
itor brain activity[170] and targeting specific neural regions

associated with major depressive disorder symptoms[170,220]
present the groundbreaking possibility for highly personal-
ized neurostimulation therapies (Figure 7B). Further insights
into emotional processing mechanisms can be garnered by
analyzing theN1 amplitude of evoked potentials,[170,221] which
is the negative voltage peak observed approximately 100 ms
after stimulus and is commonly used to investigate attention
and sensory processing. Additionally, stimulation-induced
mapping of brain region connections underscores the signifi-
cant impact of DBS on connectivity (Figure 7B). Urban areas
equipped with BCI-enhanced mindfulness interventions can
be tailored to cater to individual needs, thereby providing
valuable resources for stress mitigation.

3.3.3 Cognitive learning and training

DBS-based BCI approaches offer the potential for cogni-
tive learning and training, particularly for individuals with
cognitive deficits.[222] These methods provide real-time feed-
back, enabling individuals to assess and improve their cog-
nitive skills. Analysis across different frequency bands can
reveal the temporal predictability of mood states, underscor-
ing the dynamic capabilities of neural encoding models[223]
(Figure 7C). Passive BCIs, which are part of this technology
spectrum, enhance high-order brain functions like reason-
ing and decision-making by monitoring brain activity. This
includes assessing decisions-making processes and confidence
levels in those decisions. Another promising development is
the use of near-infrared deep brain modulation in cognitive
enhancement, which demonstrates the potential to improve
cognitive abilities non-invasively[224–226] (Figure 7C). Fur-
thermore, the integration of neurotechnologies in cognitive
enhancement is poised to facilitate effective human–AI col-
laboration. While AI excels in computation-intensive tasks,
like playing Go, humans outperform AI in tasks requir-
ing advanced reasoning and intricate problem-solving skills.
Future neurotechnologies are expected to enhance these
human strengths, enhancing performance in a variety of tasks
through efficient human-AI collaboration.

 NEURAL INTERFACES FOR
WEARABLE INTERACTIONS

The rapid evolution of neurotechnology has ushered in
a new era of wearable interactions, seamlessly integrating
the human brain with external devices.[171,227–229] Central
to this progression are wearable BCIs and haptic interac-
tions, which together, revolutionize our connection to urban
landscapes and digital platforms. Wearable BCIs, encom-
passing designs like headsets, EEG-integrated smart glasses,
and baseball caps, provide continuous monitoring of neu-
ral activities, promising vast implications in healthcare,
sports, and gaming. On the other hand, haptic interac-
tions, tailored for tactile communication, bring a tangible
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F IGURE  Neural decoding. (A) Mood decoding. Reprinted with permission.[39] Copyright 2019, Springer Nature. (I) Closed-loop electrical stimulation
for therapies and feedback; (II) multisite neural activity mapping via dynamic latent state-space models; (III) decoded mood relation. (B) Neural decoding for
mindfulness stress reduction. Reprinted with permission.[170] Copyright 2021, Springer Nature. (I) Intracranial electrodes for biomarker identification; (II) two
symptoms for depression and anxiety; (III) evoked potentials in the corticolimbic network; (IV) hemisphere network with circumference strength and
color-coded start locations. (C) Neural decoding for cognitive learning and training. (I) Spectral-geometric emotion-forecasting neural pathways (green for
positive and red for negative correlations), reproduced with permission.[223] Copyright 2018, Springer Nature; (II) the trajectory before (black), during (red),
and after (grey) near-infrared DBS stimulation, reproduced with permission.[224] Copyright 2022, Springer Nature.

dimension to digital experiences,[172,230] ranging from force
feedback in virtual reality to intuitive touch in public service
kiosks.

. Wearable BCIs

Wearable EEGs come in diverse designs like headsets,[231]
headbands,[232] baseball caps,[233] and smart glasses[234]
(Figure 8A). These devices are tailored for comfort and
continuous brain activity monitoring. EEG skin devices, fea-
turing mesh electronics with stretchable interconnectors,[142]
conform to the contour of the skin (Figure 8B,C), offering
enhanced resolution and robustness. Wearable DBS devices

treat neurological and psychiatric conditions[235] (Figure 8D),
while the WIMAGINE implant is a wearable ECoG device,
replaces part of the cranium to streamline surgery and
improve safety[236] (Figure 8E). The CLINATEC device,
worn on the head, captures ECoG data for interpretive
movements[237] (Figure 8F), which is currently undergo-
ing clinical trials, showing promise for patients with severe
disabilities. The WIMAGINE systems, both in wired and
wireless versions, have been utilized in applications such as
controlling motorized exoskeletons using brain signals[236]
(Figure 8G,H). These wearable BCIs promise a transforma-
tive impact on urban living, including stress monitoring,
telehealth solutions, and controlling robots and transport
systems.
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F IGURE  Wearable BCI devices. (A) Wearable EEG devices. Top: headset, reprinted with permission.[231] Copyright 2012, Springer; baseball cap,
reprinted with permission.[233] Copyright 2008, IEEE. Bottom: monitoring headset, reprinted with permission.[287] Copyright 2010, IEEE; wireless steady-state
visual evoked potential (SSVEP) device, reprinted with permission.[232] Copyright 2006, IEEE; commercial Quasar DSI 10/20, reprinted with permission.[288]
Copyright 2021, Quasar; and smart glass, reprinted with permission.[234] Copyright 2021, Cognixion. (B, C) EEG skin devices including fractal device
architectures and tripolar concentric ring and capacitive designs. B,C are reproduced with permission.[142] Copyright 2015, National Acad Sciences. (D) DBS
clinically implanted device. Reproduced with permission.[235] Copyright 2019, Embopress. (E–H) Wearable ECoG devices. (E) WIMAGINE anatomical
implant, reproduced with permission.[236] Copyright 2014, IEEE; (F) wearable Clinatec device, reproduced with permission.[237] Copyright 2019, Clinatec; (G,
H) WIMAGINE wired and wireless wearable ECoG devices, reproduced with permission.[236] Copyright 2014, IEEE.

. Haptic interactions

Neural interfaces tailored for tactile communication are
reshaping our interactions. Force feedback, crucial for virtual
reality and robotics, can be enhanced by neural interfaces like
EEG or DBS, enabling tactilely immersive experiences and
intuitive robotic-assisted public services (Figure 9A). Tactile
feedback technologies, when integrated with neural inter-
faces like EEG or ECoG, provide direct sensations of touch;
these systems simulate finger sensations and optimize interac-
tions using sensors like hydraulically amplified taxels[238–241]
(Figure 9B).
Mid-air haptic technologies provide contactless sensa-

tions in the air and, when integrated with neural interfaces,
enable public venues to offer air-touch menus controlled
by EEG-detected neural patterns[242–248] (Figure 9C). Elec-
trovibration technologies, essential for wearable devices,
when combined with neural interfaces like EEG or inva-
sive methods such as ECoG and MEA, enable haptic gloves
to provide an intuitive touch experience in kiosks and
digital installations[249,250] (Figure 9D). These wearable
devices feature diverse actuators—from pneumatic to piezo-

electric, thermoelectric, and ferroelectric—and can include
heating interfaces[251–257] to deliver detailed tactile sensations.
The convergence of haptic technologies with neural interfaces
paves the way for tactile interactivity in practical applica-
tions, amplifying accessibility and enriching user experience
(Table 2).

 NEURAL INTERFACES FOR AI-DRIVEN
BCI

AI-driven BCIs that facilitate direct interactions between the
external devices and human brain are revolutionizing how we
interact with our digital environments.[258] This integration
promises not only to enhance efficiency but also to pro-
vide personalized interaction models tailored to individual
needs.[259] AI-driven BCIs can redefine urban living, enabling
actions like altering street illuminationwith a thought, orches-
trating traffic flows to mitigate congestion, or even steering
autonomous vehicles. Virtual assistants, already a staple in
urban life, could evolve to be more responsive and intuitive
through BCI integration.[260]
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F IGURE  Neural interfaces for haptic interactions. (A) Force feedback for robotics and virtual reality. (B) Tactile feedback technologies, such as
triboelectric sensors, designed for feeling sensations. (C) Mid-air vibrations for touchscreens and similar interfaces, incorporating technologies like
ferroelectric, electromagnetic, ultrasonic piezoelectric, and thermoelastic laser devices. (D) Electrovibration-based haptic interfaces for wearables such as
gloves, featuring pneumatic, piezoelectric, thermoelectric, or ferroelectric actuators; and heating haptic interfaces.

. BCI operation modes in real-world
applications beyond healthcare

AI-driven BCIs extend their impact beyond healthcare,
enabling thought translation into actionable commands for
applications like rehabilitation and enhanced communica-
tion. Software advancements in machine learning and signal
processing have improved the signal-to-noise ratio in neu-
ral signal recording, potentially allowing non-invasive BCIs
to rival invasive ones in performance while reducing health
risks and costs. Open-source software tools like EEGLAB
and OpenViBE have accelerated BCI research by providing
accessible signal processing and machine learning. How-
ever, hardware development has lagged due to high costs
and lengthy development processes. Advancements include
biocompatible invasive interfaces and the shift from wet to
dry in-ear EEG electrodes, making brain recording more
accessible and efficient.

5.1.1 Communication mode

Teleoperated communication mode utilizes EEG-based BCIs
to control external devices, such as wheelchairs and traffic
light systems, using neural signals[261] (Figure 10A). Neu-
ral signals undergo processes of filtration, augmentation, and
categorization through algorithms,[262] enabling control of
devices and influencing direct stimulation of brain areas or
muscle groups.[263] The primarily non-invasive nature of
this BCI mode allows for diverse smart city applications,
including traffic management, air quality control, and energy
optimization.[264–267] Another application in this domain is
the capacity to recreate tactile feedback using intracorti-
cal micro-stimulation (ICMS), a method that involves using
microelectrodes to deliver electrical currents to specific brain
cortical regions for mapping neural circuits or inducing
artificial sensations or movements.[268] This can offer trans-
formative experiences, especially in the realm of prosthetic
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design. AI techniques, like transfer learning, refine the neural
intention decoding process[269] (Figure 10B).

5.1.2 Movement mode

Autonomous movement BCIs primarily focus on restor-
ing neural activity in patients with conditions like strokes
or spinal cord injuries[261,270,271] (Figure 10C). Non-invasive
methods such as EEG are used for guiding devices based on
motor intentions[272] (Figure 10D), while invasive approaches,
involving surgical placement of electrodes like ECoG orMEA,
are required for more precise interventions. Neural bypasses
and bridges reroute signals around injured nervous system
parts, linking decoded signals to electrical muscle or nerve
stimulation to potentially restore movement. The first use of
a neural bypass for restoring voluntary movement in human
involved placing aMEA electrode array on the primarymotor
cortex.[273] This allowed for the deciphering of finger and
hand motions, and subsequently, more intricate actions, illus-
trating its potential in restoringmotor function. The potential
future uses of this mode include directing robots and vehi-
cles for urban services like deliveries and maintenance. Both
teleoperated and autonomous BCIs offer unique advantages
for diverse applications. Teleoperated communication BCIs
can control traffic, monitor air quality, and regulate energy
systems, while autonomous movement BCIs can manage
autonomous vehicles or robots. Integrating these two modes
could redefine urban services, elevating their efficiency and
user accessibility.

. Closed-loop AI-BCI systems in
real-world applications beyond healthcare

BCI development typically progresses from identifying strong
neural patterns in controlled lab experiments to testing these
patterns in realistic settings through open-loop BCIs, which
operate without user feedback. The next stage is closing the
loop, creating neuroadaptive AI-BCIs that update in real time
based on the user mood state. While open-loop BCIs have
been widely explored, closed-loop systems are less inves-
tigated but offer more seamless user interaction, such as
BCIs for arousal regulation in flight simulators and thera-
peutic BCIs for controlling epileptic seizures and restoring
emotional function in neuropsychiatric disorders. Closed-
loop AI-BCIs, in contrast to one-way open-loop systems,
are adaptive, utilizing real-time user feedback for ongo-
ing optimization. Current challenges include synchronizing
operations in real-time, especially using visual evoked poten-
tials (VEPs)[274,275]—neural responses to visual stimuli to
assess the functionality of visual pathways—and ERPs[276]—
brainwaves triggered by specific sensory events. To address
these, asynchronous BCIs have been developed.[277] These
systems operate independently of external cues, enabling
continuous, natural interaction between the user and the sys-
tem, and have achieved advancements like a transmission
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F IGURE   AI-driven BCIs. (A) Teleoperated communication and mode; (B) BCIs transfer learning; (C) autonomous modes; (D) EEG-driven motor
intention for enhanced instrumental learning, reproduced with permission.[272] Copyright 2013, Wiley-VCH. (E) brain-AI closed-loop system; (F) ErrP
feedback versus manual stop button in autonomous navigation system. Reproduced with permission.[68] Copyright 2022, Springer Nature. Potential
applications of (G) limb control; (H) visual prosthesis; (I) remote control; and (J) mind connectivity.

speed of 67.7 bit/min[278] and the ability to detect error-
related potentials (ErrP)—neural signals generated when an
error is perceived.[68,279] A key example is the BACLoS[68]
(Figure 10E), which continually refines decision-making via
a feedback loop. BACLoS generally uses EEG devices and
low-power platforms like SpiNNaker, TrueNorth, and Loihi
resembling earbuds for high-quality data capture. ErrP feed-
back has notably reduced reaction times[68] (Figure 10F) in
scenarios like driving.

. AI-driven BCIs for future smart city
applications

AI-driven BCIs hold the potential to address urban challenges
and pave the way for human-machine interactions. Applica-
tions range from limb and robot control to visual prostheses,
enabling remote control and mind connectivity.

5.3.1 Limb, robot control, and clinical
applications

Traditional prostheses rely on electromyography (EMG)
signals from peripheral muscles, offering limited information
about movements like hand opening or closing. BCIs can aid
in motor control recovery after stroke or multiple sclerosis by
bypassing the impaired neuromotor system. Next-generation
neural prostheses will capture detailed motor intentions
directly from brain activity, offering precise control and
seamless integration with the body. Despite challenges
in speed and control accuracy, advancements in software
and hardware, along with hybrid neural interfaces com-
bining multiple signals (e.g. ECoG, MEA, EEG,) or BCI
paradigms (e.g. SSVEP and P300), are expected to improve
robotic arms control[280] (Figure 10G). These BCIs allow
robots to conduct complex tasks, such as waste management
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and surveillance.[281] Invasive BCIs are crucial in medi-
cal rehabilitation, linking the brain and muscles to restore
neural function in limb-impaired individuals. Non-invasive
EEG-based BCIs, while more accessible, often provide
limited control and depend on AI for enhanced accuracy.
Techniques like random forest algorithms improve non-
invasive sensorimotor rhythm BCI accuracy by effectively
assessing somatosensory evoked potentials (SEPs)—electrical
signals measured via EEG that are generated in response
to tactile or proprioceptive stimuli, often used to evaluate
the integrity of sensory pathways.[282] Research is underway
to decode neural signals of somatosensory experiences in
healthy individuals, with goals to replicate these stimuli using
methods like ICMS,[283] potentially enhancing virtual reality
and simulation training experiences.

5.3.2 Prostheses and future urban
transportation

Visual prostheses, crucial in biomedical engineering, offer-
ing hope to those with blindness resulting from conditions
such as age-related maculopathy or congenital amaurosis[284]
(Figure 10H), are evolving with AI-driven BCIs, tailoring elec-
trode configurations to individual needs. The shift to a flexible
multielectrode system could refine retinal stimulation to align
with the intricacies of human retinal physiology. Beyondmed-
ical solutions, visual prostheses can enhance urban living,
promising for adaptive lighting tailored to individual needs
and augmented reality enhancements that turn simple city
tours into immersive experiences. In the broad urban land-
scape, the influence of visual prostheses is also reshaping the
future of transportation. These interfaces are poised to revo-
lutionize self-driving cars by introducing thought-controlled
navigation systems. Such developments could enhance road
safety, with drivers guiding vehicles using their thoughts, thus
decreasing accidents due to human errors or fatigue.

5.3.3 Remote device control, and smart homes

Neural interfaces integrated with IoT offer transformative
potential in the realm of smart devices (Figure 10I), which
allow direct thought-to-device communication, obviating the
need for physical intermediaries. From modulating home
settings to plunging into virtual realities, the horizon of possi-
bilities is vast. Specific neural patterns associated with various
commands are identified by advanced algorithms, ensuring
that a range of IoT devices, including thermostats and light-
ing systems, are controlled precisely and reliably. Picture a
smart home where brain-controlled devices allow residents
unprecedented control over their environment while promot-
ing sustainability and enhanced health outcomes. Advances
in nanotechnology and wireless capabilities are anticipated to
produce BCIs that are both small in size and compatible with
biological tissues.[96,285]

5.3.4 Communication and shared experiences

In future smart cities, BCIs could go beyond basic control
to facilitate sharing emotions and thoughts[286] (Figure 10J).
This interaction could remove the need for physical inter-
faces altogether, providing extraordinary accessibility in
telemedicine, remote collaborations, and entertainment
domains such as thought-driven gaming. However, challenges
in reliability, protecting privacy, and accurately decoding
complex brain neural signals remain significant.

 CONCLUSIONS AND PERSPECTIVES

Neural interfaces in the brain, including MEA, DBS, ECoG,
and EEG are ushering in a revolutionary era that extends
beyond healthcare into diverse realms of human-technology
interaction. These interfaces are pivotal in decoding brain sig-
nals, reshaping our communication with the external world,
and integrating human cognition with urban technology.
They offer a new level of autonomy, particularly for indi-
viduals with disabilities or mobility constraints (Figure 11).
However, understanding their wide-ranging implications for
safety, inclusivity, and health is vital as they become integrated
into future urban development.
Invasive neural interfaces (e.g. intracortical BMIs using

action potentials and LFPs) offer direct and intuitive motor
control, boasting higher accuracy and potential for finemotor
command. However, they are subject to surgical risks and
long-term biocompatibility challenges, including nerve cell
and blood vessel damage, infection, and immune rejection.
Addressing these requires a deep understanding of the inter-
action between the tissue and foreign materials, and the
development of biocompatible interfaces. Non-invasive inter-
faces like EEG, while safer and less intrusive, offer lower
performance due to their reliance on detecting broader neural
activities and being subject to more noise and interfer-
ence. Their future development hinges on improving signal
processing and artifact removal techniques to enhance perfor-
mance. The pursuit of high-density electrodes aims to record
fromnumerous neuronswith high-resolution signals, promis-
ing advancements in sensorimotor applications and beyond.
However, these technologies still face challenges in minia-
turization and signal crosstalk. A multidisciplinary approach
involving neuroscience, engineering, psychology, and algo-
rithm processing is essential to harness the full potential of
these interfaces.
Initially, the primary application of neural interfaces was in

rehabilitation and medical care to restore social interaction
and movement capabilities in patients. The success of these
applications has inspired the development of bidirectional and
commercial BMIs. Technologies like cochlear implants rep-
resent successful examples of BMIs that have significantly
enhanced human capabilities, although their interaction with
the environment remains distinct from natural experiences.
The future of BMIs lies in addressing the balance between
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precision and safety, with advancement in signal processing,
miniaturization, and biocompatibility being critical. Intracor-
tical BMIs promise higher information transfer rates and the
potential for more natural control and feedback, including
somatosensory feedback restoration. However, challenges in
implant longevity, signal stability, and ethical considerations
remain.
As BMIs advance, they raise significant ethical and societal

questions regarding privacy, the potential for mind commu-
nication, and brain enhancement implications. The lack of
specific standards for the development and use of these tech-
nologies poses risks of unauthorized access to sensitive brain
signals. Rigorous standards for data acquisition, access con-
trol, and encryption should be established to protect user
privacy. The path forward involves not only technological
advancements but also a robust ethical framework, multi-
disciplinary collaboration, and regulatory oversight. Over-
coming these challenges will enable neural interfaces to
enhance human capabilities and quality of life responsibly and
inclusively.
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