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The hemodynamic consequences of aging have been extensively investigated during maximal 
incremental exercise. However, less is known about the effects of aging on hemodynamics during 
submaximal steady-state exercise. The aim of the present investigation was to compare the 
hemodynamics of healthy elderly and young subjects during an exercise bout conducted at the gas 
threshold (GET) intensity. Two groups of healthy, physically active subjects were studied: the elderly 
group—EG (n = 11; > 60 years old) and the young group—YG (n = 13; < 35 years old). Both groups 
performed a 5-min rectangular exercise test at the GET intensity. Hemodynamics were measured 
using echocardiography. The main finding was that stroke volume responses were higher in the YG 
than the EG (72.5 ± 16.7 vs. 52.4 ± 8.4 ml, respectively). The increased stroke volume capacity in the YG 
was the consequence of a greater capacity to increase cardiac preload and contractility and, to a lesser 
extent, to reduce systemic vascular resistance. Importantly, the atrial contribution to ventricular 
diastolic filling was substantially higher in the YG when compared to the EG.

Abbreviations
Am	� Peak velocity of mitral valve motion during late diastole
Avel	� Atrial transmitral filling peak velocity
CO	� Cardiac output
CPT	� Cardiopulmonary exercise stress test
DBP	� Diastolic blood pressure
DT	� Diastolic time
E/A	� Ratio between early and atrial transmitral filling peak velocities
EF	� Ejection fraction
EG	� Elderly group
EDV	� End diastolic volume
Em	� Peak velocity of mitral valve motion during early diastole
ESV	� End systolic volume
Evel	� Early transmitral filling peak velocity
Evel/Em	� Ratio between early transmitral filling peak velocity and peak velocity of mitral valve motion dur-

ing early diastole
GET	� Gas exchange threshold
HR	� Heart rate
MAP	� Mean blood pressure
PEP	� Pre-ejection period
PWD	� Pulsed-wave Doppler
RER	� Respiratory exchange ratio
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SBP	� Systolic blood pressure
SD	� Standard deviation
Sm	� Systolic myocardial velocity
SV	� Stroke volume
SVR	� Systemic vascular resistance
VE	� Pulmonary ventilation
VER	� Mean ventricular ejection rate
VET	� Left ventricular ejection time
VFR	� Ventricular filling rate
V̇CO2	� Carbon dioxide production
V̇O2	� Oxygen uptake
V̇O2max	� Maximum oxygen uptake
Wmax	� Maximum workload
YG	� Young group

Among the various physiological factors influencing exercise capacity, cardiac pumping is of paramount 
importance1. The cardiovascular response during exercise encompasses complex changes in heart rate (HR), 
myocardial contractility, preload, and afterload2–7. This response is influenced by many factors, including aging, 
which substantially reduces the capacity to augment cardiac output (CO), and therefore to exercise1,8–11. Several 
concurring phenomena are responsible for the age-related reduction in the pumping capacity of the heart. It is 
well established that maximal HR progressively decreases with age, consequently resulting in proportional reduc-
tions in maximal CO, maximal oxygen uptake ( V̇O2max), and maximal workload (Wmax)12,13. In contrast, whether 
stroke volume (SV) is preserved with aging remains controversial as the limited literature is conflicting9,13–15.

In some investigations conducted in healthy elderly individuals of both sexes, it was found that the decline 
in maximal CO during dynamic exercise was entirely due to the reduction in HR, since SV did not decline with 
age14. Importantly, however, aging did affect the processes by which the SV level was achieved in these studies. 
Specifically, older individuals showed a blunted capacity to reduce left ventricular end-systolic volume (ESV), and 
to increase ejection fraction (EF) in response to effort, however this deficit was offset by increasing end-diastolic 
volume (EDV) via the Frank-Starling mechanism. This increase in preload was made possible due to the slower 
HR, and subsequent longer diastolic interval, as compared to young subjects14. The underlying mechanisms for 
the age-associated reduction in maximal EF are multifactorial and likely include impaired myocardial perfor-
mance, increased vascular resistance, impaired autonomic nervous system modulation of myocardial contractil-
ity, and an intrinsic impairment in cardiomyocyte contractile function1,9,14 Moreover, available data suggest that 
diastolic function also deteriorates with age, likely due to the age-associated increases in cardiac stiffness and 
impairment in ventricular relaxation16–20.

While hemodynamic differences between elderly and young subjects during incremental exercise tests up to 
exhaustion have been extensively studied, less is known about the hemodynamic differences during submaximal 
steady-state exercise. Some previous studies have examined the effect of aging during exercise echocardiography 
performed at submaximal workloads during cycling in the supine or in the reclimbing position at 60°. Workloads 
varied from 30 to 60% of maximal workload, or it was set to reach a fixed level of HR21–24. However, to the best 
of our knowledge, there are no studies comparing individuals of different ages when they exercise at the same 
subjective submaximal level of effort identified with standard methods. Specifically, we could not find any infor-
mation about the effect of ageing during effort at constant workload at the intensity of the gas exchange threshold 
(GET), which represents a useful tool to discriminate the transition from moderate to heavy exercise. Importantly, 
steady-state in cardio-pulmonary and metabolic variables cannot be reached with exercise performed above the 
intensity of GET, so exercise bouts above GET can not be sustained for long periods25. Moreover, while V̇O2max 
declines with age, paralleling that of HR and CO, the reduction in GET is delayed, suggesting that the cardio-
vascular response during submaximal exercise is well-preserved with aging25,26. However, the effects of aging on 
hemodynamics during submaximal steady-state exercise at the intensity of the GET have yet to be elucidated. 
Reduction in ventricular relaxation and increase in the atrial component of ventricular diastolic filling have 
been repeatedly reported with senescence at rest as well as during exercise-induced tachycardia13,14,16,17. Dias-
tolic dysfunction is actually a part of the aging process of the heart, which leads to an impairment in ventricular 
early filling with a concomitant shift towards atrial filling as a mechanism through which SV in preserved23. 
However, to what extend these cardiovascular changes affect the cardiovascular response during submaximal 
exercise is largely unknown. It should be considered that the capacity to maintain and/or augment SV is pivotal 
for as effective cardiovascular response to exercise and to guarantee an optimal muscle perfusion, especially 
in older individuals where the chronotropic response is reduced. This has been demonstrated for effort up to 
maximum, but it is possible to hypothesize that an impaired diastolic filling negatively affects hemodynamic 
already at submaximal exercise.

Therefore, we devised the present investigation to compare hemodynamics of two groups of healthy indi-
viduals, the elderly (EG) and the young group (YG), during an exercise bout conducted at the same relative 
submaximal workload, i.e., at the GET intensity. Specifically, we hypothesized that elderly individuals would 
have a reduced capacity to increase SV during exercise at the GET intensity due to their impaired diastolic and 
systolic function as compared to young individuals. Moreover, reduced capacity to increase ventricular filling 
and emptying rates limit increases in CO and may, at least in part, explain a lower workload at GET.
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Results
The study protocol was completed by all the subjects. Table 1 shows the anthropometric data and the results of 
the preliminary cardiopulmonary test (CPT). Subjects in the YG were taller than those in the EG, but there was 
no difference between groups in body mass and body mass index (BMI). Maximum HR (HRmax), Wmax, V̇O2max 
(expressed in terms of absolute values as well as indexed by body mass), maximum carbon dioxide production 
( V̇CO2max), and maximum pulmonary ventilation (VEmax) were all higher in the YG compared to the EG, whereas 
the maximum respiratory exchange ratio (RER) was not significantly different. HR, workload, V̇O2, and V̇CO2 
at GET were significantly higher in the YG than in the EG, while RER and VE were similar. GET occurred at 
51.76 ± 8.76 and 73.91 ± 13.18% of Wmax in the YG and EG, respectively (p < 0.0001).

Figures 1, 2, 3, 4, 5 and 6 exhibit data collected at rest and at the fifth minute of exercise conducted at GET 
intensity. In addition, the % changes of each cardiovascular parameter with respect to rest are presented.

Figure 1 demonstrates that HR increased during the GET test with respect to rest, with the YG reaching a 
higher HR level as compared to the EG (panel A). HR was 144.1 ± 13.6 vs. 126.7 ± 16.9 bpm for the YG and the 
EG, respectively. It is noteworthy that these HR values were close to those reached at the GET workload during 
the preliminary CPT (see Table 1). Panel B of Fig. 1 illustrates that the HR % increment with respect to rest was 
not different between groups. The YG had a higher SV during the GET test in comparison with the EG (Fig. 1, 
panel C). SV was 72.5 ± 16.7 vs. 52.4 ± 8.4 ml for the YG and the EG, respectively. The SV % increment with 
respect to rest was also higher in the YG than in the EG, reaching statistical significance (panel D). As a result 
of the higher HR and the SV increments in the YG, the YG also achieved a higher CO level in comparison with 
the EG (panel E), although the % increment with respect to baseline was not different between groups (panel F).

Figure 2 (panel A) shows that (pre-ejection period) PEP was shorter in the YG than in the EG both at rest 
(94.5 ± 17.0 vs. 148.0 ± 20.9 ms; YG and EG, respectively) and during exercise (78.4 ± 24.3 vs. 134.1 ± 17.3 ms; 
YG and EG, respectively). However, there was no difference between the groups in the capacity to shorten PEP 
as illustrated by the % decrement with respect to rest (panel B). In both groups, ventricular ejection time (VET) 
was on average lower during exercise with respect to rest, and there was no difference between groups neither in 
the absolute values of VET (panel C) nor in its % change from rest (panel D). Diastolic time (DT) demonstrated 
a significant group effect (panel E), and it was on average shorter in the YG as compared to the EG. However, 
post-hoc comparison between columns did not find any significant difference at rest as well as during exercise. 
Panel F demonstrates that % DT shortening due to exercise was similar between groups.

Figure 3 shows that the YG had a higher ventricular filling rate (VFR) in response to exercise as compared to 
the EG (463.9 ± 162.8 vs. 265.9 ± 81.6 ml·s−1, YG and EG, respectively; panel A), although no difference between 
groups was found in the capacity to increase this parameter in percent from rest (panel B). Similarly, the YG 
had a higher ventricular emptying rate (VER) in response to exercise as compared to the EG, which reached a 
value of 424.5 ± 110.3 vs. 316.1 ± 121.3 ml·s−1 in the YG and in the EG, respectively (panel C). No difference was 
found between groups in the % VER increment from rest (panel D). Aging did not influence the mean arterial 
blood pressure (MAP) level both at rest and during exercise (panel E), nor its % increment from rest (panel F). 
In contrast, systemic vascular resistance (SVR) was significantly higher in the EG as compared to the YG both 
at rest (1798.7 ± 458.1 vs. 1277.4 ± 345.1 dynes·s−1·cm−5, for the EG and the YG, respectively) and during exercise 
(1299.0 ± 369.8 vs. 771.3 ± 147.7 dynes·s−1·cm−5, EG and YG, respectively; panel G). The capacity to decrease SVR 
during exercise from rest was not different between groups (panel H).

Table 1.   Anthropometric characteristics of groups together with results of the cardiopulmonary test. EG 
elderly group (n = 11, 7 females), YG young group (n = 13, 7 females), GET gas exchange threshold. Values are 
mean ± SD.

EG YG p value

Age (years) 65.1 ± 4.7 29.8 ± 4.0  < 0.0001

Height (cm) 161.0 ± 8.6 169.3 ± 8.4 0.025

Body mass (kg) 61.3 ± 7.4 64.8 ± 9.7 0.348

Body mass index (kg m2) 23.7 ± 2.4 22.5 ± 2.4 0.254

Maximum heart rate (bpm) 145.8 ± 18.2 177.9 ± 9.2  < 0.0001

Maximum workload (Wmax) 115.4 ± 45.6 206.9 ± 51.2  < 0.0001

Maximum O2 uptake (ml min−1) 1419 ± 558 2191 + 648 0.005

Maximum O2 uptake/kg (ml min−1 kg−1) 22.6 ± 6.6 32.9 ± 5.6  < 0.001

Maximum CO2 production (ml min−1) 1794 ± 661 2894 ± 919 0.003

Maximum respiratory exchange ratio 1.27 ± 0.13 1.31 ± 0.09 0.384

Maximum pulmonary ventilation (l min−1) 54.4 ± 22.4 83.3 ± 27.5 0.011

Heart rate at GET (bpm) 126.6 ± 13.2 140.6 ± 9.2 0.003

Workload at GET (W) 81.8 ± 23.5 105.0 ± 23.9 0.026

O2 uptake at GET (ml min−1) 1089 ± 338 1368 ± 274 0.036

CO2 production at GET (ml min−1) 1093 ± 343 1375 ± 310 0.046

Respiratory exchange ratio at GET 1.01 ± 0.03 1.00 ± 0.07 0.700

Pulmonary ventilation at GET (l min−1) 33.6 ± 10.4 29.2 ± 8.6 0.271
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Panel A of Fig. 4 shows that EDV was similar between groups at rest. However, during exercise, EDV was 
significantly higher in the YG than in the EG (99.5 ± 15.8 vs. 80.4 ± 15.6 ml, YG and EG, respectively). Moreover, 
the % increase of EDV in response to exercise was greater in the YG as compared to the EG (panel B). No differ-
ence was discovered between groups neither in the ESV level, nor in its % increment from rest (panel C and D, 
respectively). EF (panel E) was on average lower in the EG than in the YG both at rest (59.6 ± 7.9 vs. 67.6 ± 8.1%, 
EG and the YG, respectively) and during exercise (65.5 ± 8.2 vs. 72.7 ± 5.2%, EG and the YG, respectively). In 
both groups, EF increased to a similar extent with respect to rest (panel F).

In both groups, exercise significantly increased early transmitral filling peak velocity (Evel) with respect to 
rest (Fig. 5, panel A), without any detectable difference in each group’s % increase of this parameter with respect 
to rest (panel B). Avel (panel C) also increased significantly during exercise from rest, with the YG showing a 

Figure 1.   Hemodynamic data at rest and during exercise conducted at the gas exchange threshold intensity in 
the elderly (EG, n = 11) and in young (EG, n = 13) groups. Panels (A,C,E) show absolute values; panels (B,D,F) 
show % changes from rest. HR heart rate, SV stroke volume, CO cardiac output. Values are mean ± SD. *p < 0.05 
between groups at the same timepoint.
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higher increase in this parameter than the EG (112.0 ± 24.5 vs. 85.5 ± 20.7 cm·s−1, YG and EG, respectively). 
Furthermore, the YG exhibited a greater percent enhancement in atrial transmitral filling peak velocity (Avel) 
than the EG (panel D). No difference was found between groups with regards to the ratio between early and 
atrial transmitral filling peak velocities (E/A; panel E), however YG decreased this parameter in response to 
exercise, while the EG did not.

Figure 6 illustrates variables gathered with tissue Doppler. While the peak velocity of mitral valve motion 
during early diastole (Em) remained unchanged in the YG and increased in the EG with exercise, on average Em 
was not significantly affected by exercise (panel A). However, while there was no significant difference between 
groups, the EG showed a higher % increment with respect to rest than the YG (panel B). In both groups, the peak 
velocity of mitral valve motion during late diastole (Am) increased with respect to rest in response to exercise 
(panel C), although the % increase in this parameter was higher in the YG as compared to the EG (panel D). 

Figure 2.   Hemodynamic data at rest and during exercise conducted at the gas exchange threshold intensity in 
the elderly (EG, n = 11) and in young (EG, n = 13) groups. Panels (A,C,E) show absolute values; panels (B,D,F) 
show % changes from rest. PEP pre-ejection period, VET ventricular ejection time, DT diastolic time. Values are 
mean ± SD. * = p < 0.05 between groups at the same timepoint.
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Figure 3.   Hemodynamic data at rest and during exercise conducted at the gas exchange threshold intensity 
in the elderly (EG, n = 11) and in young (EG, n = 13) groups. Panels (A,C,E,G) show absolute values; panels 
(B,D,F,H) show % changes from rest. VFR ventricular filling rate, VER ventricular emptying rate, MAP mean 
arterial pressure, SVR systemic vascular resistance. Values are mean ± SD. *p < 0.05 between groups at the same 
timepoint.
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Systolic myocardial velocity (Sm) was on average higher in the YG than in the EG, although post-hoc analysis 
did not yield any significance at rest or during exercise. Moreover, in both groups, this parameter significantly 
increased in response to exercise (panel E). There was not a significant difference between groups in the Sm % 
change from rest (panel F). Time and group did not affect the ratio between the early transmitral filling peak 
velocity and the peak velocity of mitral valve (Evel/Em; panel G), nor any difference was found between groups 
in the % change from rest (panel H).

Figure 4.   Hemodynamic data at rest and during exercise conducted at the gas exchange threshold intensity in 
the elderly (EG, n = 11) and in young (EG, n = 13) groups. Panels (A,C,E)  show absolute values; panels (B,D,F) 
show % changes from rest. EDV end-diastolic volume, ESV end-systolic volume, EF ejection fraction. Values are 
mean ± SD. *p < 0.05 between groups at the same timepoint.
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Discussion
Exercise is a powerful tool to investigate how the cardiovascular system responds to stress and to assess its func-
tional reserves. The importance of assessing the circulatory adjustments to exercise as a marker of cardiovascular 
health is well-acknowledged1. Moreover, information about expected values may aid in establishing targets and 
providing parameters to evaluate the impact of training interventions. This is particularly important in the elderly, 
as cardiovascular, metabolic, and respiratory diseases often develop with aging, and these functional reserves 
deteriorate. The present study was conducted to compare hemodynamics of healthy elderly and young individuals 
during an effort conducted at the same relative submaximal workload, i.e., at the GET intensity. This workload 
discriminates the transition from moderate to heavy exercise and identifies a workload that can be sustained for 
long periods25. To the best of our knowledge, very little information exists about the hemodynamic differences 

Figure 5.   Hemodynamic data at rest and during exercise conducted at the gas exchange threshold intensity in 
the elderly (EG, n = 11) and in young (EG, n = 13) groups. Panels (A,C,E) show absolute values; panels (B,D,F) 
show % changes from rest. Evel transmitral filling peak velocity during early diastole, Avel transmitral filling 
peak velocity during atrial contraction. Values are mean ± SD. *p < 0.05 between groups at the same timepoint.
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Figure 6.   Hemodynamic (tissue Doppler) data at rest and during exercise conducted at the gas exchange 
threshold intensity in the elderly (EG, n = 11) and in young (EG, n = 13) groups. Panels (A,C,E,G) show absolute 
values; panels (B,D,F,H) show % changes from rest. Em mitral valve motion velocity during early transmitral 
filling, Am mitral valve motion velocity during atrial contraction, Sm systolic myocardial tissue velocity at mitral 
anulus. Values are mean ± SD. *p < 0.05 between groups at the same timepoint.
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between young and elderly individuals during exercise at submaximal intensities. It should be considered that, 
rather than maximal workloads, submaximal exercise protocols are normally employed to optimise training and 
to build cardiovascular and pulmonary rehabilitative programs in the clinical setting. Sub-maximal workloads 
allow longer sessions of physical activity and higher training volumes than training at heavier workloads and 
produces favourable adaptations both at cardiovascular and at muscle level, thereby improving exercise tolerance. 
In this context, the identification of the GET is paramount as it discriminates the transition from moderate to 
heavy exercise25. Moreover, most of the previous conducted to compare hemodynamics during exercise between 
young and elderly individuals has used exercise up to maximum workloads, which leads to very different absolute 
workloads, VO2, and HR levels. Thus, this approach has an intrinsic limit. Alternatively, other investigators used 
% of maximum HR to set the workload. However, even this approach has its own limits as there is substantial 
difference among individuals in the HR response to exercise, i.e., every subject has her/his individual HR response 
at a given intensity of exercise. Therefore, taking into consideration these limits, we chose to conduct experiments 
at the GET intensity, a submaximal workload that marks the transition from mild to moderate exercise intensity, 
that can be tolerated for minutes, that allows a steady state in hemodynamic parameters, and that produces a 
similar metabolic response among subjects25.

Our main hypothesis was that elderly individuals would show a reduced capacity to increase SV and CO as 
compared to young individuals. Specifically, we hypothesised that reduction in cardiac inotropism as well as 
in diastolic functions impaired the SV response at submaximal intensity, thereby explaining at least in part the 
reduced capacity to exercise of the EG as compared to the YG. Our results confirmed this hypothesis, as the EG 
showed a reduced capacity to increase SV in response to exercise in comparison with the YG (see Fig. 1, panel C). 
This phenomenon was previously described in investigations with incremental exercise tests up to exhaustion9,14, 
however, to the best of our knowledge, the present study is the first to compare hemodynamics during submaxi-
mal rectangular exercise at the same relative intensity. Moreover, our results show that not only the EG did have 
a reduced absolute SV response, but their capacity to increase SV with respect to rest was blunted in comparison 
with the YG as well (see Fig. 1, panel D), thereby reinforcing our hypothesis of an impaired capacity to properly 
increase SV during effort in the elderly.

The reduced SV, in combination with the lower HR, resulted in a lower CO in the EG than in the YG, thereby 
explaining, at least in part, the lower workloads achieved by the EG at the GET. It is noteworthy that in the EG, 
although the absolute HR was lower, the chronotropic response was increased to the same relative extent as in 
the YG, as illustrated by the similar % increase in HR with respect to rest in both groups (see Fig. 1, panel B). 
Furthermore, in the EG, HR was on average 126 bpm during exercise, which is approximately 86% of the maxi-
mum HR reached in their preliminary CPT (see Table 1). Similarly, at the GET, the YG reached a HR of 144 bpm, 
which was on average approximately 81% of the maximum HR achieved during their preliminary CPT. Taken 
together, these findings suggest that in regard to chronotropic reserve, the two groups exercised at a similar rela-
tive intensity, thereby reinforcing the use of the GET as a useful tool to compare exercise intensities at submaximal 
intensities. Is it also worth noting that the lower absolute HR in the EG was not due to chronotropic incompetence 
per se (same % increase), rather it was due to the reduction on HRmax which usually accompanies normal aging.

The impaired capacity to increase SV during the GET test in the EG likely resulted from the convergence of 
several concomitant phenomena: a reduced capacity to increase cardiac pre-load, a reduced capacity to augment 
cardiac contractility, and an increase in vascular resistance.

The EG demonstrated an impaired capacity to increase cardiac pre-load as demonstrated by their EDV 
behaviour during exercise. At rest, EDV was similar between groups, however the YG was able to increase 
EDV in response to exercise, while individuals of the EG were not. Moreover, the EG also exhibited a reduced 
% increase in EDV from rest (Fig. 4, panel B). Therefore, these findings suggest that aging is accompanied by 
an impairment in the capacity to enhance pre-load in response to exercise. This is line with the evidence that 
diastolic function deteriorates with age, likely due to an increase in cardiac stiffness and a decrease in ventricular 
relaxation16–20. Moreover, VFR, a measure of diastolic flux, was more elevated in the YG than in the EG during 
exercise, reinforcing the hypothesis that elderly people cannot properly enhance cardiac flux during diastole. In 
this regard, it should be pointed out that DT was on average longer in the EG as compared to the YG, and this 
should have permitted a more efficient cardiac filling in the EG; however, this was not the case as previously 
discussed. Collectively, the EDV and VFR data indicate that in the elderly preload reserve cannot be recruited to 
the same extent as in younger individuals during submaximal exercise. This is also in line with previous findings 
in healthy men reporting that the reduced diastolic filling during exercise that occurs with aging is likely due to 
structural changes which accompany normal aging27.

The second phenomenon which could have responsible for the blunted SV response in the EG was myo-
cardial contractility. The YG had a higher resting EF when compared to the EG. This difference in EF between 
groups remained during exercise. However, the contractility reserve was similarly recruited in the two groups, 
as EF increased to the same relative extent during exercise from rest (see Fig. 4, panel F). It has previously been 
observed that the EF response is reduced in the elderly, and it is speculated that this impaired myocardial perfor-
mance is due to a combination of an increased SVR, a decreased effectiveness of the autonomic nervous system 
to modulate myocardial contractility, and an impaired intrinsic cardiomyocyte contractility1,9,14.

We found that PEP was longer in the EG than in the YG. PEP is inversely related to the development of intra-
ventricular pressure as well as cardiac sympathetic activity28. The longer PEP in the EG than in the YG reinforces 
the hypothesis that myocardial contractility was reduced in the EG at rest and during exercise. However, it is 
important to note that PEP decreased to a similar extent in both groups, suggesting that cardiac sympathetic 
stimulation could still effectively recruit some reserve of contractility in the EG. To further support our hypoth-
esis that myocardial contractility could be still recruited in the EG there is Sm, which showed a behaviour similar 
to that of EF and PEP, i.e., it was on average lower throughout tests in the EG than in the YG. However, during 
exercise, Sm increased to a similar extent between groups in term of percent increase from rest. Sm is a parameter 
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gathered with tissue Doppler, and it is considered an index of contractility as it is correlated with ventricular peak 
dP/dt and is reduced in patients with ventricular dysfunction29–32. The contention that sympathetic stimulation 
was able to effectively recruit contractility in the EG is also supported by VET, which shortens when contractil-
ity increase28. VET was similar between groups at rest, and it decreased to a similar extent in in both groups in 
response to exercise. Moreover, both groups exhibited a similar capacity to reduce ESV during exercise, further 
reinforcing the hypothesis that the EG still had the capacity to recruit their contractility reserve.

An alternative explanation for the reduced EF in the EG may be their higher SVR. In this regard, it is useful 
to consider the VER behaviour, which represents the ventricular emptying capacity, and it is considered an index 
of myocardial performance33,34. The EG was unable to properly enhance VER during exercise as compared to 
the YG, notwithstanding the two groups had the same VET. This could be the consequence of the higher level 
of SVR in the EG, which potentially limited ventricular emptying in comparison with YG. This result is in line 
with the fact that older individuals have higher levels of SVR, both at rest and during exercise, thus suggesting 
that vascular resistance is increased by aging. This fact may, at least in part, explain the reduced EF and ventricu-
lar emptying observed in the EG. It should be considered that healthy aging is associated with an elevation in 
vascular tone in the muscle, both at rest and during exercise35,36. Inasmuch as adequate muscle perfusion is vital 
to meet the metabolic demand of the tissue, enhanced vascular tone is an important potential limitation of the 
capacity for physical activity. Thus, the reduced workload we observed in the EG may be also the consequence 
of reduced muscle perfusion secondary to enhanced vascular tone.

Our data suggest that heathy aging did not significantly impact the capacity to increase MAP during exercise, 
and this indicates that mechanisms controlling blood pressure during exercise were well-preserved in the EG.

Concerning the parameters gathered by transmitral and tissue Doppler, Evel was not influenced by age neither 
at rest nor during exercise. Moreover, the capacity to increase Evel in response to exercise was preserved in the 
EG, as illustrated in panel B of Fig. 5. Similar results were observed for Em; however, it appears that in the EG, 
the % increase of Em from rest was more pronounced than in the YG. Taken together, these findings appear to 
contradict the notion that healthy aging is associated with an increase in cardiac stiffness and/or a decrease in 
ventricular relaxation capable of impairing early ventricular filling16,19,37. However, other observations suggest 
that ventricular filling was actually altered in the EG. Specifically, the E/A < 1 observed in older individuals at rest 
suggests an impaired left ventricular relaxation, implying that a more vigorous atrial contraction was required 
to maintain or increase left ventricular filling. It is therefore conceivable that individuals in the EG were not able 
to further increase left ventricular filling through a more vigorous atrial contraction during exercise, unlike the 
YG. Furthermore, although diastolic time was similar between groups, HR was lower in the EG. In this regard, 
it should be considered that increasing HR reduces diastolic filling time, so that diastolic time would have been 
even shorter in the EG at greater heart rates, and this may have reduced further the cardiac preload. Thus, our 
results suggest that an impaired ventricular relaxation was present in older individuals, which likely contributed 
to the lower EDV and SV. In short, our finding that the EG was not able to recruit the reserve of atrial contrac-
tion to enhance ventricular filling may be considered an early sign of diastolic stiffening of the left ventricle.

It is also important to consider that our EG was composed of physically active individuals, and this may 
explain our observations of relatively well-preserved hemodynamic capacities in the older group, as SV was 
indeed well preserved. Concerning the YG, our findings are instead consistent with previous investigations 
reporting that Evel and Em do not show any relationship with SV during exercise in healthy young individuals21,38. 
Therefore, this suggests that a faster early filling velocity is not the primary mechanism that improves ventricular 
filling in young individuals during submaximal workloads, such as those employed in the present investigation.

To fully understand the complexity of diastolic filling, however, the contribution of the atria must also be 
considered. In this regard, Avel increased in both groups in response to exercise, but the increment was more 
evident in the YG than in the EG. This difference between groups was demonstrated by both absolute Avel 
values and by the Avel % increment with respect to rest. These findings suggest that the YG relied more on the 
capacity to increase the atrial contribution to ventricular filling than the EG. Supporting this hypothesis, the % 
increment with respect to rest of Am was more elevated in the YG as compared to the EG. These different Avel 
and Am behaviours between groups can be explained by an increased ventricular stiffness and/or an impaired 
atrial contraction in the EG as compared to the YG. The present experimental set-up precludes an explana-
tion of whether ventricular stiffness and/or impaired atrial contraction were both present in the EG. However, 
whatever the cause, it appears as though the YG relied more on atrial reserve than the EG to fill the ventricle 
during submaximal exercise. It should also be considered that Avel and Am increase with increments in HR in 
healthy subjects39,40, thus it is possible that increasing HR could have resulted in an increase in atrial contribu-
tion to ventricular filling in the EG. However, we believe that this occurrence was unlikely given that the EG 
group exercised at a lower absolute HR (i.e., on average about 126 vs. 144 bpm), but at a higher HR reserve than 
the YG. More specifically, estimating the HR reserve as 220-age41, the EG exercised at about the 87% of their 
chronotropic reserve, while the YG at about 75%. The Evel and Avel % increases from rest in the EG were similar. 
In contrast, the Avel increment was steeper than Evel in the YG, and therefore the E/A ratio decreased more in 
the YG than in the EG. These findings further support the hypothesis that in the YG the capacity to enhance 
ventricular filling during submaximal exercise relies more on the recruitment of the atrial contribution than on 
an increase in early ventricular filling. This is in line with recent findings demonstrating that during effort, when 
the cardiac cycle shortens due to tachycardia, atrial contraction becomes determinant in left ventricular filling42. 
Specifically, it was reported in endurance athletes that the left atrium plays an important role in maintaining 
and increasing EDV when filling is compromised, such as during tachycardia40. In this regard, it should also be 
mentioned that previous research reported that the E/A gradually decreases with increasing exercise intensity 
in young individuals, and this has been interpreted as a more prominent increase in atrial vs. early ventricular 
filling during exercise43. This result is also in line with another investigation reporting a larger decrement in E/A 
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in young vs. old subjects during exercise21. Moreover, in older male athletes it was observed that SV is not related 
to faster filling during early or late ventricular filling21.

Evel/Em is the ratio between the maximum velocity of early rapid filling and the maximum velocity of mitral 
valve anulus during early filling and is considered a load-independent estimate of end diastolic pressure44. 
Although this measure has been questioned in the clinical setting45, the fact that in our experimental setting 
Evel/Em did not differ between groups suggests that ventricular filling pressure is unaffected by aging dur-
ing exercise at the GET intensity. This result is in contrast with previous observations reporting that aging is 
associated with an increased pulmonary artery pressure during exercise, which develops as the consequence of 
both increased pulmonary vasculature resistance and higher left ventricular filling pressures37,46. As previously 
exposed, it should be considered that in our investigation the EG was composed of physically active individuals, 
and this may explain at least in part the different outcome from previous studies. Moreover, difference in exercise 
modalities and methods of measurements exist between the present and previous investigations, and this may 
account for the different outcomes.

One potential limitation of the present investigation is that we studied physically active, healthy individuals. 
Therefore, our results cannot be applied to non-active, elderly individuals, or those suffering from any cardiovas-
cular, metabolic, or respiratory disease, which are, incidentally, more common as a result of non-active aging47. 
Further research conducted with in-active elderly individuals and/or individuals suffering from age-related dis-
eases is warranted to gather a clearer picture of the hemodynamic consequences of aging in these populations. A 
further potential limit is that the E and A waves of the transmitral Doppler may merge during exercise-induced 
tachycardia48. Thus, the increase in Avel observed in both groups during exercise may have been affected by a 
contribution from the E wave.

In conclusion, our data suggest that healthy aging is characterized by several concomitant changes in hemo-
dynamics during submaximal exercise at the GET intensity with respect to young people. The well-known 
reduction in chronotropism is accompanied by a reduced capacity to increase SV, which is a major finding of 
the present investigation. This is the result of several complex phenomena, namely impaired ventricular filling 
rate and ventricular relaxation, a reduced capacity to increase EDV, an impaired contractile response, and an 
elevation in systemic vascular resistance. In short, all the main hemodynamic modulators, i.e., chronotropism, 
contractility, cardiac pre-load, and vascular resistance, are significantly affected by normal aging. One new find-
ing of the present investigation is the importance of atrial contraction on ventricular filling, as it appears that 
the atrial reserve can be recruited by young individuals to increase EDV during submaximal exercise, but not 
the elderly. Further research is warranted to better clarify this latter point.

Methods
Subjects.  Two groups of subjects were studied:

1.	 The EG was composed of 11 healthy individuals (7 females and 4 males) older than 60 years [range of age 
60–72 years; mean ± SD 65.18 ± 4.71]. At the time of the study, based on their reports, all were physically 
active accordingly to the World Health Organization recommendations (https://​www.​who.​int/​news-​room/​
fact-​sheets/​detail/​physi​cal-​activ​ity) and were practicing Tai Chi Chuan, three times a week, for an average 
of 6 years.

2.	 The YG was composed of 13 healthy individuals (7 females and 6 males) younger than 35 years (range of age 
18–35 years; mean ± SD 29.84 ± 4.06). At the time of the study, all were physically active and were regularly 
involved in exercise activities in a gym for at least three times a week.

In both groups, recruitment was conducted after a medical visit to exclude the presence of cardiac, pulmo-
nary, and metabolic conditions. Subjects under medications for any known disease were excluded. Smoking was 
also considered as exclusion criterion. We decided to enroll physically active individuals since, especially with 
aging, inactivity is often linked to cardiovascular and metabolic diseases. Thus, physically active people should 
be considered as the “normality” either in youth or in aging49. We specifically enrolled Tai Chi Chuan practition-
ers for the EG as elderly individuals that practice this discipline have demonstrated the ability to maintain good 
nutritional status, body composition, and muscle functionality50.

To calculate the required sample size, we used a calculator freely available on the internet (https://​clinc​alc.​
com/​stats/​sampl​esize.​aspx). The criteria set to calculate the sample size were: (1) a power of 85%, (2) an overall 
type 1 error of 0.05, (3) a SD of 20%, and (4) a 25% difference between groups in the studied variables, specifically 
SV and CO. Ten subjects/group were required to obtain adequate statistical power.

The research was approved by the Independent Ethical Committee of the A.O.U. of Cagliari (PG/2017/1700). 
Each participant was informed about the purposes and methods of the research and signed consent to participate 
in the investigation, which was carried out in accordance with the Declaration of Helsinki.

Experimental protocol.  The experimental protocol began with a preliminary cardiopulmonary CPT to 
establish the workload corresponding to that of the GET. Subjects were asked to abstain from drinking alcohol 
or coffee for at least 24 h before scheduled tests. All experiments were conducted in a room with controlled tem-
perature and humidity (22 °C; 50% relative humidity).

Cardiopulmonary test.  Each subject underwent a CPT on an electromagnetically braked cycle-ergometer 
(CUSTO Med, Ottobrunn, Germany). V̇O2, V̇CO2, and VE data were collected breath by breath with a gas ana-
lyzer (Ultima CPX, MedGraphics St. Paul, MN, USA). RER was calculated as V̇CO2/V̇O2. The gas analyzer was 

https://www.who.int/news-room/fact-sheets/detail/physical-activity
https://www.who.int/news-room/fact-sheets/detail/physical-activity
https://clincalc.com/stats/samplesize.aspx
https://clincalc.com/stats/samplesize.aspx
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calibrated immediately before the CPT, as indicated by the manufacturer. The exercise consisted of a linear 
increase in workload (20 or 30 W·min−1 for the EG and YG respectively, starting at 20 or 30 W) while maintain-
ing a pedaling frequency of 60 rpm until exhaustion (the point at which the subject was unable to maintain a 
pedaling rate of at least 50 rpm). Wmax, V̇O2max, ( V̇CO2max), maximum ventilation (VEmax), and HRmax were calcu-
lated as the average of the last 15 s of exercise. Subjects were considered to reach their V̇O2max when they met at 
least two of the following criteria: (1) a plateau in V̇O2, despite an increasing workload (< 80 ml·min−1), (2) RER 
above 1.10, and (3) HR ± 10 beats·min-1 of predicted maximum HR, calculated as 220-age51.

The GET was calculated using the V-slope method, which detects the exchange threshold by employing a 
regression analysis of the slope of V̇CO2 plotted as a function of V̇O2

52. During the CPT, subjects were familiar-
ized with the equipment and the staff of the laboratory, thereby allowing habituation to the environment and 
the ergometer that was employed in the successive experimental session. Throughout the CPT, participants were 
also monitored with ECG to exclude any cardiovascular problem induced by exertion.

Sessions to study hemodynamics during exercise at GET intensity.  After the CPT session (inter-
val 4–7 days), each participant reported to the laboratory and performed the GET test: a rectangular exercise 
session pedaling on the same cycle-ergometer utilized for the CPT. Before the subjects began the GET test, they 
sat on the cycle-ergometer for three minutes to collect data at rest. The exercise consisted of five minutes pedal-
ing against a workload corresponding to that of the GET previously measured during the CPT. A recovery of six 
minutes was allowed.

Hemodynamic measurements.  Hemodynamics were measured using an echocardiographic machine 
equipped with a hand-held 3.5-MHz adult ultrasound probe (Vivid iq, GE Healthcare, Fairefield, CT, USA). 
HR was assessed as the reciprocal of the electrocardiogram R-R interval provided by the echocardiograph. Two 
dimensional images and pulsed Doppler recordings were acquired in the sitting position using the apical four-
chamber view. Left ventricular ESV and EDV were calculated automatically by the software using the conven-
tional formula 8A2/3πL, where A is the left ventricular area and L is the longest ventricular length53. Ventricular 
area was determined by tracing along the inner edge of the endocardium and ventricular length was considered 
as the distance from the ventricular apex to the midpoint of the mitral annulus. Left ventricular EF was calcu-
lated as: (EDV-ESV/EDV) ·100.

SV was calculated as EDV-ESV, and CO as SV · HR.
During the same beats utilized for ESV and EDV measurements, Evel, Avel, and E/A were measured with 

pulsed-wave Doppler (PWD), with a 3-mm PWD sample volume placed distal to the mitral anulus, between the 
mitral leaflets. The interrogation beam was aligned with mitral flow54.

Em and Am were assessed with Doppler tissue imaging, with images captured from the apical four-chamber 
view. The pulsed-wave sample volume was placed at the lateral mitral anulus. The ratio Evel/Em was considered 
as an estimate of left ventricular filling pressure30,55. Sm was also assessed to obtain a measure of longitudinal 
systolic function30. Since tissue Doppler measures are highly dependent on the angle between the scan beam and 
the vector of ventricular motion56, particular care was taken with these measures.

Aortic valve Doppler sampling was also carried out from the apical five-chamber window to assess PEP and 
VET. In detail, PEP was measured as the time from the beginning of the QRS complex of the electrocardiogram 
and the opening of the aortic valve, and VET was measured as the total duration of the ejection period in the 
Doppler trace. DT was calculated by subtracting the sum of PEP and VET from the total period of the cardiac 
cycle.

The ratio between SV and DT was calculated to obtain a measure of the mean rate of diastolic blood flow, 
i.e., VFR. Moreover, the SV/VET ratio was also calculated to obtain VER, which is directly related to myocardial 
performance33,34.

Echocardiography images were taken at rest and during the last (i.e., the fifth, when a steady state in HR was 
achieved, as indicated by a HR level not different from ± 5 bpm with respect to the previous minute of exercise) 
minute of exercise by the same operator. When images were considered of good quality, a 6 s frame was recorded 
and then analyzed offline. For each analysis, at least three beats were taken into consideration (range 3–6 beats) 
and data are reported as the average of the measures. All echocardiographic calculations were performed by the 
same expert physician, with 5-year experience in the field. The operator’s coefficient of variation of measure-
ments ranged from 8% (very good) to 12% (good), calculated with an online tool (http://​www.​birmi​ngham.​ac.​
uk/​echo) with measures obtained both at rest and during exercise.

A manual sphygmomanometer (Heine Gamma GP, Gilching, Germany) was placed on the non-dominant 
arm to assess systolic (SBP) and diastolic (DBP) blood pressure. Blood pressure measurements were performed 
by the same physician throughout all experiments, with three measurements taken at rest and one measure taken 
during the last minute of exercise. Care was taken that the subject did not grip the bike during measurement. 
MAP was calculated using a formula which takes into consideration changes in PEP, VET, and DT57. SVR was 
calculated as MAP/CO. This quantity was then multiplied by 80, where 80 is a conversion factor to change the 
units to standard resistance units.

Data analysis.  Data are presented as mean ± SD. The Kolmogorov–Smirnov test was utilized to verify the 
normality of the variables. Since all variables were normally distributed, parametric statistical analysis was 
employed. Differences between groups in their anthropometric characteristics, and in parameters gathered dur-
ing the CPT test, were determined using the t test for unpaired data. The differences between groups in variables 
gathered at rest, and at the fifth minute of exercise at the GET intensity, were tested with the two-way analysis 
of variance (ANOVA, factors: group and time), followed by a Bonferroni post-hoc when appropriate. Further-

http://www.birmingham.ac.uk/echo
http://www.birmingham.ac.uk/echo
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more, the % change with respect to rest for each variable during the GET test was calculated, and a comparison 
between groups was conducted using the t test for unpaired data.

Statistical analysis was carried out with commercially available software (GraphPad Prism). A p value < 0.05 
was considered to determine statistical significance in all cases.

Ethical approval.  All procedures performed in studies involving human participants were in accordance 
with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki 
declaration and its later amendments or comparable ethical standards.

Data availability
The data that support the findings of this study are available from the corresponding author upon request.

Received: 15 January 2022; Accepted: 28 February 2022

References
	 1.	 Moreira, J. B. N., Wohlwend, M. & Wisløff, U. Exercise and cardiac health: Physiological and molecular insights. Nat. Metab. 2(9), 

829–839 (2020).
	 2.	 Crisafulli, A. et al. Detection of lactate threshold by including haemodynamic and oxygen extraction data. Physiol. Meas. 27(1), 

85–97 (2006).
	 3.	 Crisafulli, A. et al. Estimating stroke volume from oxygen pulse during exercise. Physiol. Meas. 28(10), 1201–1212 (2007).
	 4.	 Higginbotham, M. B., Morris, K. G., Coleman, R. E. & Cobb, F. R. Sex-related differences in the normal cardiac response to upright 

exercise. Circulation 70(3), 357–366 (1984).
	 5.	 Michelini, L. C., O’Leary, D. S., Raven, P. B. & Nóbrega, A. C. Neural control of circulation and exercise: A translational approach 

disclosing interactions between central command, arterial baroreflex, and muscle metaboreflex. Am. J. Physiol. (Heart Circ. Physiol.) 
1(309(3)), H381-392 (2015).

	 6.	 Nóbrega, A. C. L. et al. Neural regulation of cardiovascular response to exercise: Role of central command and peripheral afferents. 
Biomed. Res. Int. https://​doi.​org/​10.​1155/​2014/​478965 (2014).

	 7.	 Plotnick, G. D. et al. Use of the Frank-Starling mechanism during submaximal versus maximal upright exercise. Am. J. Physiol. 
(Heart Circ. Physiol.) 251, H1101–H1105 (1986).

	 8.	 Farinatti, P. T. & Soares, P. P. Cardiac output and oxygen uptake relationship during physical effort in men and women over 60 
years old. Eur. J. Appl. Physiol. 107(6), 625–631 (2009).

	 9.	 Farinatti, P. T., Monteiro, W., Oliveira, R. & Crisafulli, A. Cardiorespiratory responses and myocardial function within incremental 
exercise in healthy unmedicated older vs young men and women. Aging Clin. Exp. Res. 30(4), 341–349 (2018).

	10.	 Fleg, J. L. et al. Accelerated longitudinal decline of aerobic capacity in healthy older adults. Circulation 112(5), 674–682 (2005).
	11.	 Hossack, K. F. & Bruce, R. A. Maximal cardiac function in sedentary normal men and women: Comparison of age-related changes. 

J. Appl. Physiol. Respir. Environ. Exerc. Physiol. 53(4), 799–804 (1982).
	12.	 Christou, D. D. & Seals, D. R. Decreased maximal heart rate with aging is related to reduced beta-adrenergic responsiveness but 

is largely explained by a reduction in intrinsic heart rate. J. Appl. Physiol. (1985) 105(1), 24–29 (2008).
	13.	 Fleg, J. L. et al. Impact of age on the cardiovascular response to dynamic upright exercise in healthy men and women. J. Appl. 

Physiol. (1985) 78(3), 890–900 (1995).
	14.	 Fleg, J. L. & Strait, J. Age-associated changes in cardiovascular structure and function: A fertile milieu for future disease. Heart 

Fail. Rev. 17(4–5), 545–554 (2012).
	15.	 Rodeheffer, R. J. et al. Exercise cardiac output is maintained with advancing age in healthy human subjects: Cardiac dilatation and 

increased stroke volume compensate for a diminished heart rate. Circulation 69(2), 203–213 (1984).
	16.	 Arbab-Zadeh, A. et al. Effect of aging and physical activity on left ventricular compliance. Circulation 110, 1799–1805 (2004).
	17.	 Carrick-Ranson, G. et al. Effect of healthy aging on left ventricular relaxation and diastolic suction. Am. J. Physiol. Heart Circ. 

Physiol. (1985) 303(3), H315-322 (2012).
	18.	 De Souza, R. R. Aging of myocardial collagen. Biogerontology 3, 325–335 (2002).
	19.	 Lakatta, E. G. Cardiovascular ageing in health sets the stage for cardiovascular disease. Heart Lung Circ. 11, 76–91 (2002).
	20.	 Milia, R. et al. Effect of aging on hemodynamic response to metaboreflex activation. Eur. J. Appl. Physiol. 115(8), 1693–1703 (2015).
	21.	 Carrick-Ranson, G. et al. The larger exercise stroke volume in endurance-trained men does not result from increased left ventricular 

early or late inflow or tissue velocities. Acta Physiol. (Oxf.) 205(4), 520–531 (2012).
	22.	 Donal, E. et al. Comparison of the heart function adaptation in trained and sedentary men after 50 and before 35 years of age. Am. 

J. Cardiol. 108(7), 1029–1037 (2011).
	23.	 Maufrais, C. et al. Left ventricles of aging athletes: Better untwisters but not more relaxed during exercise. Clin. Res. Cardiol. 

106(11), 884–892 (2017).
	24.	 Olsen, R. H. et al. Age-related decline in mitral peak diastolic velocities is unaffected in well-trained runners. Scand. Cardiovasc. 

J. 49(4), 183–192 (2015).
	25.	 Poole, D. C., Rossiter, H. B., Brooks, G. A. & Gladden, L. B. The anaerobic threshold: 50+ years of controversy. J. Physiol. 599(3), 

737–767 (2021).
	26.	 Neder, J. A. et al. Prediction of metabolic and cardiopulmonary responses to maximum cycle ergometry: A randomised study. Eur. 

Respir. J. 14(6), 1304–1313 (1999).
	27.	 Stratton, J. R., Levy, W. C., Schwartz, R. S., Abrass, I. B. & Cerqueira, M. D. Beta-adrenergic effects on left ventricular filling: Influ-

ence of aging and exercise training. J. Appl. Physiol. (1985) 77(6), 2522–2529 (1994).
	28.	 Michael, S., Graham, K. S. & Davis Oam, G. M. Cardiac autonomic responses during exercise and post-exercise recovery using 

heart rate variability and systolic time intervals—a review. Front. Physiol. 8, 301 (2017).
	29.	 Berg, J. et al. Decreased atrioventricular plane displacement after acute myocardial infarction yields a concomitant decrease in 

stroke volume. J. Appl. Physiol. (1985) 128(2), 252–263 (2020).
	30.	 Correale, M. et al. Tissue Doppler imaging in coronary artery diseases and heart failure. Curr. Cardiol. Rev. 8(1), 43–53 (2012).
	31.	 Grue, J. F. et al. Automatic measurements of mitral annular plane systolic excursion and velocities to detect left ventricular dys-

function. Ultrasound. Med. Biol. 44(1), 168–176 (2018).
	32.	 Höglund, C., Alam, M. & Thorstrand, C. Atrioventricular valve plane displacement in healthy persons. An echocardiographic 

study. Acta Med. Scand. 224(6), 557–562 (1988).
	33.	 Gledhill, N., Cox, D. & Jamnik, R. Endurance athletes’ stroke volume does not plateau: Major advantage is diastolic function. Med. 

Sci. Sports Exerc. 26, 1116–1121 (1994).
	34.	 Sanna, I. et al. Hemodynamic Responses during Enduro-Motorcycling Performance. Front Physiol 8, 1062 (2017).

https://doi.org/10.1155/2014/478965


15

Vol.:(0123456789)

Scientific Reports |         (2022) 12:3825  | https://doi.org/10.1038/s41598-022-07933-7

www.nature.com/scientificreports/

	35.	 Barrett-O’Keefe, Z. et al. Endothelin-A-mediated vasoconstriction during exercise with advancing age. J. Gerontol. A. Biol. Sci. 
Med. Sci. 70(5), 554–565 (2015).

	36.	 Proctor, D. N. et al. Reduced leg blood flow during dynamic exercise in older endurance-trained men. J. Appl. Physiol. 85, 68–75 
(1998).

	37.	 Wolsk, E. et al. The influence of age on hemodynamic parameters during rest and exercise in healthy individuals. JACC Heart Fail. 
5(5), 337–346 (2017).

	38.	 Rowland, T. W. et al. Myocardial performance during progressive exercise in athletic adolescent males. Med. Sci. Sports Exerc. 
41(9), 1721–1728 (2009).

	39.	 Appleton, C. P. Influence of incremental changes in heart rate on mitral flow velocity: Assessment in lightly sedated, conscious 
dogs. J. Am. Coll. Cardiol. 17(1), 227–236 (1991).

	40.	 Wright, S. et al. Left atrial phasic function interacts to support left ventricular filling during exercise in healthy athletes. J. Appl. 
Physiol. (1985) 119(4), 328–333 (2015).

	41.	 Tanaka, H., Monahan, K. D. & Seals, D. R. Age-predicted maximal heart rate revised. JACC​ 37, 153–156 (2011).
	42.	 Gabrielli, L. et al. Increased active phase atrial contraction is related to marathon runner performance. Eur. J. Appl. Physiol. 118(9), 

1931–1939 (2018).
	43.	 Sato, A. et al. Effects of posture on left ventricular diastolic filling during exercise. Med. Sci. Sports Exerc. 31(11), 1564–1569 (1999).
	44.	 Chung, C. S., Shmuylovich, L. & Kovács, S. J. What global diastolic function is, what it is not, and how to measure it. Am. J. Physiol. 

(Heart Circ. Physiol.) 309(9), H1392-3406 (2015).
	45.	 Sharifov, O. F. & Gupta, H. What is the evidence that the tissue Doppler index E/e’ reflects left ventricular filling pressure changes 

after exercise or pharmacological intervention for evaluating diastolic function? A systematic review. J. Am. Heart. Assoc. 6(3), 
e004766 (2017).

	46.	 van Empel, V. P., Kaye, D. M. & Borlaug, B. A. Effects of healthy aging on the cardiopulmonary hemodynamic response to exercise. 
Am. J. Cardiol. 114(1), 131–135 (2014).

	47.	 Carta, M. G. et al. Active elderly and health-can moderate exercise improve health and wellbeing in older adults? Protocol for a 
randomized controlled trial. Trials 22(1), 331 (2021).

	48.	 Chung, C. S., Karamanoglu, M. & Kovács, S. J. Duration of diastole and its phases as a function of heart rate during supine bicycle 
exercise. Am. J. Physiol. (Heart Circ. Physiol.) 287(5), H2003–H2008 (2004).

	49.	 Lees, S. J. & Booth, F. W. Physical inactivity is a disease. World Rev. Nutr. Diet. 95, 73–79 (2005).
	50.	 Stagi, S. et al. Lower percentage of fat mass among Tai Chi Chuan practitioners. Int. J. Environ. Res. Public Health 17(4), 1232 

(2020).
	51.	 Howley, E. T., Bassett, D. R. & Welch, H. G. Criteria for maximal oxygen uptake: Review and commentary. Med. Sci. Sports Exerc. 

27, 1292–1301 (1995).
	52.	 Beaver, W. L., Wasserman, K. & Whipp, B. J. A new method for detecting anaerobic threshold by gas exchange. J. Appl. Physiol. 

(1985) 60(6), 2020–2027 (1986).
	53.	 Christie, J. et al. Determination of stroke volume and cardiac output during exercise: Comparison of two-dimensional and Doppler 

echocardiography, Fick oxymetry, and thermodiluition. Circulation 76, 539–547 (1987).
	54.	 Cohen, G. I., Pietrolungo, J. F., Thomas, J. D. & Klein, A. L. A practical guide to assessment of ventricular diastolic function using 

Doppler echocardiography. J. Am. Coll. Cardiol. 27, 1753–1760 (1996).
	55.	 Choudhury, A., Magoon, R., Malik, V., Kapoor, P. M. & Ramakrishnan, S. Studying diastology with speckle tracking echocardi-

ography: The essentials. Ann. Card. Anaesth. 20(Supplement), S57–S60 (2017).
	56.	 Bassareo, P. P., Tumbarello, R., Piras, A. & Mercuro, G. Evaluation of regional myocardial function by Doppler tissue imaging in 

univentricular heart after successful Fontan repair. Echocardiography 27(6), 702–708 (2010).
	57.	 Sainas, G. et al. Mean blood pressure assessment during post-exercise: Results from two different methods of calculation. J. Sports 

Sci. Med. 15, 424–433 (2016).

Acknowledgements
This study was supported by the University of Cagliari.

Author contributions
S.M., G.M., S.R., and A.C. conceived and conducted experiments, analyzed and interpreted data, and drafted the 
manuscript. G.G., F.S., S.S., E.M., P.P.B., and M.D.S. analyzed and interpreted data, and drafted the manuscript. 
All authors discussed the results and contributed to the final manuscript.

Competing interests 
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to A.C.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access   This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

© The Author(s) 2022

www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Systolic and diastolic function during cycling at the respiratory threshold between elderly and young healthy individuals
	Results
	Discussion
	Methods
	Subjects. 
	Experimental protocol. 
	Cardiopulmonary test. 
	Sessions to study hemodynamics during exercise at GET intensity. 
	Hemodynamic measurements. 
	Data analysis. 
	Ethical approval. 

	References
	Acknowledgements


